Aerial Application Methods for Control of Weed Species in Fallow Farmlands in Texas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Descriptions of the Study Plot
2.2. Descriptions of Treatments
2.3. Sampling of Spray Deposits
2.4. Sample Collection
2.5. Sample Processing
2.6. Efficacy Assessment
2.7. Data Analysis
3. Results and Discussion
3.1. Deposit Measurements on Mylar Cards and Weed Foliage
3.2. Deposition on Water Sensitive Paper
3.3. Efficacy
3.4. Droplet Spectrum vs. Efficacy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Duke, S.O.; Powles, S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008, 64, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Nandula, V.K.; Reddy, K.N.; Duke, S.O.; Poston, D.H. Glyphosate-resistant weeds: Current status and future outlook. Outlook Pest Manag. 2005, 183–187. [Google Scholar] [CrossRef]
- Powles, S.B. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Manag. Sci. 2008, 64, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Culpepper, A.S. Glyphosate-induced weed shifts 1. Weed Technol. 2006, 20, 277–281. [Google Scholar] [CrossRef]
- Reddy, K.N.; Norsworthy, J.K. Glyphosate-resistant crop production systems: Impact on weed species shifts. In Glyphosate Resistance in Crops and Weeds: History, Development, and Management; John Wiley and Sons: Hoboken, NJ, USA, 2010; pp. 165–184. [Google Scholar]
- Parkin, C.; Wyatt, J. The determination of flight-lane separations for the aerial application of herbicides. Crop Prot. 1982, 1, 309–321. [Google Scholar] [CrossRef]
- Kirk, I.W.; Bode, L.E.; Bouse, L.F.; Stermer, R.A.; Carlton, J.B. Deposition efficiency from aerial application of post emergence herbicides. STP 1989, 1036, 211–232. [Google Scholar]
- Bouse, L.; Whisenant, S.; Carlton, J. Aerial spray deposition on mesquite. Trans. ASAE 1992, 35, 51–59. [Google Scholar] [CrossRef]
- Kirk, I.W. Aerial spray drift from different formulations of glyphosate. Trans. ASAE 2000, 43, 555–559. [Google Scholar] [CrossRef]
- Zhang, H.; Lacey, R.; Lan, Y.; Hoffmann, W.C.; Martin, D.E.; Fritz, B.; Lopez, J. Ground-based spectral reflectance measurements for evaluating the efficacy of aerially-applied glyphosate treatments. Biosyst. Eng. 2010, 107, 10–15. [Google Scholar] [CrossRef]
- Baldwin, F.L. Transgenic crops: A view from the US Extension Service. Pest Manag. Sci. Former. Pestic. Sci. 2000, 56, 584–585. [Google Scholar] [CrossRef]
- Carlton, J.; Bouse, L.; Kirk, I. Electrostatic charging of aerial spray over cotton. Trans. ASAE 1995, 38, 1641–1645. [Google Scholar] [CrossRef]
- Kihm, K.D.; Kim, B.H.; McFarland, A.R. Atomization, charge, and deposition characteristics of bipolarly charged aircraft sprays. At. Sprays 1992, 2, 463–481. [Google Scholar] [CrossRef]
- Latheef, M.A.; Carlton, J.B.; Kirk, I.W.; Hoffmann, W.C. Aerial electrostatic-charged sprays for deposition and efficacy against sweet potato whitefly (Bemisia tabaci) on cotton. Pest Manag. Sci. 2009, 65, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Kirk, I.W.; Hoffmann, W.C.; Carlton, J.B. Aerial electrostatic spray system performance. Trans. ASAE 2001, 44, 1089–1092. [Google Scholar]
- ASABE. Spray Nozzle Classification by Droplet Spectra; ASABE: St. Joseph, MI, USA, 2018. [Google Scholar]
- Teske, M.; Thistle, H.; Hewitt, A.; Kirk, I.; Dexter, R.; Ghent, J. Rotary atomiser drop size distribution database. Trans. ASAE 2005, 48, 917–921. [Google Scholar] [CrossRef] [Green Version]
- Kirk, I.W. Measurement and prediction of atomization parameters from fixed-wing aircraft spray nozzles. Trans. ASAE 2007, 50, 693–703. [Google Scholar] [CrossRef]
- Microngroup. AU5000 Atomiser Operator’s Handbook and Parts Catalogue. Available online: https://www.microngroup.com/files/au5000_web_handbook_iss_13.pdf (accessed on 20 May 2020).
- Jordan, T. Effects of temperature and relative humidity on the toxicity of glyphosate to bermudagrass (Cynodon dactylon). Weed Sci. 1977, 25, 448–451. [Google Scholar] [CrossRef]
- Coupland, D. Influence of light, temperature and humidity on the translocation and activity of glyphosate in Elymus repens (= Agropyron repens). Weed Res. 1983, 23, 347–355. [Google Scholar] [CrossRef]
- Whitwell, T.; Banks, P.; Basler, E.; Santelmann, P. Glyphosate absorption and translocation in bermudagrass (Cynodon dactylon) and activity in horsenettle (Solanum carolinense). Weed Sci. 1980, 28, 93–96. [Google Scholar] [CrossRef]
- Whittney, R.W.; Gardisser, D.R. DropletScan Operators Manual; WRK of Oklahoma and WRK of Arkansas: Stillwater, OK, USA, 2003. [Google Scholar]
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- West, J.S.; Bravo, C.; Oberti, R.; Lemaire, D.; Moshou, D.; McCartney, H.A. The potential of optical canopy measurement for targeted control of field crop diseases. Annu. Rev. Phytopathol. 2003, 41, 593–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, Y.; Huang, Y.; Martin, D.E.; Hoffmann, W.C. Development of an airborne remote sensing system for crop pest management: System integration and verification. Appl. Eng. Agric. 2009, 25, 607–615. [Google Scholar] [CrossRef]
- Felton, W.L.; Alston, C.L.; Haigh, B.M.; Nash, P.G.; Wicks, G.A.; Hanson, G.E. Using Reflectance Sensors in Agronomy and Weed Science 1. Weed Technol. 2002, 16, 520–527. [Google Scholar] [CrossRef]
- Rimi, F.; Macolino, S.; Leinauer, B. Winter-applied glyphosate effects on spring green-up of zoysiagrasses and ‘Yukon’bermudagrass in a transition zone. HortTechnology 2012, 22, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Thelen, K.D.; Kravchenko, A.; Lee, C.D. Use of optical remote sensing for detecting herbicide injury in soybean. Weed Technol. 2004, 18, 292–297. [Google Scholar] [CrossRef]
- Hickman, M.V.; Everitt, J.H.; Escobar, D.E.; Richardson, A.J. Aerial photography and videography for detecting and mapping dicamba injury patterns. Weed Technol. 1991, 5, 700–706. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS JMP® 14; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Khaliq, A.; Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Chiaberge, M.; Gay, P. Comparison of satellite and UAV-based multispectral imagery for vineyard variability assessment. Remote Sens. 2019, 11, 436. [Google Scholar] [CrossRef] [Green Version]
- Desmond, J.E.; Glover, G.H. Estimating sample size in functional MRI (fMRI) neuroimaging studies: Statistical power analyses. J. Neurosci. Methods 2002, 118, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.G.; Pitt, D.G.; Fleming, R.A.; Kettela, E.G. Glyphosate efficacy on eastern Canadian forest weeds. Part I: Experimental design and on-target deposit. Can. J. For. Res. 1992, 22, 1151–1159. [Google Scholar] [CrossRef]
- Franz, E.; Reichard, D.L.; Carpenter, T.G.; Brazee, R.D. Deposition and Effectiveness of Charged Sprays for Pest Control. Trans. ASAE 1987, 30. [Google Scholar] [CrossRef]
- Wolf, T.M.; Downer, R.A.; Hall, F.R.; Wagner, O.B.; Kuhn, P. Effect of electrostatic charging on the dose transfer of water-based pesticide mixtures. In Pesticide Formulations and Application Systems: 15th Volume; ASTM International: West Conshohocken, PA, USA, 1996. [Google Scholar]
- Martin, D.E.; Latheef, M.A. Efficacy of electrostatically charged glyphosate on ryegrass. J. Electrost. 2017, 90, 45–53. [Google Scholar] [CrossRef]
- Martin, D.; Carlton, J. Airspeed and orifice size affect spray droplet spectrum from an aerial electrostatic nozzle for fixed-wing applications. Appl. Eng. Agric. 2013, 29, 5–10. [Google Scholar] [CrossRef]
- Cardina, J.; Johnson, G.A.; Sparrow, D.H. The nature and consequence of weed spatial distribution. Weed Sci. 1997, 45, 364–373. [Google Scholar] [CrossRef]
- Chang, J.; Clay, S.A.; Clay, D.E.; Dalsted, K. Detecting weed-free and weed-infested areas of a soybean field using near-infrared spectral data. Weed Sci. 2004, 52, 642–648. [Google Scholar] [CrossRef]
- Law, S.E.; Lane, M.D. Electrostatic Deposition of Pesticide Spray onto Foliar Targets of Varying Morphology. Trans. ASAE 1981, 24, 1441–1445. [Google Scholar]
- Martin, D.E.; Latheef, M.A. Aerial electrostatic spray deposition and canopy penetration in cotton. J. Electrost. 2017, 90, 38–44. [Google Scholar] [CrossRef]
- Feng, P.C.; Chiu, T.; Sammons, R.D.; Ryerse, J.S. Droplet size affects glyphosate retention, absorption, and translocation in corn. Weed Sci. 2009, 51, 443–448. [Google Scholar] [CrossRef]
- Cranmer, J.R.; Linscott, D.L. Effects of droplet composition on glyphosate absorption and translocation in velvetleaf (Abutilon theophrasti). Weed Sci. 1991, 39, 251–254. [Google Scholar] [CrossRef]
- Prasad, R.; Cadogan, B.L. Influence of droplet size and density on phytotoxicity of three herbicides. Weed Technol. 1992, 6, 415–423. [Google Scholar] [CrossRef]
- Ferguson, J.C.; Chechetto, R.G.; Adkins, S.W.; Hewitt, A.J.; Chauhan, B.S.; Kruger, G.R.; O’Donnell, C.C. Effect of spray droplet size on herbicide efficacy on four winter annual grasses. Crop Protect. 2018, 112, 118–124. [Google Scholar] [CrossRef]
- Butts, T.R.; Samples, C.A.; Franca, L.X.; Dodds, D.M.; Reynolds, D.B.; Adams, J.W.; Zollinger, R.K.; Howatt, K.A.; Fritz, B.K.; Hoffmann, C.W. Droplet size impact on efficacy of a dicamba-plus-glyphosate mixture. Weed Technol. 2019, 33, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.H.; Campbell, R.A.; Studens, J.A.; Wagner, R.G. Absorption and translocation of glyphosate in Aspen (Populus tremuloides Michx.) as influenced by droplet size, droplet number, and herbicide concentration. Weed Sci. 1996, 44, 482–488. [Google Scholar] [CrossRef]
- Ramsdale, B.K.; Messersmith, C.G.; Nalewaja, J.D. Spray volume, formulation, ammonium sulfate, and nozzle effects on glyphosate efficacy. Weed Technol. 2003, 17, 589–598. [Google Scholar] [CrossRef]
- Knoche, M. Effect of droplet size and carrier volume on performance of foliage-applied herbicides. Crop Protect. 1994, 13, 163–178. [Google Scholar] [CrossRef]
- Ennis, W., Jr.; Williamson, R.E. Influence of droplet size on effectiveness of low-volume herbicidal sprays. Weeds 1963, 11, 67–72. [Google Scholar] [CrossRef]
- Bengtsson, A. Droppstorlekens Inflytande p’a Ogräsemedlens Verkan: With a Summary in English: The Influence of Droplet Size on the Effect of Weed Killers; Almqvist & Wiksells Boktryckeri: Stockholm, Sweden, 1961. [Google Scholar]
- Behrens, R. Influence of various components on the effectiveness of 2, 4, 5-T sprays. Weeds 1957, 5, 183–196. [Google Scholar] [CrossRef]
- Phillips, M.; Bradford, A.; Harris, P. Effect on weed control of drop size, water volume and rate of a herbicide applied by spinning disc. In Proceedings of the 1980 British Crop Protection Conference-Weeds (15th British Weed Control Conference), Brighton, UK, 17–20 November 1980. [Google Scholar]
- Picot, J.; Vliet, M.V.; Payne, N. Droplet size characteristics for insecticide and herbicide spray atomisers. Can. J. Chem. Eng. 1989, 67, 752–761. [Google Scholar] [CrossRef]
- Hoffmann, W.; Fritz, B.; Yang, C. Effects of spray adjuvants on spray droplet size from a rotary atomiser. In Pesticide Formulation and Delivery Systems: 35th Volume, Pesticide Formulations, Adjuvants, and Spray Characterization in 2014; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Mohr, K.; Sellers, B.A.; Smeda, R.J. Application time of day influences glyphosate efficacy. Weed Technol. 2007, 21, 7–13. [Google Scholar] [CrossRef]
- Stopps, G.J.; Nurse, R.E.; Sikkema, P.H. The effect of time of day on the activity of postemergence soybean herbicides. Weed Technol. 2013, 27, 690–695. [Google Scholar] [CrossRef]
- Martinson, K.B.; Durgan, B.R.; Gunsolus, J.L.; Sothern, R.B. Time of day of application effect on glyphosate and glufosinate efficacy. Crop Manag. 2005, 4. [Google Scholar] [CrossRef]
Treatment | No. Nozzles | Rate (L·ha−1) | Orifice | Deflection | Pressure | Airspeed | Target |
---|---|---|---|---|---|---|---|
(Degrees) | (kPa) | (KPH) | VMD [a] | ||||
(µm) | |||||||
Electrostatic Off | 100 | 9.4 | TX-VK8 | 0 | 483 | 209 | 200 |
Electrostatic On | 100 | 9.4 | TX-VK8 | 0 | 483 | 209 | 200 |
CP-11TT (4015) | 39 | 28.1 | 15 | 0 | 241 | 210 | 350 |
AU-5000 | 8 | 28.1 | VRU = Max [b] | Blade-65 | 241 | 177 | 250 |
Untreated Check | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Tank Mix | Density (gm/cm) | Dynamic Surface Tension (Dyne/cm) | Viscosity (cP) |
---|---|---|---|
Electrostatic On/Off | 1.0060 | 45.9 | 1.3 |
CP11-TT and AU5000 | 1.0025 | 43.5 | 1.1 |
Treatment | Rep | In-Wind a | Crosswind b | Temperature (°C) | Relative Humidity (%) |
---|---|---|---|---|---|
Year 1 | |||||
Electrostatic On | 1 | 4.2 | 0.3 | 26.8 | 74.7 |
Electrostatic On | 2 | 3.3 | 1.2 | 26.8 | 73.7 |
Electrostatic On | 3 | 3.3 | 1.0 | 26.6 | 75.6 |
Electrostatic On | 4 | 3.8 | 1.3 | 26.3 | 77.4 |
CP-11TT | 1 | 4.5 | 1.1 | 28.7 | 66.5 |
CP-11TT | 2 | 4.9 | 1.0 | 28.5 | 67.4 |
CP-11TT | 3 | 5.0 | 0.3 | 28.3 | 67.7 |
CP-11TT | 4 | 4.1 | 0.8 | 28.3 | 67.7 |
Year 2 | |||||
Electrostatic Off | 1 | 1.5 | 0.5 | 2.2 | 62.0 |
Electrostatic Off | 2 | 1.7 | 0.6 | 2.7 | 60.9 |
Electrostatic Off | 3 | 2.4 | 0.9 | 3.0 | 59.5 |
Electrostatic On | 1 | 2.3 | 0.9 | 3.2 | 58.3 |
Electrostatic On | 2 | 2.2 | 0.7 | 3.4 | 56.8 |
Electrostatic On | 3 | 2.2 | 0.9 | 3.9 | 54.5 |
CP-11TT | 1 | −3.4 | 2.1 | 10.5 | 30.1 |
CP-11TT | 2 | −1.1 | 3.1 | 11.0 | 29.2 |
CP-11TT | 3 | −1.6 | 2.4 | 11.4 | 27.5 |
AU-5000 | 1 | 1.4 | −1.3 | 12.3 | 24.6 |
AU-5000 | 2 | −1.4 | 0.9 | 13.1 | 24.3 |
AU-5000 | 3 | −1.6 | −0.6 | 13.4 | 23.9 |
Treatment | Mylar | Leaf |
---|---|---|
Deposit [a] (L·ha−1) | Deposit [a] (L·ha−1) | |
Year 1 | ||
Electrostatic On | 3.81 b | 1.73 b |
CP-11TT | 15.24 a | 2.56 a |
Untreated Check | 0.58 c | 0.68 c |
ANOVA Statistics | F = 97.7; p < 0.0001; df = 2, 117 | F = 35.9; p < 0.0001; df = 2, 282 |
Year 2 | ||
Electrostatic Off | 2.04 cd | 1.96 bc |
Electrostatic On | 3.28 c | 2.85 b |
CP-11TT | 18.97 a | 8.02 a |
AU-5000 | 14.04 b | 6.98 a |
Untreated Check | 0.01 | 0.18 c |
ANOVA Statistics | F = 102.3; p < 0.0001; df = 4, 145 | F = 36.4; p < 0.0001; df = 4, 145 |
Treatment | Application Rate | Number of Droplets | Droplet Density | Dv0.5 | Coverage |
---|---|---|---|---|---|
(L·ha−1) | (#/cm2) | (μm) | (%) | ||
Electrostatic Off | 2.65 c | 201 c | 19.83 c | 220 c | 0.775 c |
Electrostatic On | 4.40 c | 299 c | 29. 33 c | 238 bc | 1.249 c |
CP-11TT | 16.33 a | 475 b | 46.77 b | 326 a | 4.226 a |
AU-5000 | 12.01 b | 638 a | 62.53 a | 247 b | 3.361 b |
F (df = 3, 116) | 45.36 | 21.62 | 21.62 | 60.32 | 43.67 |
Nozzle | Weed Mortality (%) |
---|---|
Electrostatic Off | 39.01 b |
Electrostatic On | 63.77 a |
CP-11TT | 74.78 a |
AU-5000 | 80.76 a |
Untreated Check | 5.98 c |
F = 32.1; p < 0.0001; | |
df = 4, 145 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, D.E.; Latheef, M.A.; Lopez, J.D., Jr.; Duke, S.E. Aerial Application Methods for Control of Weed Species in Fallow Farmlands in Texas. Agronomy 2020, 10, 1764. https://doi.org/10.3390/agronomy10111764
Martin DE, Latheef MA, Lopez JD Jr., Duke SE. Aerial Application Methods for Control of Weed Species in Fallow Farmlands in Texas. Agronomy. 2020; 10(11):1764. https://doi.org/10.3390/agronomy10111764
Chicago/Turabian StyleMartin, Daniel E., Mohamed A. Latheef, Juan D. Lopez, Jr., and Sara E. Duke. 2020. "Aerial Application Methods for Control of Weed Species in Fallow Farmlands in Texas" Agronomy 10, no. 11: 1764. https://doi.org/10.3390/agronomy10111764
APA StyleMartin, D. E., Latheef, M. A., Lopez, J. D., Jr., & Duke, S. E. (2020). Aerial Application Methods for Control of Weed Species in Fallow Farmlands in Texas. Agronomy, 10(11), 1764. https://doi.org/10.3390/agronomy10111764