Estimation of Watermelon Nutrient Requirements Based on the QUEFTS Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Development of the QUEFTS Model
2.3. Field Validation
3. Results and Discussion
3.1. Characteristics of Fruit Yield and Nutrient Uptake
3.2. Internal Efficiency and Reciprocal Internal Efficiency
3.3. Selection of Data for Adapting the QUEFTS Model
3.4. Estimating the Balanced Nutrient Uptakes
3.5. Model Validations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rico, X.; Gullon, B.; Alonso, J.L.; Yanez, R. Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Res. Int. 2020, 132, 109086. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.K. Citrullus lanatus. In Edible Medicinal and Non-Medicinal Plants; Springer: Berlin, Germany, 2012; Volume 2, pp. 179–190. ISBN 978-94-007-1764-0. [Google Scholar]
- Charoensiri, R.; Kongkachuichai, R.; Suknicom, S.; Sungpuag, P. Beta-carotene, lycopene, and alpha-tocopherol contents of selected Thai fruits. Food Chem. 2009, 113, 202–207. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org (accessed on 10 April 2020).
- Li, W.; Yang, M.; Wang, J.; Wang, Z.; Fan, Z.; Kang, F.; Wang, Y.; Luo, Y.; Kuang, D.; Chen, Z.; et al. Agronomic responses of major fruit crops to fertilization in China: A Meta-analysis. Agronomy 2019, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.K.; Li, Z.B.; Xing, Y.Y. Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China. Agric. Water Manag. 2015, 161, 53–64. [Google Scholar]
- Zhang, W.F.; Cao, G.X.; Li, X.L.; Zhang, H.Y.; Wang, C.; Liu, Q.Q.; Chen, X.P.; Cui, Z.L.; Shen, J.B.; Jiang, R.F.; et al. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Kweon, H.J.; Park, M.-Y.; Lee, D. Field Assessment of Macronutrients and Nitrogen in Apple Leaves Using a Chlorophyll Meter. HortTechnology 2019, 29, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Varinderpal, S.; Bijay, S.; Yadvinder, S.; Thind, H.S.; Gupta, R.K. Need based nitrogen management using the chlorophyll meter and leaf colour chart in rice and wheat in South Asia: A review. Nutr. Cycl. Agroecosyst. 2010, 88, 361–380. [Google Scholar] [CrossRef]
- Sahrawat, K.L.; Wani, S.P. Soil Testing as a Tool for On-Farm Fertility Management: Experience from the Semi-arid Zone of India. Commun. Soil Sci. Plant Anal. 2013, 44, 1011–1032. [Google Scholar] [CrossRef] [Green Version]
- Geisseler, D.; Miyao, G. Soil testing for P and K has value in nutrient management for annual crops. Calif. Agric. 2016, 70, 152–159. [Google Scholar] [CrossRef]
- He, P.; Li, S.T.; Jin, J.Y.; Wang, H.T.; Li, C.J.; Wang, Y.L.; Cui, R.Z. Performance of an Optimized Nutrient Management System for Double-Cropped Wheat-Maize Rotations in North-Central China. Agron. J. 2009, 101, 1489–1496. [Google Scholar] [CrossRef]
- Yang, F.; Xu, X.; Wang, W.; Ma, J.; Wei, D.; He, P.; Pampolino, M.F.; Johnston, A.M. Estimating nutrient uptake requirements for soybean using QUEFTS model in China. PLoS ONE 2017, 12, e0177509. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; He, P.; Pampolino, M.F.; Chuan, L.; Johnston, A.M.; Qiu, S.; Zhao, S.; Zhou, W. Nutrient requirements for maize in China based on QUEFTS analysis. Field Crops Res. 2013, 150, 115–125. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Mirabelli, C.; Cardarelli, M. Nitrogen-use efficiency traits of mini-watermelon in response to grafting and nitrogen-fertilization doses. J. Plant Nutr. Soil Sci. 2011, 174, 933–941. [Google Scholar] [CrossRef]
- Du, S.-p.; Ma, Z.-m.; Xue, L. Effects of different kinds of organic fertilizer on fruit yield, quality and nutrient uptake of watermelon in gravel-mulched field. Yingyong Shengtai Xuebao 2019, 30, 1269–1277. [Google Scholar] [PubMed]
- Hendricks, G.S.; Shukla, S.; Cushman, K.E.; Obreza, T.A.; Roka, F.M.; Portier, K.M.; McAvoy, E.J. Florida watermelon production affected by water and nutrient management. HortTechnology 2007, 17, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Witt, C.; Dobermann, A.; Abdulrachman, S.; Gines, H.C.; Wang, G.H.; Nagarajan, R.; Satawatananont, S.; Son, T.T.; Tan, P.S.; Tiem, L.V.; et al. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crops Res. 1999, 63, 113–138. [Google Scholar] [CrossRef]
- Xu, X.; Xie, J.; Hou, Y.; He, P.; Pampolino, M.F.; Zhao, S.; Qiu, S.; Johnston, A.M.; Zhou, W. Estimating nutrient uptake requirements for rice in China. Field Crops Res. 2015, 180, 37–45. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Hu, C. FRUIT CROPS Diagnosis and Management of Nutrient Constraints; Elsevier: Amsterdam, The Netherlands, 2019; pp. 521–553. ISBN 978-0-12-818732-6. [Google Scholar]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Agriculture. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef]
- Dobermann, A.; Witt, C.; Dawe, D.; Abdulrachman, S.; Gines, H.C.; Nagarajan, R.; Satawathananont, S.; Son, T.T.; Tan, P.S.; Wang, G.H.; et al. Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Res. 2002, 74, 37–66. [Google Scholar] [CrossRef]
- Pasuquin, J.M.; Pampolino, M.F.; Witt, C.; Dobermann, A.; Oberthur, T.; Fisher, M.J.; Inubushi, K. Closing yield gaps in maize production in Southeast Asia through site-specific nutrient management. Field Crops Res. 2014, 156, 219–230. [Google Scholar] [CrossRef]
- Smaling, E.M.A.; Janssen, B.H. Calibration of QUEFTS, a model predicting nutrient uptake and yields from chemical soil fertility indices. Geoderma 1993, 59, 21–44. [Google Scholar] [CrossRef]
- Pampolino, M.F.; Witt, C.; Pasuquin, J.M.; Johnston, A.; Fisher, M.J. Development approach and evaluation of the Nutrient Expert software for nutrient management in cereal crops. Comput. Electron. Agric. 2012, 88, 103–110. [Google Scholar] [CrossRef]
- Janssen, B.H.; Guiking, F.C.T.; Vandereijk, D.; Smaling, E.M.A.; Wolf, J.; Vanreuler, H. A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma 1990, 46, 299–318. [Google Scholar] [CrossRef] [Green Version]
- Chuan, L.M.; He, P.; Pampolino, M.F.; Johnston, A.M.; Jin, J.Y.; Xu, X.P.; Zhao, S.C.; Qiu, S.J.; Zhou, W. Establishing a scientific basis for fertilizer recommendations for wheat in China: Yield response and agronomic efficiency. Field Crops Res. 2013, 140, 1–8. [Google Scholar] [CrossRef]
- Xu, X.; He, P.; Pampolino, M.F.; Johnston, A.M.; Qiu, S.; Zhao, S.; Chuan, L.; Zhou, W. Fertilizer recommendation for maize in China based on yield response and agronomic efficiency. Field Crops Res. 2014, 157, 27–34. [Google Scholar] [CrossRef]
- Setiyono, T.D.; Walters, D.T.; Cassman, K.G.; Witt, C.; Dobermann, A. Estimating maize nutrient uptake requirements. Field Crops Res. 2010, 118, 158–168. [Google Scholar] [CrossRef]
- Pathak, H.; Aggarwal, P.K.; Roetter, R.; Kalra, N.; Bandyopadhaya, S.K.; Prasad, S.; Van Keulen, H. Modelling the quantitative evaluation of soil nutrient supply, nutrient use efficiency, and fertilizer requirements of wheat in India. Nutr. Cycl. Agroecosyst. 2003, 65, 105–113. [Google Scholar] [CrossRef]
- Ezui, K.S.; Franke, A.C.; Mando, A.; Ahiabor, B.D.K.; Tetteh, F.M.; Sogbedji, J.; Janssen, B.H.; Giller, K.E. Fertiliser requirements for balanced nutrition of cassava across eight locations in West Africa. Field Crops Res. 2016, 185, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; He, P.; Xu, X.; Qiu, S.; Ullah, S.; Gao, Q.; Zhou, W. Estimating nutrient uptake requirements for potatoes based on QUEFTS analysis in China. Agron. J. 2019, 111, 2387–2394. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Liu, Y.; Zheng, N.; Li, Y.; Ma, Q.; Xiao, H.; Zhou, X.; Xu, X.; Jiang, T.; He, P.; et al. Temporal variation in nutrient requirements of tea (Camellia sinensis) in China based on QUEFTS analysis. Sci. Rep. 2020, 10, 1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.M.; Du, S.P.; Xue, L. Effects of combined application of P and K on the yield, quality and nutrient utilization of watermelon in gravel-mulched field. J. Plant. Nutr. Fertil. 2014, 20, 687–695. (In Chinese) [Google Scholar]
- Du, S.P.; Ma, Z.M.; Xue, L. Effect of potassium, boron and zinc fertilizers on growth and nutrient up-take in watermelon grown in gravel-mulched fields. J. Fruit Sci. 2016, 33, 841–849. (In Chinese) [Google Scholar]
- Zhang, C.M.; Yan, Z.B.; Qin, J.H.; Wang, A.Q.; Xiao, Z.W. Potassium Supplying Capacities of the Main Soil Types and Optimum Application Rates of Potassium of Economic Crops in Hexi Inland Irrigation Areas of Gansu Province. Chin. J. Soil Sci. 2014, 45, 402–406. (In Chinese) [Google Scholar]
- Ma, Z.M.; Du, S.P.; Xue, L. Effects of nitrogen management on yield, quality, nitrogen accumulation and its transportation of watermelon in gravel-mulched field. Chin. J. Appl. Ecol. 2015, 26, 3353–3360. (In Chinese) [Google Scholar]
- Chen, G.; Wu, L.S.; Li, Y.H.; Zhang, L.H.; Du, N.H. Effect of different phosphorous supply levels on yield and quality of watermelon. Plant. Nutr. Fertil. Sci. 2007, 13, 1189–1192. (In Chinese) [Google Scholar] [CrossRef]
- Dong, Y.; Wang, S.; Wu, P.; Lu, H.Y.; Zhou, S.P.; Dong, C.X.; Ren, L.X. Absorption character of potassium and optimization mechanism of potassic fertilization on watermelon. J. Nanjing Agric. Univ. 2018, 41, 98–104. (In Chinese) [Google Scholar]
- Zhao, P.; Dong, C.X.; Shen, C.W.; Lei, X.Q.; Wang, S.; Ren, L.X.; Sen, Q.R. Effects of three organic and inorganic fertilizers combined application on absorption of nitrogen and potassium, yield and quality of watermelon. J. Nanjing Agric. Univ. 2015, 38, 288–294. (In Chinese) [Google Scholar]
- Wang, X.H.; Liu, H.; Zhang, Y.; Hu, W. Effects of Different Potassium Levels on Yield and Quality of Watermelon. Xinjiang Agric. Sci. 2010, 47, 2001–2004. (In Chinese) [Google Scholar]
- Wang, F.; Li, Y.H.; Li, H.Y.; Li, J. Characteristics of Watermelon Needing Potassium and Potassium Application Effect in Arid Region. Ningxia J. Agric. For. Sci. Technol. 2005, 006, 3–4. (In Chinese) [Google Scholar]
- Li, Y.J. A Study on Fertilization Status and Nitrogen Optimization of Watermelon in China. Master’s Dissertation, Southwest University, Chongqing, China, June 2019. (In Chinese). [Google Scholar]
- Hay, R.K.M. Harvest index: A review of its use in plant breeding and crop physiology. Ann. Appl. Biol. 1995, 126, 197–216. [Google Scholar] [CrossRef]
- Jiang, W.T.; Liu, X.H.; Qi, W.; Xu, X.N.; Zhu, Y.C. Using QUEFTS model for estimating nutrient requirements of maize in the Northeast China. Plant. Soil Environ. 2017, 63, 498–504. [Google Scholar]
- Chuan, L.; He, P.; Jin, J.; Li, S.; Grant, C.; Xu, X.; Qiu, S.; Zhao, S.; Zhou, W. Estimating nutrient uptake requirements for wheat in China. Field Crops Res. 2013, 146, 96–104. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000; ISBN 978-7-109-06644-1. [Google Scholar]
- Liu, H.L.; Yang, J.Y.; Drury, C.F.; Reynolds, W.D.; Tan, C.S.; Bai, Y.L.; He, P.; Jin, J.; Hoogenboom, G. Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production. Nutr. Cycl. Agroecosyst. 2011, 89, 313–328. [Google Scholar] [CrossRef]
- Gusmini, G.; Wehner, T.C. Foundations of yield improvement in watermelon. Crop Sci. 2005, 45, 141–146. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Rolbiecki, S.; Piszczek, P.; Figas, A.; Jagosz, B.; Ptach, W.; Prus, P.; Kazula, M.J. Impact of Nitrogen Fertigation on Watermelon Yield Grown on the Very Light Soil in Poland. Agronomy 2020, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- Nyombi, K.; Van Asten, P.J.A.; Corbeels, M.; Taulya, G.; Leffelaar, P.A.; Giller, K.E. Mineral fertilizer response and nutrient use efficiencies of East African highland banana (Musa spp., AAA-EAHB, cv. Kisansa). Field Crops Res. 2010, 117, 38–50. [Google Scholar] [CrossRef]
- Xie, M.; Wang, Z.; Xu, X.; Zheng, X.; Liu, H.; Shi, P. Quantitative Estimation of the Nutrient Uptake Requirements of Peanut. Agronomy 2020, 10, 119. [Google Scholar] [CrossRef] [Green Version]
- Byju, G.; Nedunchezhiyan, M.; Ravindran, C.S.; Mithra, V.S.S.; Ravi, V.; Naskar, S.K. Modeling the Response of Cassava to Fertilizers: A Site-Specific Nutrient Management Approach for Greater Tuberous Root Yield. Commun. Soil Sci. Plant. Anal. 2012, 43, 1149–1162. [Google Scholar] [CrossRef]
- Liu, X.Y.; He, P.; Jin, J.Y.; Zhou, W.; Sulewski, G.; Phillips, S. Yield Gaps, Indigenous Nutrient Supply, and Nutrient Use Efficiency of Wheat in China. Agron. J. 2011, 103, 1452–1463. [Google Scholar] [CrossRef] [Green Version]
- Setiyono, T.D.; Yang, H.; Walters, D.T.; Dobermann, A.; Ferguson, R.B.; Roberts, D.F.; Lyon, D.J.; Clay, D.E.; Cassman, K.G. Maize-N: A Decision Tool for Nitrogen Management in Maize. Agron. J. 2011, 103, 1276–1283. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.Q.; Yu, Z.R.; Liu, Y.H.; Konijn, N.T. Fertilizer requirements for wheat and maize in China: The QUEFTS approach. Nutr. Cycl. Agroecosyst. 2006, 74, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; He, P.; Ding, W.; Xu, X.; Ullah, S.; Abbas, T.; Ai, C.; Li, M.; Cui, R.; Jin, C.; et al. Estimating nutrient uptake requirements for radish in China based on QUEFTS model. Sci. Rep. 2019, 9, 11663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cen, Y.; Li, L.; Guo, L.; Li, C.; Jiang, G. Organic management enhances both ecological and economic profitability of apple orchard: A case study in Shandong Peninsula. Sci. Hortic. 2020, 265, 109201. [Google Scholar] [CrossRef]
- Nobile, C.M.; Bravin, M.N.; Becquer, T.; Paillat, J.M. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: Importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere 2020, 239, 124709. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huang, G.; Meng, Q. Erratum to: Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant Soil 2013, 373, 1011. [Google Scholar] [CrossRef] [Green Version]
Province | Varieties | Fertilization Rates (kg/ha) | References | ||
---|---|---|---|---|---|
N | P2O5 | K2O | |||
Gansu | Longkang 9 | 200 | 90–170 | 130–260 | Ma et al. [35] |
Longkang 9 | 200 | 170 | 200 | Du et al. [36] | |
Jingxin 1 | 260 | 170 | 140–560 | Zhang et al. [37] | |
Longkang 9 | 200 | 170 | 260 | Ma et al. [38] | |
Hubei | Jingxin 1 | 225 | 75–300 | 225 | Chen et al. [39] |
Jiangsu | Xiaolan | 180 | 120 | 150–600 | Dong et al. [40] |
Watermelon 8424 | 360 | 412 | 615 | Zhao et al. [41] | |
Xinjiang | Xinyou 10 | 135 | 105 | 45–270 | Wang et al. [42] |
Ningxia | Xinong 8 | 150 | 150 | 75–300 | Wang et al. [43] |
Chongqing | Qilin | 113–225 | 120 | 180–225 | Li et al. [44] |
Hebei | Tiandage | 173–450 | 145–200 | 296–420 | Li et al. [44] |
Tiandage | 231 | 145 | 296 | ||
Tiandage | 231–350 | 145–200 | 296–300 |
Climate Type | Soil Type | pH (1:2.5) | Organic Matter (%) | Available N (mg/kg) | Olsen-P (mg/kg) | Available K (mg/kg) |
---|---|---|---|---|---|---|
Temperate | Fluvo-aquic | 8.66 | 0.87 | 38.5 | 22.2 | 138.4 |
Treatment | Yield (t/ha) | Fertilizer Application (kg/ha) | Nutrient Uptake (kg/ha) | ||||
---|---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P | K | ||
NE − N | 16.5 | 0 | 145 | 296 | 64.1 | 8.0 | 87.0 |
NE − 25%N | 35.7 | 173 | 145 | 296 | 90.3 | 11.2 | 134.0 |
NE | 38.1 | 231 | 145 | 296 | 96.9 | 13.0 | 139.4 |
NE + 25%N | 40.7 | 289 | 145 | 296 | 97.1 | 11.7 | 122.9 |
NE + 50%N | 40.0 | 347 | 145 | 296 | 88.4 | 10.6 | 117.8 |
NE − P | 25.7 | 231 | 0 | 296 | 81.8 | 10.2 | 107.3 |
NE − K | 22.0 | 231 | 145 | 0 | 62.2 | 6.7 | 88.1 |
NE (40%OF) | 41.7 | 231 | 145 | 296 | 85.9 | 10.8 | 123.5 |
ST | 33.9 | 250 | 150 | 300 | 65.3 | 8.4 | 90.2 |
FP | 32.3 | 450 | 200 | 420 | 58.7 | 6.8 | 84.6 |
Parameter | Unit | n1 | Mean | SD 2 | Minimum | 25%Q 3 | Median | 75%Q | Maximum |
---|---|---|---|---|---|---|---|---|---|
Fruit yield | t/ha | 446 | 46.7 | 20.3 | 6.48 | 31.7 | 45.8 | 59.7 | 99.1 |
Harvest index | kg/kg | 386 | 0.72 | 0.11 | 0.33 | 0.65 | 0.75 | 0.80 | 0.95 |
Nc in fruit | g/kg | 388 | 15.8 | 3.64 | 7.34 | 13.6 | 15.2 | 17.6 | 31.6 |
Pc in fruit | g/kg | 384 | 2.35 | 0.77 | 0.97 | 1.86 | 2.20 | 2.58 | 5.67 |
Kc in fruit | g/kg | 388 | 25.2 | 8.99 | 8.04 | 19.9 | 23.0 | 27.4 | 66.7 |
N in fruit | kg/ha | 390 | 55.0 | 27.0 | 6.55 | 35.2 | 53.2 | 70.8 | 144 |
P in fruit | kg/ha | 380 | 7.86 | 3.92 | 0.90 | 5.19 | 7.64 | 9.89 | 21.7 |
K in fruit | kg/ha | 383 | 84.2 | 41.0 | 9.88 | 58.0 | 80.8 | 103 | 237 |
Nc in straw | g/kg | 380 | 24.5 | 3.84 | 11.8 | 22.3 | 24.1 | 26.4 | 38.0 |
Pc in straw | g/kg | 380 | 2.38 | 0.76 | 0.48 | 1.99 | 2.27 | 2.63 | 10.1 |
Kc in straw | g/kg | 380 | 22.6 | 9.84 | 1.69 | 15.4 | 21.2 | 28.2 | 65.4 |
N in straw | kg/ha | 385 | 38.2 | 19.6 | 6.88 | 25.6 | 34.8 | 46.6 | 175 |
P in straw | kg/ha | 385 | 3.75 | 2.76 | 0.65 | 2.41 | 3.17 | 4.47 | 40.9 |
K in straw | kg/ha | 385 | 35.1 | 22.2 | 2.86 | 19.3 | 29.1 | 44.6 | 154 |
N in shoot DM 4 | kg/ha | 404 | 92.7 | 34.5 | 20.8 | 71.1 | 90.0 | 110 | 287 |
P in shoot DM | kg/ha | 391 | 11.6 | 4.64 | 2.18 | 8.61 | 11.2 | 13.9 | 31.4 |
K in shoot DM | kg/ha | 400 | 117 | 48.0 | 21.4 | 82.7 | 111 | 142 | 295 |
N harvest index | kg/kg | 387 | 0.58 | 0.16 | 0.14 | 0.46 | 0.59 | 0.70 | 0.94 |
P harvest index | kg/kg | 379 | 0.66 | 0.15 | 0.16 | 0.58 | 0.69 | 0.78 | 0.94 |
K harvest index | kg/kg | 380 | 0.70 | 0.16 | 0.20 | 0.61 | 0.73 | 0.82 | 0.96 |
Parameter | Unit | n1 | Mean | SD 2 | Minimum | 25%Q 3 | Median | 75%Q | Maximum |
---|---|---|---|---|---|---|---|---|---|
IE-N | kg/kg | 404 | 490 | 148 | 116 | 381 | 499 | 585 | 1026 |
IE-P | kg/kg | 391 | 3971 | 1261 | 979 | 3023 | 4026 | 4851 | 8620 |
IE-K | kg/kg | 400 | 397 | 127 | 103 | 302 | 408 | 491 | 847 |
RIE-N | kg/t | 404 | 2.30 | 0.99 | 0.97 | 1.71 | 2.01 | 2.63 | 8.59 |
RIE-P | kg/t | 391 | 0.29 | 0.12 | 0.12 | 0.21 | 0.25 | 0.33 | 1.02 |
RIE-K | kg/t | 400 | 2.87 | 1.24 | 1.18 | 2.04 | 2.45 | 3.32 | 9.74 |
Nutrients | Set I | Set II | Set III | |||
---|---|---|---|---|---|---|
a (2.5th) | d (97.5th) | a (5th) | d (95th) | a (7.5th) | d (92.5th) | |
N | 202 | 789 | 265 | 731 | 280 | 696 |
P | 1719 | 6417 | 1935 | 6044 | 2133 | 5656 |
K | 173 | 623 | 199 | 595 | 213 | 563 |
Yield (t/ha) | Shoot IE (kg/kg) 1 | Shoot RIE (kg/t) 2 | Fruit RIE (kg/t) 3 | Nutrients Harvest Index (kg/kg) 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | N | P | K | N | P | K | N | P | K | |
10 | 475 | 3682 | 372 | 2.11 | 0.27 | 2.69 | 1.07 | 0.16 | 1.78 | 0.51 | 0.58 | 0.66 |
20 | 475 | 3682 | 372 | 2.11 | 0.27 | 2.69 | 1.07 | 0.16 | 1.78 | 0.51 | 0.58 | 0.66 |
30 | 475 | 3682 | 372 | 2.11 | 0.27 | 2.69 | 1.07 | 0.16 | 1.78 | 0.51 | 0.58 | 0.66 |
40 | 475 | 3682 | 372 | 2.11 | 0.27 | 2.69 | 1.07 | 0.16 | 1.78 | 0.51 | 0.58 | 0.66 |
50 | 475 | 3682 | 372 | 2.11 | 0.27 | 2.69 | 1.07 | 0.16 | 1.78 | 0.51 | 0.58 | 0.66 |
60 | 468 | 3631 | 366 | 2.14 | 0.28 | 2.73 | 1.07 | 0.16 | 1.78 | 0.50 | 0.57 | 0.65 |
70 | 435 | 3371 | 340 | 2.30 | 0.30 | 2.94 | 1.08 | 0.16 | 1.79 | 0.47 | 0.54 | 0.61 |
80 | 390 | 3021 | 305 | 2.57 | 0.33 | 3.28 | 1.17 | 0.17 | 1.95 | 0.46 | 0.52 | 0.60 |
90 | 253 | 1960 | 198 | 3.96 | 0.51 | 5.05 | 1.75 | 0.26 | 2.90 | 0.44 | 0.50 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, F.; Wang, Z.; Xiong, H.; Li, Y.; Wang, Y.; Fan, Z.; Zhao, H.; Kuang, D.; Chen, Z.; Wang, J.; et al. Estimation of Watermelon Nutrient Requirements Based on the QUEFTS Model. Agronomy 2020, 10, 1776. https://doi.org/10.3390/agronomy10111776
Kang F, Wang Z, Xiong H, Li Y, Wang Y, Fan Z, Zhao H, Kuang D, Chen Z, Wang J, et al. Estimation of Watermelon Nutrient Requirements Based on the QUEFTS Model. Agronomy. 2020; 10(11):1776. https://doi.org/10.3390/agronomy10111776
Chicago/Turabian StyleKang, Furong, Zhichao Wang, Huaye Xiong, Yujia Li, Yuheng Wang, Zihan Fan, Huanyu Zhao, Dejiao Kuang, Zhihui Chen, Jie Wang, and et al. 2020. "Estimation of Watermelon Nutrient Requirements Based on the QUEFTS Model" Agronomy 10, no. 11: 1776. https://doi.org/10.3390/agronomy10111776
APA StyleKang, F., Wang, Z., Xiong, H., Li, Y., Wang, Y., Fan, Z., Zhao, H., Kuang, D., Chen, Z., Wang, J., He, X., Chen, X., Shi, X., & Zhang, Y. (2020). Estimation of Watermelon Nutrient Requirements Based on the QUEFTS Model. Agronomy, 10(11), 1776. https://doi.org/10.3390/agronomy10111776