Interactive Effects of Elevated Ozone and Temperature on Growth and Yield of Soybean (Glycine max (L.) Merr.) under Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Site
2.2. Air Exclusion System (AES) Description
2.3. Crop Management
2.4. Treatments
2.5. Harvests
2.6. Statistics
3. Results
3.1. Environmental Conditions
3.2. Year-to-Year Differences in Yield Potential
3.3. Mid-Season Biomass Production
3.4. Final Yield Assessment
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heggestad, H.E.; Middleton, J.T. Ozone in high concentrations a cause of tobacco leaf injury. Science 1959, 129, 208–210. [Google Scholar] [CrossRef] [PubMed]
- Booker, F.; Muntifering, R.; McGrath, M.; Burkey, K.; Decoteau, D.; Fiscus, E.; Manning, W.; Krupa, S.; Chappelka, A.; Grantz, D. The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J. Integr. Plant Biol. 2009, 51, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Yendrek, C.R.; Sitch, S.; Collins, W.J.; Emberson, L.D. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu. Rev. Plant Biol. 2012, 63, 637–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fishman, J.; Creilson, J.K.; Parker, P.A.; Ainsworth, E.A.; Vining, G.G.; Szarka, J.; Booker, F.L.; Xu, X. An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements. Atmos. Environ. 2010, 44, 2248–2256. [Google Scholar] [CrossRef]
- Ainsworth, E.A. Understanding and improving global crop response to ozone pollution. Plant J. 2017, 90, 886–897. [Google Scholar] [CrossRef] [PubMed]
- Mills, G.; Sharp, K.; Simpson, D.; Pleijel, H.; Burkey, K.; Emberson, L.; Uddling, J.; Broberg, M.; Feng, Z.; Kobayashi, K.; et al. Closing the global ozone yield gap: Quantification and co-benefits for multi-stress tolerance. Glob. Chang. Biol. 2018, 24, 4869–4893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schauberger, B.; Rolinski, S.; Schaphoff, S.; Müller, C. Global historical soybean and wheat yield loss estimates from ozone pollution considering water and temperature as modifying effects. Agric. For. Meteorol. 2019, 265, 1–15. [Google Scholar] [CrossRef]
- Zheng, B.; Chenu, K.; Dreccer, M.F.; Chapman, S.C. Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob. Chang. Biol. 2012, 18, 2899–2914. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, E.I.; Fischer, G.; van Velthuizen, H.; Walter, C.; Ewert, F. Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Meteorol. 2013, 170, 206–215. [Google Scholar] [CrossRef]
- Boote, K.J.; Allen, L.H.; Prasad, P.V.V.; Baker, J.T.; Gesch, R.W.; Synder, A.M.; Pan, D.; Thomas, J.M.D. Elevated temperature and CO2 impacts on pollination, reproductive growth, and yield of several globally important crops. J. Agric. Meteorol. 2005, 60, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Vera, U.M.; Siebers, M.; Gray, S.B.; Drag, D.W.; Rosenthal, D.M.; Kimball, B.A.; Ort, D.R.; Bernacchi, C.J. Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States. Plant Physiol. 2013, 162, 410–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Vera, U.M.; Siebers, M.; Drag, D.W.; Ort, D.R.; Bernacchi, C.J. Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2]. Glob. Chang. Biol. 2015, 21, 4237–4249. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Clausen, S.K.; Frenck, G.; Linden, L.G.; Mikkelsen, T.N.; Lunde, C.; Jørgensen, R.B. Effects of single and multifactor treatments with elevated temperature, CO2 and ozone on oilseed rape and barley. J. Agron. Crop Sci. 2011, 197, 442–453. [Google Scholar] [CrossRef]
- Hansena, E.M.Ø.; Hauggaard-Nielsena, H.; Launayb, M.; Roseb, P.; Mikkelsen, T.N. The impact of ozone exposure, temperature and CO2 on the growth and yield of three spring wheat varieties. Environ. Exp. Bot. 2019, 168, 103868. [Google Scholar] [CrossRef]
- Flowers, M.D.; Fiscus, E.L.; Burkey, K.O.; Booker, F.L.; Dubois, J.J.B. Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environ. Exp. Bot. 2007, 61, 190–198. [Google Scholar] [CrossRef]
- Shannon, J.G.; Wrather, J.A.; Sleper, D.A.; Robbins, R.T.; Nguyen, H.T.; Anand, S.C. Registration of ‘Jake’ soybean. J. Plant. Regist. 2007, 1, 29–30. [Google Scholar] [CrossRef]
- Vara Prasad, P.V.; Bheemanahalli, R.; Krishna Jagadish, S.V. Field crops and the fear of heat stress—Opportunities, challenges and future directions. Field Crop. Res. 2017, 200, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Tisdale, R.H.; Zentella, R.; Burkey, K.O. Impact of elevated ozone on yield and carbon-nitrogen content in soybean cv. Jake. Plant. Sci. (under review).
- Betzelberger, A.M.; Yendrek, C.R.; Sun, J.; Leisner, C.P.; Nelson, R.L.; Ort, D.R.; Ainsworth, E.A. Ozone exposure response for U.S. soybean cultivars: Linear reductions in photosynthetic potential, biomass, and yield. Plant Physiol. 2012, 160, 1827–1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leisner, C.P.; Ainsworth, E.A. Quantifying the effects of ozone on plant reproductive growth and development. Glob. Chang. Biol. 2012, 18, 606–616. [Google Scholar] [CrossRef]
Year | Average Night Temperature (°C) | Average Day Temperature (°C) | Ozone Concentration 12-Hour Mean (ppb) | Average Day Relative Humidity (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No Heat 1 | +Heat 2 | ∆ | No Heat 1 | +Heat 2 | ∆ | Amb | CF 3 | +Ozone 4 | No Heat 1 | +Heat 2 | |
2015 | 21.4 | 24.3 | 2.9 | 27.4 | 31.6 | 4.2 | 34.1 | 15.8 | 61.3 | 68.1 | 58.5 |
2016 | 22.0 | 23.7 | 1.7 | 28.1 | 31.0 | 2.9 | 33.9 | 19.5 | 65.8 | 70.1 | 65.2 |
2017 | 20.5 | 23.0 | 2.5 | 27.0 | 30.4 | 3.4 | 34.2 | 19.2 | 66.3 | 68.5 | 62.0 |
2018 | 22.0 | 24.5 | 2.5 | 27.7 | 31.3 | 3.6 | 31.4 | 18.6 | 71.3 | 73.8 | 65.9 |
Study average | 21.5 | 23.9 | 2.4 | 27.6 | 31.1 | 3.5 | 33.4 | 18.3 | 66.2 | 70.1 | 62.9 |
TREATMENT | Branch No. | Leaf No. | Leaf Area | Leaf Dry Weight | Stem-Petiole Dry Weight | Total Dry Weight |
---|---|---|---|---|---|---|
(m−2) | (m−2) | (m2 m−2) | (g m−2) | (g m−2) | (g m−2) | |
Ambient | 127 ± 6 | 623 ± 25 | 7.83 ± 0.30 | 234 ± 10 | 396 ± 19 | 631 ± 28 |
CF control | 132 ± 7 A | 655 ± 23 A | 8.91 ± 0.26 A | 278 ± 10 AB | 456 ± 16 AB | 734 ± 25 AB |
CF + warming | 97 ± 7 B | 593 ± 25 AB | 8.30 ± 0.30 AB | 288 ± 10 A | 487 ± 17 A | 775 ± 26 A |
CF + Ozone | 130 ± 7 A | 587 ± 23 AB | 7.46 ± 0.26 BC | 252 ± 10 AB | 403 ± 16 B | 655 ± 25 B |
Ozone + warming | 93 ± 7 B | 509 ± 23 B | 6.78 ± 0.26 C | 250 ± 10 B | 417 ± 16 B | 667 ± 25 B |
ANOVA | Pr > F | Pr > F | Pr > F | Pr > F | Pr > F | Pr > F |
Warming | <0.0001 | 0.0059 | 0.0190 | 0.6957 | 0.1676 | 0.2911 |
Ozone | 0.6340 | 0.0030 | <0.0001 | 0.0021 | 0.0006 | 0.0007 |
Warming–ozone | 0.9336 | 0.7287 | 0.8971 | 0.5407 | 0.6009 | 0.5631 |
TREATMENT | Branch No. | Leaf No. | Leaf Area | Leaf Dry Weight | Stem-Petiole Dry Weight | Pod No. | Pod Dry Weight | Total Dry Weight |
---|---|---|---|---|---|---|---|---|
(m−2) | (m−2) | (m2 m−2) | (g m−2) | (g m−2) | (m−2) | (g m−2) | (g m−2) | |
Ambient | 171 ± 7 | 485 ± 23 | 6.32 ± 0.23 | 259 ± 11 | 533 ± 20 | 1953 ± 79 | 455 ± 19 | 1246 ± 43 |
CF control | 191 ± 8 A | 534 ± 21 B | 7.28 ± 0.21 A | 303 ± 11 A | 617 ± 19 BC | 2248 ± 84 A | 529 ± 19 A | 1448 ± 41 A |
CF + warming | 198 ± 8 A | 540 ± 20 B | 7.00 ± 0.20 A | 306 ± 10 A | 694 ± 17 A | 2477 ± 80 A | 394 ± 18 B | 1395 ± 38 A |
CF + Ozone | 198 ± 8 A | 580 ± 20 AB | 7.23 ± 0.20 A | 301 ± 10 A | 578 ± 17 C | 2429 ± 80 A | 537 ± 18 A | 1416 ± 38 A |
Ozone + warming | 187 ± 8 A | 625 ± 20 A | 6.87 ± 0.20 A | 307 ± 10 A | 655 ± 17 AB | 2535 ± 80 A | 388 ± 18 B | 1350 ± 38 A |
ANOVA | Pr > F | Pr > F | Pr > F | Pr > F | Pr > F | Pr > F | Pr > F | Pr > F |
Warming | 0.8211 | 0.2161 | 0.1201 | 0.6736 | 0.0001 | 0.0462 | <0.0001 | 0.1340 |
Ozone | 0.8128 | 0.0035 | 0.6599 | 0.9742 | 0.0341 | 0.1497 | 0.9437 | 0.3314 |
Warming–ozone | 0.2681 | 0.3658 | 0.8418 | 0.9165 | 0.9846 | 0.4518 | 0.6803 | 0.8764 |
TREATMENT | Pod No. | Pod Weight | Unfilled Pod No. 1 | Seed No. | 100 Seed Mass | Seed Yield | Harvest Index |
---|---|---|---|---|---|---|---|
(m−2) | (g m−2) | (m−2) | (m−2) | (g−1) | (g m−2) | ||
Ambient | 1794 ± 74 | 844 ± 37 | 102 ± 34 | 3823 ± 157 | 16.9 ± 0.3 | 649 ± 28 | 0.555 ± 0.006 |
CF control | 1885 ± 66 B | 924 ± 32 A | 137 ± 36 B | 3930 ± 144 B | 17.9 ± 0.3 A | 706 ± 24 A | 0.569 ± 0.006 A |
CF + warming | 1648 ± 66 B | 740 ± 32 B | 425 ± 36 A | 3129 ± 144 C | 17.0 ± 0.3 A | 528 ± 24 B | 0.493 ± 0.006 C |
CF + Ozone | 2145 ± 66 A | 898 ± 32 A | 170 ± 36 B | 4627 ± 144 A | 15.1 ± 0.3 B | 695 ± 24 A | 0.582 ± 0.006 A |
Ozone + warming | 1897 ± 68 AB | 767 ± 34 B | 561 ± 36 A | 3675 ± 144 BC | 15.2 ± 0.3 B | 552 ± 24 B | 0.517 ± 0.006 B |
ANOVA | Pr > F | Pr > F | Pr > F | Pr > F | Pr > F | Pr > F | Pr > F |
Warming | 0.0008 | <0.0001 | <0.0001 | <0.0001 | 0.2698 | <0.0001 | <0.0001 |
Ozone | 0.0005 | 0.9805 | 0.0262 | 0.0001 | <0.0001 | 0.7816 | 0.0023 |
Warming–ozone | 0.9327 | 0.4124 | 0.1642 | 0.6069 | 0.1078 | 0.4844 | 0.3689 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burkey, K.; Tisdale, R.; Zobel, R.; Ray, S.; Pursley, W. Interactive Effects of Elevated Ozone and Temperature on Growth and Yield of Soybean (Glycine max (L.) Merr.) under Field Conditions. Agronomy 2020, 10, 1803. https://doi.org/10.3390/agronomy10111803
Burkey K, Tisdale R, Zobel R, Ray S, Pursley W. Interactive Effects of Elevated Ozone and Temperature on Growth and Yield of Soybean (Glycine max (L.) Merr.) under Field Conditions. Agronomy. 2020; 10(11):1803. https://doi.org/10.3390/agronomy10111803
Chicago/Turabian StyleBurkey, Kent, Ripley Tisdale, Richard Zobel, Samuel Ray, and Walter Pursley. 2020. "Interactive Effects of Elevated Ozone and Temperature on Growth and Yield of Soybean (Glycine max (L.) Merr.) under Field Conditions" Agronomy 10, no. 11: 1803. https://doi.org/10.3390/agronomy10111803
APA StyleBurkey, K., Tisdale, R., Zobel, R., Ray, S., & Pursley, W. (2020). Interactive Effects of Elevated Ozone and Temperature on Growth and Yield of Soybean (Glycine max (L.) Merr.) under Field Conditions. Agronomy, 10(11), 1803. https://doi.org/10.3390/agronomy10111803