Mechanical Devices for Mass Distribution Adjustment: Are They Really Convenient?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Interpolation of Data Obtained from Experiments
2.2. Field Productivity and Fuel Consumption Prediction
3. Results
3.1. Tractive Performance
3.2. Cost-Effectiveness Analysis in FE and FC Configurations
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Value (mm) |
---|---|
Wheelbase (WB) | 2884 |
Longitudinal distance of the front hitch from the front wheel hubs (xfh) | 1665 |
Height above ground of the front hitch (hfh) | 850 |
Longitudinal distance of the rear hitch from the rear wheel hubs (xrh) | 1200 |
Height above ground of the rear hitch (hrh) | 655 |
Longitudinal length of the ballast over the rear hitch (xrb) | 400 |
Longitudinal length (hitch to hitch) of the MC (MCl) | 690 in FC 1690 in FE |
Longitudinal length of the ballast over the MC hitch (Bl) | 280 |
Vertical distance between tractor front lower hitch and MC lower hitch (MChl) | 120 |
Vertical distance between tractor front upper hitch and MC lower hitch (MChh) | 480 |
Appendix B
Regression Parameters | FC | FE |
---|---|---|
Coefficient p1 (with 95% confidence bounds) | −2789 (−3955, −1623) | −2624 (−3838, −1410) |
Coefficient p2 (with 95% confidence bounds) | 1.864 × 104 (7424, 2.986 × 104) | 1.660 × 104 (5432, 2.776 × 104) |
Coefficient p3 (with 95% confidence bounds) | 2.645 × 104 (40.67, 5.285 × 104) | 3.328 × 104 (9004, 5.755 × 104) |
R^2 | 0.97 | 0.97 |
Appendix C
Regression Parameters | FC | FE |
---|---|---|
Coefficient p1 (with 95% confidence bounds) | −14.31 (−20.65, −7.972) | −13.24 (−19.63, −6.842) |
Coefficient p2 (with 95% confidence bounds) | 1405 (1032, 1779) | 1378 (961.8, 1795) |
Coefficient p3 (with 95% confidence bounds) | 2.298 × 104 (1.797 × 104, 2.799 × 104) | 2.361 × 104 (1.822 × 104, 2.900 × 104) |
R^2 | 0.97 | 0.97 |
References
- Rosenzweig, C.; Hillel, D. Soils and global climate change: Challenges and opportunities. Soil Sci. 2000, 165, 47–56. [Google Scholar] [CrossRef]
- Olesen, J.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Kutzbach, H.D. Trends in Power and Machinery. J. Agric. Eng. Res. 2000, 76, 237–247. [Google Scholar] [CrossRef]
- Gu, Y.; Kushwaha, R. Dynamic load distribution and tractive performance of a model tractor. J. Terramechanics 1994, 31, 21–39. [Google Scholar] [CrossRef]
- Bashford, L.L.; Woerman, G.R.; Shropshire, G.J. Front Wheel Assist Tractor Performance in Two and Four-Wheel Drive Modes. Trans. ASAE 1985, 28, 23–29. [Google Scholar] [CrossRef]
- Botta, G.F.; Jorajuria, D.; Draghi, L. Influence of the axle load, tyre size and configuration on the compaction of a freshly tilled clayey soil. J. Terramechanics 2002, 39, 47–54. [Google Scholar] [CrossRef]
- Battiato, A.; Diserens, E. Tractor traction performance simulation on differently textured soils and validation: A basic study to make traction and energy requirements accessible to the practice. Soil Tillage Res. 2017, 166, 18–32. [Google Scholar] [CrossRef]
- Burt, E.C.; Lyne, P.W.L.; Meiring, P.; Keen, J.F. Ballast and Inflation Effects on Tire Efficiency. Trans. ASAE 1983, 26, 1352–1354. [Google Scholar] [CrossRef]
- Serrano, J.M.; Peça, J.O.; Silva, J.R.; Márquez, L. The effect of liquid ballast and tyre inflation pressure on tractor performance. Biosyst. Eng. 2009, 102, 51–62. [Google Scholar] [CrossRef]
- Khalid, M.; Smith, J. Axle torque distribution in 4WD tractors. J. Terramechanics 1981, 18, 157–167. [Google Scholar] [CrossRef]
- Jadhav, P.P.; Sharma, A.K.; Wandkar, S.V.; Gholap, B.S. Study of tractive efficiency as an effect of ballast and tire inflation pressure in sandy loam soil. Agric. Eng. Int. CIGR J. 2013, 15, 60–67. [Google Scholar]
- Özarslan, C.; Erdogän, D. Optimization of tractor plowing performance. AMA Agric. Mech. Asia Afr. Lat. Am. 1996, 27, 9–12. [Google Scholar]
- Burt, E.C.; Bailey, A.C.; Patterson, R.M.; Taylor, J.H. Combined Effects of Dynamic Load and Travel Reduction on Tire Performance. Trans. ASAE 1979, 22, 40–45. [Google Scholar] [CrossRef]
- Bloome, P.D.; Summers, J.D.; Khalilian, A.; Batchelder, D.G. Ballasting Recommendations for Two-Wheel and Four-Wheel Drive Tractors [Tractor Performance], Microfiche Collection. 1983. Available online: http://agris.fao.org/agris-search/search.do?recordID=US8528799 (accessed on 4 April 2018).
- Wismer, R.D.; Luth, H.J. Off-Road Traction Prediction for Wheeled Vehicles. Trans. ASAE 1974, 17, 8–10. [Google Scholar] [CrossRef]
- Brixius, W.W. Traction Prediction Equations for Bias Ply Tires, American Society of Agricultural Engineers (Microfiche Collection) (USA). 1987. Available online: http://agris.fao.org/agris-search/search.do?recordID=US8843391 (accessed on 4 April 2018).
- Wong, J.Y.; McLaughlin, N.B.; Knezevic, Z.; Burtt, S. Optimization of the tractive performance of four-wheel-drive tractors: Theoretical analysis and experimental substantiation. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 1998, 212, 285–297. [Google Scholar] [CrossRef]
- Zoz, F.M. Predicting Tractor Field Performance (Updated), American Society of Agricultural Engineers (Microfiche Collection) (USA). 1987. Available online: http://agris.fao.org/agris-search/search.do?recordID=US8843392 (accessed on 6 April 2018).
- Regazzi, N.; Maraldi, M.; Molari, G. A theoretical study of the parameters affecting the power delivery efficiency of an agricultural tractor. Biosyst. Eng. 2019, 186, 214–227. [Google Scholar] [CrossRef]
- Stoilov, S.; Kostadinov, G.D. Effect of weight distribution on the slip efficiency of a four-wheel-drive skidder. Biosyst. Eng. 2009, 104, 486–492. [Google Scholar] [CrossRef]
- Osinenko, P.V.; Geissler, M.; Herlitzius, T. A method of optimal traction control for farm tractors with feedback of drive torque. Biosyst. Eng. 2015, 129, 20–33. [Google Scholar] [CrossRef]
- Damanauskas, V.; Janulevičius, A. Differences in tractor performance parameters between single-wheel 4WD and dual-wheel 2WD driving systems. J. Terramechanics 2015, 60, 63–73. [Google Scholar] [CrossRef]
- Janulevičius, A.; Giedra, K. Tractor ballasting in field work. Mechanika 2008, 73, 27–34. [Google Scholar]
- Giedra, K.; Janulevičius, A. Tractor ballasting in field transport work. Transport 2005, 20, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Pranav, P.; Pandey, K. Computer simulation of ballast management for agricultural tractors. J. Terramechanics 2008, 45, 185–192. [Google Scholar] [CrossRef]
- Gee-Clough, D.; Pearson, G.; McAllister, M. Ballasting wheeled tractors to achieve maximum power output in frictional-cohesive soils. J. Agric. Eng. Res. 1982, 27, 1–19. [Google Scholar] [CrossRef]
- Zhang, N.; Chancellor, W. Automatic Ballast Position Control for Tractors. Trans. ASAE 1989, 32, 1159–1164. [Google Scholar] [CrossRef]
- Molari, G.; Mattetti, M.; Perozzi, D.; Sereni, E. Monitoring of the tractor working parameters from the CAN-Bus. J. Agric. Eng. 2013, 44. [Google Scholar] [CrossRef]
- USDA. Soil Mechanichs Level I; National Employee Develoment Staff, Soil Conservation Service, United State Department o Agriculture: Washington, DC, USA, 1987.
- ASTM. D7263-09—Standard Test Method for Bulk Density (Unit Weight) and Voids in Aggregate; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar]
- ASTM. Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Upadhyaya, S.; Chancellor, W.; Wulfsohn, D. Sources of variability in traction data. J. Terramechanics 1988, 25, 249–272. [Google Scholar] [CrossRef]
- Mattetti, M.; Varani, M.; Maraldi, M.; Paolini, F.; Fiorati, S.; Molari, G. Tractive performance of Trelleborg PneuTrac tyres. J. Agric. Eng. 2020, 51, 100–106. [Google Scholar] [CrossRef]
- Swiler, L.P.; Sullivan, S.P.; Stucky-Mack, N.J.; Roberts, R.M.; Vugrin, K.W. Confidence Region Estimation Techniques for Nonlinear Regression: Three Case Studies; U.S. Department of Commerce National Technical Information Service: Springfield, VA, USA, 2005.
- ASAE. D497.7 Agricultural Machinery Management Data; ASAE: St. Joseph, MI, USA, 2015. [Google Scholar]
- Zoz, F.; Grisso, R. Traction and Tractor Performance; ASAE: St. Joseph, MI, USA, 2012; Volume 27. [Google Scholar]
- Clark, R.L.; Dahua, Z. A Theoretical Ballast and Traction Model for a Wide Span Tractor. Trans. ASAE 1995, 38, 1613–1620. [Google Scholar] [CrossRef]
- Self, K.P. Dynamic Load and Wheel Speed Ratio Effects on Four Wheel Drive Tractive Performance, May 1990. Available online: https://shareok.org/handle/11244/20877 (accessed on 3 November 2018).
- Wong, J.Y.; Zhao, Z.; Li, J.; McLaughlin, N.; Burtt, S.D. Optimization of the Tractive Performance of Four-Wheel-Drive Tractors—Correlation between Analytical Predictions and Experimental Data. SAE Tech. Paper Ser. 2000. [Google Scholar] [CrossRef]
- Jenane, C.; Bashford, L.; Monroe, G. Reduction of Fuel Consumption through Improved Tractive Performance. J. Agric. Eng. Res. 1996, 64, 131–138. [Google Scholar] [CrossRef]
- Spagnolo, R.T.; Volpato, C.E.S.; Barbosa, J.A.; Palma, M.A.Z.; De Barros, M.M. Fuel consumption of a tractor in function of wear, of ballasting and tire inflation pressure. Eng. Agrícola 2012, 32, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Senatore, C.; Sandu, C. Torque distribution influence on tractive efficiency and mobility of off-road wheeled vehicles. J. Terramechanics 2011, 48, 372–383. [Google Scholar] [CrossRef]
- Janulevičius, A.; Pupinis, G.; Lukštas, J.; Damanauskas, V.; Kurkauskas, V. Dependencies of the lead of front driving wheels on different tire deformations for a MFWD tractor. Transport 2015, 32, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Charles, S.M. Effects of ballast and inflation pressure on tractor tire performance. Agric. Eng. 1984, 65, 11–13. [Google Scholar]
Specification | Value/Description |
---|---|
Engine speed at the maximum engine power (nrated) (rpm) | 2000 |
Max engine power @ nrated (kW) | 191 |
Max torque (Tmax) @1500 rpm (Nm) | 1100 |
Torque @ nrated (Nm) | 912 |
Unballasted mass (kg) | 8590 |
Transmission | Full Powershift (gears: 19 forward, 6 reverse) |
Front tires | Michelin MACHXBIB 600/65 R28 (50 kPa) speed radius index rf = 0.700 m |
Rear tires | Michelin MACHXBIB 710/70 R38 (50 kPa) speed radius index rr = 0.925 m |
Tractor Configuration | Total Tractor Mass (M) (kg) | Mass on the Front Axle (%) | Mass on the Rear Axle (%) |
---|---|---|---|
MC Fully Extended (FE) | 9590 | 59 | 41 |
MC Fully Closed (FC) | 9590 | 56 | 44 |
Standard ballast on the rear three-point linkage (R) | 9590 | 32 | 68 |
Gear | Gear Ratio |
---|---|
7th | 7.475 × 10−3 |
8th | 8.932 × 10−3 |
9th | 1.074 × 10−2 |
Curves | Fitting Method | Model Equation |
---|---|---|
ηT as a function of s (R1) | Non-linear least squares | ηT = a(b s) + c(d s) |
NTR as a function of s (R2) | Linear least squares | NTR = p1 s2 + p2 s + p3 |
ηT as a function of NTR (R3) | Non-linear least squares | ηT = a(b NTR) + c(d NTR) |
Curves | Fitting Method | Model Equation |
---|---|---|
NTR as a function of v (E1) regression curve and parameters are reported in Appendix B | Linear least squares | NTR = p1 v2 + p2 v + p3 |
Curves | Fitting Method | Model Equation |
---|---|---|
FDplough as a function of s (E2) regression curve and parameters are reported in Appendix C | Linear least squares | FDplough = p1 s2 + p2 s + p3 |
Regression Parameters | FE | FC | R |
---|---|---|---|
Coefficient a (with 95% confidence bounds) | 2943 (−1.907 × 1012, 1.907 × 1012) | 37.56 (−4.421 × 106, 4.421 × 106) | −2199 (−6.029 × 1011, 6.029 × 1011) |
Coefficient b (with 95% confidence bounds) | 1.036 × 10−2 (−699.3, 699.3) | 1.060 × 10−2 (−10.33, 10.36) | 1.366 × 10−2 (−399.5, 399.5) |
Coefficient c (with 95% confidence bounds) | −2942 (−1.907 × 1012, 1.907 × 1012) | −37.06 (−4.421 × 106, 4.421 × 106) | 2200 (−6.029 × 1011, 6.029 × 1011) |
Coefficient d (with 95% confidence bounds) | 1.036 × 10−2 (−699.4, 699.4) | 1.077 × 10−2 (−10.42, 10.44) | 1.366 × 10−2 (−399.4, 399.5) |
R^2 | 0.97 | 0.96 | 0.94 |
Regression Parameters | FE | FC | R |
---|---|---|---|
Coefficient p1 (with 95% confidence bounds) | −1.561 × 10−4 (−1.839 × 10−4, −1.284 × 10−4) | −1.290 × 10−4 (−1.716 × 10−4, −8.637 × 10−5) | −1.761 × 10−4 (−2.033 × 10−4, −1.488 × 10−4) |
Coefficient p2 (with 95% confidence bounds) | 1.535 × 10−2 (1.350 × 10−2, 1.720 × 10−2) | 1.313 × 10−2 (1.053 × 10−2, 1.573 × 10−2) | 1.704 × 10−2 (1.555 × 10−2, 1.860 × 10−2) |
Coefficient p3 (with 95% confidence bounds) | 0.254 (0.228, 0.282) | 0.291 (0.255, 0.327) | 0.223 (0.203, 0.242) |
R^2 | 0.97 | 0.94 | 0.97 |
Regression Parameters | FE | FC | R |
---|---|---|---|
Coefficient a (with 95% confidence bounds) | −505.1 (−1.103 × 1011, 1.103 × 1011) | −7.706 (−3.584 × 105, 3.584 × 105) | 173.9 (−1.000 × 109, 1.000 × 109) |
Coefficient b (with 95% confidence bounds) | 3.769 (−7.257 × 104, 7.258 × 104) | 2.710 (−1302, 1307) | 2.909 (−6541, 6547) |
Coefficient c (with 95% confidence bounds) | 505.3 (−1.103 × 1011, 1.103 × 1011) | 8.050 (−3.584 × 105, 3.584 × 105) | −173.6 (−1.000 × 109, 1.000 × 109) |
Coefficient d (with 95% confidence bounds) | 3.769 (−7.256 × 104, 7.257 × 104) | 2.660 (−1284, 1289) | 2.912 (−6545, 6551) |
R^2 | 0.92 | 0.84 | 0.90 |
MC Configuration | FDplough (kN) | NTRplough | v (km/h) | s (%) | Π (ha/h) | ηT | Pe (kW) |
---|---|---|---|---|---|---|---|
FC | 43.4 | 0.46 | 5.6 | 17.7 | 1.05 | ηT FC,min = 0.45 ηT FC,reg = 0.48 ηT FC,max = 0.50 | 148@ ηT FC,min 142@ ηT FC,reg 136@ ηT FC,max |
FE | 43.9 | 0.47 | 5.6 | 17.7 | 1.05 | ηT FE,min = 0.47 ηT FE,reg = 0.49 ηT FE,max = 0.51 | 144@ ηT FE,min 139@ ηT FE,reg 135@ ηT FE,max |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varani, M.; Mattetti, M.; Maraldi, M.; Molari, G. Mechanical Devices for Mass Distribution Adjustment: Are They Really Convenient? Agronomy 2020, 10, 1820. https://doi.org/10.3390/agronomy10111820
Varani M, Mattetti M, Maraldi M, Molari G. Mechanical Devices for Mass Distribution Adjustment: Are They Really Convenient? Agronomy. 2020; 10(11):1820. https://doi.org/10.3390/agronomy10111820
Chicago/Turabian StyleVarani, Massimiliano, Michele Mattetti, Mirko Maraldi, and Giovanni Molari. 2020. "Mechanical Devices for Mass Distribution Adjustment: Are They Really Convenient?" Agronomy 10, no. 11: 1820. https://doi.org/10.3390/agronomy10111820
APA StyleVarani, M., Mattetti, M., Maraldi, M., & Molari, G. (2020). Mechanical Devices for Mass Distribution Adjustment: Are They Really Convenient? Agronomy, 10(11), 1820. https://doi.org/10.3390/agronomy10111820