Insight into the Microbiological Control Strategies against Botrytis cinerea Using Systemic Plant Resistance Activation
Abstract
:1. Introduction
2. Direct Biocontrol against B. cinerea
3. Systemic Plant Resistance and B. cinerea
4. Bacteria as Inductors of Plant Resistance against B. cinerea
5. Fungi as Inductors of Plant Resistance against B. cinerea
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elad, Y.; Vivier, M.; Fillinger, S. Botrytis, the Good, the Bad and the Ugly. In Botrytis–The Fungus, the Pathogen and Its Management in Agricultural Systems; Fillinger, S., Elad, Y., Eds.; Springer: Cham, Switzerland, 2016; pp. 1–15. [Google Scholar]
- Holz, G.; Coertze, S.; Williamson, B. The Ecology of Botrytis on Plant Surfaces. In Botrytis: Biology, Pathology and Control; Springer Science and Business Media LLC: Berlin, Germany, 2007; pp. 9–27. [Google Scholar]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of grey mould disease. Mol. Plant. Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef] [PubMed]
- Choquer, M.; Fournier, E.; Kunz, C.; Levis, C.; Pradier, J.-M.; Simon, A.; Viaud, M. Botrytis cinereavirulence factors: New insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol. Lett. 2007, 277, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caseys, C.; Shi, G.; Soltis, N.E.; Gwinner, R.; Corwin, J.A.; Atwell, S.; Kliebenstein, D.J. Quantitative interactions drive Botrytis cinerea disease outcome across the plant kingdom. BioRxiv 2018, 507491. [Google Scholar] [CrossRef]
- Mercier, A.; Carpentier, F.; Duplaix, C.; Auger, A.; Pradier, J.; Viaud, M.; Gladieux, P.; Walker, A.-S. The polyphagous plant pathogenic fungus Botrytis cinerea encompasses host-specialized and generalist populations. Environ. Microbiol. 2019, 21, 4808–4821. [Google Scholar] [CrossRef] [PubMed]
- Hua, L.; Yong, C.; Zhanquan, Z.; Boqiang, L.; Guozheng, Q.; Shiping, T. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Qual. Saf. 2018, 2, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Fira, D.; Dimkić, I.; Berić, T.; Lozo, J.; Stanković, S. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 2018, 285, 44–55. [Google Scholar] [CrossRef]
- Lee, J.P.; Lee, S.-W.; Kim, C.S.; Son, J.H.; Song, J.H.; Lee, K.Y.; Kim, H.J.; Jung, S.J.; Moon, B.J. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol. Control 2006, 37, 329–337. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Y.; Wang, D.; Yao, Z.; Wang, Y.; Liu, J.; Zhang, S.; Wang, A. A Biocontrol Strain of Bacillus subtilis WXCDD105 Used to Control Tomato Botrytis cinerea and Cladosporium fulvum Cooke and Promote the Growth of Seedlings. Int. J. Mol. Sci. 2018, 19, 1371. [Google Scholar] [CrossRef] [Green Version]
- Hang, N.T.T.; Oh, S.-O.; Kim, G.-H.; Hur, J.-S.; Koh, Y.J. Bacillus subtilis S1-0210 as a Biocontrol Agent against Botrytis cinerea in Strawberries. Plant. Pathol. J. 2005, 21, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Lee, S.H.; Kim, C.S.; Lim, E.K.; Choi, K.H.; Kong, H.G.; Kim, D.W.; Lee, S.-W.; Moon, B.J. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J. Microbiol. Biotechnol. 2007, 17, 438. [Google Scholar]
- Toral, L.; Rodríguez, M.; Béjar, V.; Sampedro, I. Antifungal Activity of Lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Front. Microbiol. 2018, 9, 1315. [Google Scholar] [CrossRef] [PubMed]
- Toure, Y.; Ongena, M.; Jacques, P.; Guiro, A.; Thonart, P. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 2004, 96, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xiao, X.; Wang, J.; Wu, L.; Zheng, Z.; Yu, Z. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnol. Lett. 2008, 30, 919–923. [Google Scholar] [CrossRef] [PubMed]
- Paz, I.C.P.; Santin, R.D.C.M.; Guimarães, A.M.; Da Rosa, O.P.P.; Quecine, M.C.; Silva, M.D.C.P.E.; Azevedo, J.L.; Matsumura, A.T.S. Biocontrol of Botrytis cinerea and Calonectria gracilis by eucalypts growth promoters Bacillus spp. Microb. Pathog. 2018, 121, 106–109. [Google Scholar] [CrossRef]
- Salvatierra-Martinez, R.; Arancibia, W.; Araya, M.; Aguilera, S.; Olalde, V.; Bravo, J.; Stoll, A. Colonization ability as an indicator of enhanced biocontrol capacity—An example using two Bacillus amyloliquefaciens strains and Botrytis cinerea infection of tomatoes. J. Phytopathol. 2018, 166, 601–612. [Google Scholar] [CrossRef]
- Boukaew, S.; Prasertsan, P.; Troulet, C.; Bardin, M. Biological control of tomato gray mold caused by Botrytis cinerea by using Streptomyces spp. BioControl 2017, 62, 793–803. [Google Scholar] [CrossRef]
- Gao, P.; Qin, J.; Li, D.; Zhou, S. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea. PLoS ONE 2018, 13, e0190932. [Google Scholar] [CrossRef] [Green Version]
- Kamensky, M.; Ovadis, M.; Chet, I.; Chernin, L. Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol. Biochem. 2003, 35, 323–331. [Google Scholar] [CrossRef]
- Chen, C.; Cao, Z.; Li, J.; Tao, C.; Feng, Y.; Han, Y. A novel endophytic strain of Lactobacillus plantarum CM-3 with antagonistic activity against Botrytis cinerea on strawberry fruit. Biol. Control 2020, 148, 104306. [Google Scholar] [CrossRef]
- Gasser, F.; Cardinale, M.; Schildberger, B.; Berg, G. Biocontrol of Botrytis cinerea by successful introduction of Pantoea ananatis in the grapevine phyllosphere. Int. J. Wine Res. 2012, 4, 53–63. [Google Scholar]
- Kim, Y.C.; Hur, J.Y.; Park, S.K. Biocontrol of Botrytis cinerea by chitin-based cultures of Paenibacillus elgii HOA73. Eur. J. Plant. Pathol. 2019, 155, 253–263. [Google Scholar] [CrossRef]
- Calvo, J.; Calvente, V.; De Orellano, M.E.; Benuzzi, D.; De Tosetti, M.I.S. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int. J. Food Microbiol. 2007, 113, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, A.; Mari, M.; Ugolini, L.; Baraldi, E. Effect of Aureobasidium pullulans strains against Botrytis cinerea on kiwifruit during storage and on fruit nutritional composition. Food Microbiol. 2018, 72, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Parafati, L.; Vitale, A.; Restuccia, C.; Cirvilleri, G. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol. 2015, 47, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Glawe, D.A.; Kramer, E.; Weller, D.M.; Okubara, P.A. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State. Phytopathology 2018, 108, 691–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.H.; Chen, R.Y.; Chou, J.Y. Screening and evaluation of yeast antagonists for biological control of Botrytis cinerea on strawberry fruits. Mycobiology 2018, 46, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, L.; Dong, Y.; Jiang, S.; Cao, J.; Meng, R. Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biol. Control 2007, 40, 287–292. [Google Scholar] [CrossRef]
- Masih, E.I.; Paul, B. Secretion of β-1,3-Glucanases by the Yeast Pichia membranifaciens and Its Possible Role in the Biocontrol of Botrytis cinerea Causing Grey Mold Disease of the Grapevine. Curr. Microbiol. 2002, 44, 391–395. [Google Scholar] [CrossRef]
- Saligkarias, I.; Gravanis, F.; Epton, H.A. Biological control of Botrytis cinerea on tomato plants by the use of epiphytic yeasts Candida guilliermondii strains 101 and US 7 and Candida oleophila strain I-182: II. A study on mode of action. Biol. Control 2002, 25, 151–161. [Google Scholar] [CrossRef]
- Sood, M.; Kapoor, D.; Kumar, V.; Sheteiwy, M.S.; Ramakrishnan, M.; Landi, M.; Araniti, F.; Sharma, A. Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent. Plants 2020, 9, 762. [Google Scholar] [CrossRef]
- Vos, C.M.F.; De Cremer, K.; Cammue, B.P.; De Coninck, B. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Mol. Plant. Pathol. 2014, 16, 400–412. [Google Scholar] [CrossRef] [Green Version]
- Poveda, J.; Hermosa, R.; Monte, E.; Nicolás, C. The Trichoderma harzianum Kelch Protein ThKEL1 Plays a Key Role in Root Colonization and the Induction of Systemic Defense in Brassicaceae Plants. Front. Plant. Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarven, M.; Hao, Q.; Deng, J.; Yang, F.; Wang, G.; Xiao, Y.; Xiao, X. Biological Control of Tomato Gray Mold Caused by Botrytis cinerea with the Entomopathogenic Fungus Metarhizium anisopliae. Pathogens 2020, 9, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Chang, P.P.; Gao, L.; Wang, X. The Endophytic Fungus Albifimbria verrucaria from Wild Grape as an Antagonist of Botrytis cinerea and Other Grape Pathogens. Phytopathology 2020, 110, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Ronseaux, S.; Clément, C.; Barka, E.A. Interaction of Ulocladium atrum, a Potential Biological Control Agent, with Botrytis cinerea and Grapevine Plantlets. Agronomy 2013, 3, 632–647. [Google Scholar] [CrossRef]
- Kamle, M.; Borah, R.; Bora, H.; Jaiswal, A.K.; Singh, R.K.; Kumar, P. Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR): Role and Mechanism of Action Against Phytopathogens. In Fungal Biotechnology and Bioengineering; Hesham, A.E.-L., Upadhyay, R.S., Sharma, G.D., Manoharachary, C., Gupta, V.K., Eds.; Springer: Cham, Switzerland, 2020; pp. 457–470. [Google Scholar]
- Poveda, J. Use of plant-defense hormones against pathogen-diseases of postharvest fresh produce. Physiol. Mol. Plant. Pathol. 2020, 111, 101521. [Google Scholar] [CrossRef]
- AbuQamar, S.F.; Moustafa, K.; Tran, L.-S.P. “Omics” and Plant Responses to Botrytis cinerea. Front. Plant. Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- AbuQamar, S.; Moustafa, K.; Tran, L.S. Mechanisms and strategies of plant defense against Botrytis cinerea. Crit. Rev. Biotechnol. 2017, 37, 262–274. [Google Scholar] [CrossRef]
- Mengiste, T.; Laluk, K.; AbuQamar, S. Mechanisms of Induced Resistance against B. cinerea. In Post-Harvest Pathology; Prusky, D., Gullino, M.L., Eds.; Springer Science and Business Media LLC: Berlin, Germany, 2009; pp. 13–30. [Google Scholar]
- Zimmerli, L.; Métraux, J.-P.; Mauch-Mani, B. β-Aminobutyric Acid-Induced Protection of Arabidopsis against the Necrotrophic Fungus Botrytis cinerea. Plant. Physiol. 2001, 126, 517–523. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, S.W.; Pastor, V.; Paplauskas, S.; Pétriacq, P.; Luna, E. Long-lasting β-aminobutyric acid-induced resistance protects tomato fruit against Botrytis cinerea. Plant. Pathol. 2018, 67, 30–41. [Google Scholar] [CrossRef]
- Kułek, B.; Floryszak-Wieczorek, J. Local and systemic protection of poinsettia (Euphorbia pulcherrima Willd.) against Botrytis cinerea Pers. induced by benzothiadiazole. Acta Physiol. Plant. 2002, 24, 273–278. [Google Scholar] [CrossRef]
- Vicedo, B.; Flors, V.; De La Leyva, M.O.; Finiti, I.; Kravchuk, Z.; Real, M.D.; García-Agustín, P.; González-Bosch, C. Hexanoic Acid-Induced Resistance Against Botrytis cinerea in Tomato Plants. Mol. Plant. Microbe Interactions 2009, 22, 1455–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azami-Sardooei, Z.; França, S.C.; De Vleesschauwer, D.; Höfte, M. Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide-fueled resistance response. Physiol. Mol. Plant. Pathol. 2010, 75, 23–29. [Google Scholar] [CrossRef]
- Trotel-Aziz, P.; Couderchet, M.; Vernet, G.; Aziz, A. Chitosan Stimulates Defense Reactions in Grapevine Leaves and Inhibits Development of Botrytis cinerea. Eur. J. Plant. Pathol. 2006, 114, 405–413. [Google Scholar] [CrossRef]
- Aziz, A.; Poinssot, B.; Daire, X.; Adrian, M.; Bézier, A.; Lambert, B.; Joubert, J.-M.; Pugin, A. Laminarin Elicits Defense Responses in Grapevine and Induces Protection Against Botrytis cinerea and Plasmopara viticola. Mol. Plant. Microbe Interact. 2003, 16, 1118–1128. [Google Scholar] [CrossRef] [Green Version]
- García, T.; Gutiérrez, J.; Veloso, J.; Gago-Fuentes, R.; Díaz, J. Wounding induces local resistance but systemic susceptibility to Botrytis cinerea in pepper plants. J. Plant. Physiol. 2015, 176, 202–209. [Google Scholar] [CrossRef]
- Tomas-Grau, R.H.; Requena-Serra, F.J.; Conrad, V.H.; Martínez-Zamora, M.G.; Guerrero-Molina, M.F.; Ricci, J.C.D. Soft mechanical stimulation induces a defense response against Botrytis cinerea in strawberry. Plant. Cell Rep. 2017, 37, 239–250. [Google Scholar] [CrossRef]
- Widiastuti, A.; Yoshino, M.; Saito, H.; Maejima, K.; Zhou, S.; Odani, H.; Hasegawa, M.; Nitta, Y.; Sato, T. Induction of disease resistance against Botrytis cinerea by heat shock treatment in melon (Cucumis melo L.). Physiol. Mol. Plant. Pathol. 2011, 75, 157–162. [Google Scholar] [CrossRef]
- Mercier, J.; Roussel, D.; Charles, M.-T.; Arul, J. Systemic and Local Responses Associated with UV- and Pathogen-Induced Resistance to Botrytis cinerea in Stored Carrot. Phytopathology 2000, 90, 981–986. [Google Scholar] [CrossRef]
- Chinta, Y.D.; Eguchi, Y.; Widiastuti, A.; Shinohara, M.; Sato, T. Organic hydroponics induces systemic resistance against the air-borne pathogen, Botrytis cinerea (grey mould). J. Plant. Interactions 2015, 10, 1–27. [Google Scholar] [CrossRef]
- Mehari, Z.H.; Elad, Y.; Rav-David, D.; Graber, E.R.; Harel, Y.M. Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant. Soil 2015, 395, 31–44. [Google Scholar] [CrossRef]
- Segarra, G.; Elena, G.; Trillas, I. Systemic resistance against Botrytis cinerea in Arabidopsis triggered by an olive marc compost substrate requires functional SA signalling. Physiol. Mol. Plant. Pathol. 2013, 82, 46–50. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, J.P. Does plant—Microbe interaction confer stress tolerance in plants: A review? Microbiol. Res. 2018, 207, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Kannojia, P.; Choudhary, K.K.; Srivastava, A.K.; Singh, A.K. PGPR Bioelicitors: Induced Systemic Resistance (ISR) and Proteomic Perspective on Biocontrol. In PGPR Amelioration in Sustainable Agriculture; Singh, A.K., Kumar, A., Singh, P.K., Eds.; Woodhead Publishing: Cambridge, MA, USA, 2019; pp. 67–84. [Google Scholar]
- Magnin-Robert, M.; Trotel-Aziz, P.; Quantinet, D.; Biagianti, S.; Tarpin, M. Biological control of Botrytis cinerea by selected grapevine-associated bacteria and stimulation of chitinase and β-1,3 glucanase activities under field conditions. Eur. J. Plant. Pathol. 2007, 118, 43–57. [Google Scholar] [CrossRef]
- Wang, N.; Liu, M.; Guo, L.; Yang, X.; Qiu, D. A Novel Protein Elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 Induces Systemic Resistance in Tobacco. Int. J. Biol. Sci. 2016, 12, 757–767. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.J.; Park, D.H.; Kim, J.-Y.; Kim, B.-S. Biological control of gray mold and growth promotion of tomato using Bacillus spp. isolated from soil. Trop. Plant. Pathol. 2016, 41, 169–176. [Google Scholar] [CrossRef]
- Asraoui, M.; Zanella, F.; Marcato, S.; Squartini, A.; Amzil, J.; Hamdache, A.; Baldan, B.; Ezziyyani, M. Bacillus amyloliquefaciens Enhanced Strawberry Plants Defense Responses, upon Challenge with Botrytis cinerea. In Proceedings of the International Conference on Advanced Intelligent Systems for Sustainable Development; Ezziyyani, M., Ed.; Springer: Cham, Switzerland, 2018; pp. 46–53. [Google Scholar]
- Wu, G.; Liu, Y.; Xu, Y.; Zhang, G.; Shen, Q.-R.; Zhang, R. Exploring Elicitors of the Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 to Induce Plant Systemic Resistance and Their Interactions with Plant Signaling Pathways. Mol. Plant. Microbe Interact. 2018, 31, 560–567. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-J.; Tsay, J.-F.; Chang, S.-Y.; Yang, H.-P.; Wu, W.-S.; Chen, C.-Y. Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest. Manag. Sci. 2012, 68, 1306–1310. [Google Scholar] [CrossRef]
- Nie, P.; Li, X.; Wang, S.; Guo, J.; Zhao, H.; Niu, D. Induced Systemic Resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-Dependent Signaling Pathway and Activates PAMP-Triggered Immunity in Arabidopsis. Front. Plant. Sci. 2017, 8, 238. [Google Scholar] [CrossRef]
- Ongena, M.; Jourdan, E.; Adam, A.; Paquot, M.; Brans, A.; Joris, B.; Arpigny, J.-L.; Thonart, P. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 2007, 9, 1084–1090. [Google Scholar] [CrossRef]
- Sharifi, R.; Ryu, C.-M. Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both? Front. Microbiol. 2016, 7, 196. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Koitabashi, M.; Yaginuma, D.; Anzai, M.; Fukuda, M. Potential of bioinsecticidal Bacillus thuringiensis inoculum to suppress gray mold in tomato based on induced systemic resistance. J. Phytopathol. 2019, 167, 679–685. [Google Scholar] [CrossRef]
- Jiang, C.-H.; Liao, M.-J.; Wang, H.-K.; Zheng, M.-Z.; Xu, J.-J.; Guo, J. Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biol. Control 2018, 126, 147–157. [Google Scholar] [CrossRef]
- Toral, L.; Rodríguez, M.; Béjar, V.; Sampedro, I. Crop Protection against Botrytis cinerea by Rhizhosphere Biological Control Agent Bacillus velezensis XT1. Microorganism 2020, 8, 992. [Google Scholar] [CrossRef] [PubMed]
- Jatoi, G.H.; Lihua, G.; Xiufen, Y.; Gadhi, M.A.; Keerio, A.U.; Abdulle, Y.A.; Qiu, D. A Novel Protein Elicitor PeBL2, from Brevibacillus laterosporus A60, Induces Systemic Resistance against Botrytis cinerea in Tobacco Plant. Plant. Pathol. J. 2019, 35, 208–218. [Google Scholar] [PubMed]
- Kilani-Feki, O.; Jaoua, S. Biological control of Botrytis cinerea using the antagonistic and endophytic Burkholderia cepacia Cs5 for vine plantlet protection. Can. J. Microbiol. 2011, 57, 896–901. [Google Scholar] [CrossRef]
- Miotto-Vilanova, L.; Jacquard, C.; Courteaux, B.; Wortham, L.; Michel, J.; Clément, C.; Barka, E.A.; Sanchez, L. Burkholderia phytofirmans PsJN Confers Grapevine Resistance against Botrytis cinerea via a Direct Antimicrobial Effect Combined with a Better Resource Mobilization. Front. Plant. Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Schoonbeek, H.-J.; Jacquat-Bovet, A.-C.; Mascher, F.; Métraux, J.-P. Oxalate-Degrading Bacteria Can Protect Arabidopsis thaliana and Crop Plants Against Botrytis cinerea. Mol. Plant. Microbe Interact. 2007, 20, 1535–1544. [Google Scholar] [CrossRef] [Green Version]
- Emartínez-Hidalgo, P.; García, J.M.; Pozo, M.J. Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front. Microbiol. 2015, 6, 922. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.-Y.; Shahzad, R.; Kang, S.-M.; Khan, A.L.; Lee, S.-M.; Park, Y.-G.; Lee, W.-H.; Lee, I.-J. Paenibacillus terrae AY-38 resistance against Botrytis cinerea in Solanum lycopersicum L. plants through defence hormones regulation. J. Plant. Interact. 2017, 12, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Verhagen, B.; Trotel-Aziz, P.; Jeandet, P.; Baillieul, F.; Aziz, A. Improved Resistance Against Botrytis cinerea by Grapevine-Associated Bacteria that Induce a Prime Oxidative Burst and Phytoalexin Production. Phytopathology 2011, 101, 768–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnin-Robert, M.; Quantinet, D.; Couderchet, M.; Aziz, A.; Trotel-Aziz, P. Differential induction of grapevine resistance and defense reactions against Botrytis cinerea by bacterial mixtures in vineyards. BioControl 2012, 58, 117–131. [Google Scholar] [CrossRef]
- Romero, F.M.; Marina, M.; Rossi, F.R.; Viaud, M.; Pieckenstain, F.L. Pantoea eucalyptii Induces Systemic Resistance in Arabidopsis thaliana against Botrytis cinerea by Priming Defense Responses. In XVII International Botrytis Symposium; Auger, J., Esterio, M., Eds.; Facultad de Ciencias Agronómicas: Santa Cruz, Chile, 2016; p. 80. [Google Scholar]
- Audenaert, K.; Pattery, T.; Cornelis, P.; Höfte, M. Induction of Systemic Resistance to Botrytis cinerea in Tomato by Pseudomonas aeruginosa 7NSK2: Role of Salicylic Acid, Pyochelin, and Pyocyanin. Mol. Plant. Microbe Interact. 2002, 15, 1147–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varnier, A.-L.; Sanchez, L.; Vatsa, P.; Boudesocque-Delaye, L.; Garcia-Brugger, A.; Rabenoelina, F.; Sorokin, A.; Renault, J.-H.; Kauffmann, S.; Pugin, A.; et al. Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant. Cell Environ. 2009, 32, 178–193. [Google Scholar] [CrossRef]
- Verhagen, B.W.M.; Trotel-Aziz, P.; Couderchet, M.; Höfte, M.; Aziz, A. Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. J. Exp. Bot. 2010, 61, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, H.; Behboudi, K.; Ahmadzadeh, M.; Javan-Nikkhah, M.; Zamioudis, C.; Pieterse, C.M.; Bakker, P.A. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol. Control 2013, 65, 14–23. [Google Scholar] [CrossRef]
- Gruau, C.; Trotel-Aziz, P.; Villaume, S.; Rabenoelina, F.; Clément, C.; Baillieul, F.; Aziz, A. Pseudomonas fluorescens PTA-CT2 Triggers Local and Systemic Immune Response Against Botrytis cinerea in Grapevine. Mol. Plant. Microbe Interact. 2015, 28, 1117–1129. [Google Scholar] [CrossRef] [Green Version]
- Aziz, A.; Verhagen, B.; Magnin-Robert, M.; Couderchet, M.; Clément, C.; Jeandet, P.; Trotel-Aziz, P. Effectiveness of beneficial bacteria to promote systemic resistance of grapevine to gray mold as related to phytoalexin production in vineyards. Plant. Soil 2015, 405, 141–153. [Google Scholar] [CrossRef]
- Ongena, M.; Giger, A.; Jacques, P.; Dommes, J.; Thonart, P. Study of Bacterial Determinants Involved in the Induction of Systemic Resistance in Bean by Pseudomonas putida BTP1. Eur. J. Plant. Pathol. 2002, 108, 187–196. [Google Scholar] [CrossRef]
- Ongena, M.; Duby, F.; Rossignol, F.; Fauconnier, M.-L.; Dommes, J.; Thonart, P. Stimulation of the Lipoxygenase Pathway Is Associated with Systemic Resistance Induced in Bean by a Nonpathogenic Pseudomonas Strain. Mol. Plant. Microbe Interact. 2004, 17, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Meziane, H.; Van Der Sluis, I.; Van Loon, L.C.; Höfte, M.; Bakker, P.A.H.M. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant. Pathol. 2005, 6, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Akram, A.; Ongena, M.; Duby, F.; Dommes, J.; Thonart, P. Systemic resistance and lipoxygenase-related defence response induced in tomato by Pseudomonas putida strain BTP1. BMC Plant Biol. 2008, 8, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daulagala, P.; Allan, E. L-form bacteria of Pseudomonas syringae pv. phaseolicola induce chitinases and enhance resistance to Botrytis cinerea infection in Chinese cabbage. Physiol. Mol. Plant. Pathol. 2003, 62, 253–263. [Google Scholar] [CrossRef]
- Muzammil, S.; Graillon, C.; Saria, R.; Mathieu, F.; Lebrihi, A.; Compant, S. The Saharan isolate Saccharothrix algeriensis NRRL B-24137 induces systemic resistance in Arabidopsis thaliana seedlings against Botrytis cinerea. Plant. Soil 2013, 374, 423–434. [Google Scholar] [CrossRef]
- Pang, Y.; Liu, X.; Ma, Y.; Chernin, L.; Berg, G.; Gao, K. Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur. J. Plant. Pathol. 2009, 124, 261–268. [Google Scholar] [CrossRef]
- Lehr, N.-A.; Schrey, S.D.; Hampp, R.; Tarkka, M.T. Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytol. 2008, 177, 965–976. [Google Scholar] [CrossRef]
- Salla, T.D.; Astarita, L.V.; Santarém, E.R. Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea. Planta 2016, 243, 1055–1070. [Google Scholar] [CrossRef]
- Vijayabharathi, R.; Gopalakrishnan, S.; Sathya, A.; Kumar, M.V.; Srinivas, V.; Mamta, S. Streptomyces sp. as plant growth-promoters and host-plant resistance inducers against Botrytis cinerea in chickpea. Biocontrol Sci. Technol. 2018, 28, 1140–1163. [Google Scholar] [CrossRef]
- Vijayabharathi, R.; Gopalakrishnan, S.; Sathya, A.; Srinivas, V.; Sharma, M. Deciphering the tri-dimensional effect of endophytic Streptomyces sp. on chickpea for plant growth promotion, helper effect with Mesorhizobium ciceri and host-plant resistance induction against Botrytis cinerea. Microb. Pathog. 2018, 122, 98–107. [Google Scholar] [CrossRef]
- Hu, Z.; Shao, S.; Zheng, C.; Sun, Z.; Shi, J.; Yu, J.; Qi, Z.; Shi, K. Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling. Planta 2018, 247, 1217–1227. [Google Scholar] [CrossRef]
- Shafi, J.; Tian, H.; Ji, M. Bacillus species as versatile weapons for plant pathogens: A review. Biotechnol. Biotechnol. Equip. 2017, 31, 446–459. [Google Scholar] [CrossRef] [Green Version]
- Nie, P.; Chen, C.; Yin, Q.; Jiang, C.; Guo, J.; Zhao, H.; Niu, D. Function of miR825 and miR825* as Negative Regulators in Bacillus cereus AR156-elicited Systemic Resistance to Botrytis cinerea in Arabidopsis thaliana. Int. J. Mol. Sci. 2019, 20, 5032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arseneault, T.; Filion, M. Phenazine-Producing Pseudomonas Spp. as Biocontrol Agents of Plant Pathogens. In Microbial inoculants in Sustainable Agricultural Productivity; Singh, H.B., Singh, D.P., Prabha, R., Eds.; Springer: New Delhi, India, 2016; pp. 53–68. [Google Scholar]
- Weller, D.M. Pseudomonas Biocontrol Agents of Soilborne Pathogens: Looking Back Over 30 Years. Phytopathology 2007, 97, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vurukonda, S.S.K.P.; Giovanardi, D.; Stefani, E. Plant Growth Promoting and Biocontrol Activity of Streptomyces spp. as Endophytes. Int. J. Mol. Sci. 2018, 19, 952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutkiewicz, J.; Mackiewicz, B.; Lemieszek, M.K.; Golec, M.; Milanowski, J. Pantoea agglomerans: A mysterious bacterium of evil and good. Part IV. Beneficial effects. Ann. Agric. Environ. Med. 2016, 23. [Google Scholar] [CrossRef]
- Hossain, M.; Sultana, F.; Islam, S. Plant Growth-Promoting Fungi (PGPF): Phytostimulation and Induced Systemic Resistance. In Plant-Microbe Interactions in Agro-Ecological Perspectives; Springer Science and Business Media LLC: Berlin, Germany, 2017; pp. 135–191. [Google Scholar]
- Wang, Q.; Chen, X.; Chai, X.; Xue, D.; Zheng, W.; Shi, Y.; Wang, A. The Involvement of Jasmonic Acid, Ethylene, and Salicylic Acid in the Signaling Pathway of Clonostachys rosea-Induced Resistance to Gray Mold Disease in Tomato. Phytopathology 2019, 109, 1102–1114. [Google Scholar] [CrossRef]
- Conrad, V.H.; Grau, R.H.T.; Moschen, S.N.; Serra, F.J.R.; Ricci, J.C.D.; Salazar, S.M. Fungal-derived extracts induce resistance against Botrytis cinerea in Arabidopsis thaliana. Eur. J. Plant. Pathol. 2020, 1–14. [Google Scholar] [CrossRef]
- Tomas-Grau, R.H.; Hael-Conrad, V.; Requena-Serra, F.J.; Perato, S.M.; Caro, M.D.P.; Salazar, S.M.; Ricci, J.C.D. Biological control of strawberry grey mold disease caused by Botrytis cinerea mediated by Colletotrichum acutatum extracts. BioControl 2020, 65, 461–473. [Google Scholar] [CrossRef]
- Salazar, S.M.; Grellet, C.F.; Chalfoun, N.R.; Castagnaro, A.P.; Ricci, J.C.D. Avirulent strain of Colletotrichum induces a systemic resistance in strawberry. Eur. J. Plant. Pathol. 2012, 135, 877–888. [Google Scholar] [CrossRef]
- Fiorilli, V.; Catoni, M.; Francia, D.; Cardinale, F.; Lanfranco, L. The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infected by Botrytis cinerea. J. Plant Pathol. 2011, 93, 237–242. [Google Scholar]
- Le Floch, G.; Vallance, J.; Benhamou, N.; Rey, P. Combining the oomycete Pythium oligandrum with two other antagonistic fungi: Root relationships and tomato grey mold biocontrol. Biol. Control 2009, 50, 288–298. [Google Scholar] [CrossRef]
- Veloso, J.; Díaz, J. A Fusarium oxysporum extract induces resistance against Botrytis in pepper plants. IOBC/WPRS Bull. 2012, 83, 269–272. [Google Scholar]
- Diaz, J.; Silvar, C.; Varela, M.M.; Bernal, A.; Merino, F. Fusarium confers protection against several mycelial pathogens of pepper plants. Plant. Pathol. 2005, 54, 773–780. [Google Scholar] [CrossRef]
- Ferreira-Saab, M.; Formey, D.; Torres, M.; Aragón, W.; Padilla, E.A.; Tromas, A.; Sohlenkamp, C.; Schwan-Estrada, K.R.F.; Serrano, M. Compounds Released by the Biocontrol Yeast Hanseniaspora opuntiae Protect Plants Against Corynespora cassiicola and Botrytis cinerea. Front. Microbiol. 2018, 9, 1596. [Google Scholar] [CrossRef] [PubMed]
- Narayan, O.P.; Verma, N.; Singh, A.K.; Oelmüller, R.; Kumar, S.A.; Prasad, D.; Kapoor, R.; Dua, M.; Johri, A.K. Antioxidant enzymes in chickpea colonized by Piriformospora indica participate in defense against the pathogen Botrytis cinerea. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Buxdorf, K.; Rahat, I.; Gafni, A.; Levy, M. The Epiphytic Fungus Pseudozyma aphidis Induces Jasmonic Acid- and Salicylic Acid/Nonexpressor of PR1-Independent Local and Systemic Resistance. Plant. Physiol. 2013, 161, 2014–2022. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Bel, P.; Troncho, P.; Gamir, J.; Pozo, M.J.; Camañes, G.; Cerezo, M.; Flors, V. The Nitrogen Availability Interferes with Mycorrhiza-Induced Resistance against Botrytis cinerea in Tomato. Front. Microbiol. 2016, 7, 1598. [Google Scholar] [CrossRef] [Green Version]
- Sanmartín, N.; Sánchez-Bel, P.; Pastor, V.; Pastor-Fernández, J.; Mateu, D.; Pozo, M.J.; Cerezo, M.; Flors, V. Root-to-shoot signalling in mycorrhizal tomato plants upon Botrytis cinerea infection. Plant. Sci. 2020, 298, 110595. [Google Scholar] [CrossRef]
- Sanmartín, N.; Pastor, V.; Pastor-Fernández, J.; Flors, V.; Pozo, M.J.; Sánchez-Bel, P. Role and mechanisms of callose priming in mycorrhiza-induced resistance. J. Exp. Bot. 2020, 71, 2769–2781. [Google Scholar] [CrossRef]
- Raacke, I.C.; Von Rad, U.; Mueller, M.J.; Berger, S. Yeast Increases Resistance in Arabidopsis Against Pseudomonas syringae and Botrytis cinerea by Salicylic Acid-Dependent as Well as Independent Mechanisms. Mol. Plant. Microbe Interactions 2006, 19, 1138–1146. [Google Scholar] [CrossRef]
- Herrera-Téllez, V.I.; Cruz-Olmedo, A.K.; Plasencia, J.; Gavilanes-Ruíz, M.; Arce-Cervantes, O.; Hernández-León, S.; Saucedo-García, M. The Protective Effect of Trichoderma asperellum on Tomato Plants against Fusarium oxysporum and Botrytis cinerea Diseases Involves Inhibition of Reactive Oxygen Species Production. Int. J. Mol. Sci. 2019, 20, 2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, E.; Segarra, G.; Trillas, M. Physiological effects of the induction of resistance by compost or Trichoderma asperellum strain T34 against Botrytis cinerea in tomato. Biol. Control 2014, 78, 77–85. [Google Scholar] [CrossRef]
- Martínez-Medina, A.; Van Wees, S.C.; Pieterse, C.M. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Environ. 2017, 40, 2691–2705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunner, K.; Zeilinger, S.; Ciliento, R.; Woo, S.L.; Lorito, M.; Kubicek, C.P.; Mach, R.L. Improvement of the Fungal Biocontrol Agent Trichoderma atroviride to Enhance both Antagonism and Induction of Plant Systemic Disease Resistance. Appl. Environ. Microbiol. 2005, 71, 3959–3965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marra, R.; Ambrosino, P.; Carbone, V.; Vinale, F.; Woo, S.L.; Ruocco, M.; Ciliento, R.; Lanzuise, S.; Ferraioli, S.; Soriente, I.; et al. Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr. Genet. 2006, 50, 307–321. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Beltrán-Peña, E.; Herrera-Estrella, A.; López-Bucio, J. Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant. Signal. Behav. 2011, 6, 1554–1563. [Google Scholar] [CrossRef] [Green Version]
- Salas-Marina, M.A.; Silva-Flores, M.A.; Uresti-Rivera, E.E.; Castro-Longoria, E.; Herrera-Estrella, A.; Casas-Flores, S. Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur. J. Plant. Pathol. 2011, 131, 15–26. [Google Scholar] [CrossRef]
- Esalas-Marina, M.A.; Isordia-Jasso, M.I.; Islas-Osuna, M.A.; Delgado-Sã¡nchez, P.; Bremont, J.F.J.; Rodríguez-Kessler, M.; Rosales-Saavedra, M.T.; Eherrera-Estrella, A.; Casas-Flores, S. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Front. Plant. Sci. 2015, 6, 77. [Google Scholar] [CrossRef] [Green Version]
- Tucci, M.; Ruocco, M.; De Masi, L.; De Palma, M.; Lorito, M. The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol. Plant. Pathol. 2011, 12, 341–354. [Google Scholar] [CrossRef]
- Olson, H.A.; Benson, D.M. Induced systemic resistance and the role of binucleate Rhizoctonia and Trichoderma hamatum 382 in biocontrol of Botrytis blight in geranium. Biol. Control 2007, 42, 233–241. [Google Scholar] [CrossRef]
- Mathys, J.; De Cremer, K.; Timmermans, P.; Van Kerckhove, S.; Lievens, B.; Vanhaecke, M.; Cammue, B.P.A.; De Coninck, B. Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection. Front. Plant. Sci. 2012, 3, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korolev, N.; David, D.R.; Elad, Y. The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl 2008, 53, 667–683. [Google Scholar] [CrossRef]
- Emartinez-Medina, A.; Efernandez, I.; Sánchez-Guzmán, M.J.; Jung, S.C.; Pascual, J.A.; Pozo, M.J. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front. Plant. Sci. 2013, 4, 206. [Google Scholar] [CrossRef] [Green Version]
- Harel, Y.M.; Mehari, Z.H.; Rav-David, D.; Elad, Y. Systemic Resistance to Gray Mold Induced in Tomato by Benzothiadiazole and Trichoderma harzianum T39. Phytopathology 2014, 104, 150–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, E.V.; Ulhoa, C.J.; Cardoza, R.E.; Silva, R.N.; Gutiérrez, S. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes. Front. Plant. Sci. 2017, 8, 880. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Zhang, J.; Wu, M.; Yang, L.; Chen, W.; Li, G. Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biol. Control 2016, 101, 31–38. [Google Scholar] [CrossRef]
- Zhao, P.; Ren, A.; Dong, P.; Sheng, Y.; Chang, X.; Zhang, X. The antimicrobial peptaibol trichokonin IV promotes plant growth and induces systemic resistance against Botrytis cinerea infection in moth orchid. J. Phytopathol. 2018, 166, 346–354. [Google Scholar] [CrossRef]
- Sarrocco, S.; Matarese, F.; Baroncelli, R.; Vannacci, G.; Seidl-Seiboth, V.; Kubicek, C.P.; Vergara, M. The Constitutive Endopolygalacturonase TvPG2 Regulates the Induction of Plant Systemic Resistance by Trichoderma virens. Phytopathology 2017, 107, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Poveda, J.; Eugui, D.; Abril-Urias, P. Could Trichoderma Be a Plant Pathogen? Successful Root Colonization. In Trichoderma; Sharma, A.K., Sharma, P., Eds.; Springer: Singapore, 2020; pp. 35–59. [Google Scholar]
- Poveda, J.; Hermosa, R.; Monte, E.; Nicolás, C. Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Poveda, J. Trichoderma parareesei Favors the Tolerance of Rapeseed (Brassica napus L.) to Salinity and Drought Due to a Chorismate Mutase. Agronomy 2020, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Poveda, J.; Abril-Urias, P.; Escobar, C. Biological Control of Plant-Parasitic Nematodes by Filamentous Fungi Inducers of Resistance: Trichoderma, Mycorrhizal and Endophytic Fungi. Front. Microbiol. 2020, 11, 992. [Google Scholar] [CrossRef] [PubMed]
- Fernández, E.; Trillas, M.I.; Segarra, G. Increased rhizosphere populations of Trichoderma asperellum strain T34 caused by secretion pattern of root exudates in tomato plants inoculated with Botrytis cinerea. Plant. Pathol. 2017, 32, 666–1116. [Google Scholar] [CrossRef]
- Mukherjee, A.; Verma, J.P.; Gaurav, A.K.; Chouhan, G.K.; Patel, J.S.; Hesham, A.E.-L. Yeast a potential bio-agent: Future for plant growth and postharvest disease management for sustainable agriculture. Appl. Microbiol. Biotechnol. 2020, 104, 1497–1510. [Google Scholar] [CrossRef] [PubMed]
- Adikaram, N.K.; Joyce, D.C.; Terryc, L.A. Biocontrol activity and induced resistance as a possible mode of action for Aureobasidium pullulans against grey mould of strawberry fruit. Australas. Plant Pathol. 2002, 31, 223–229. [Google Scholar] [CrossRef]
- Sun, C.; Fu, D.; Jin, L.; Chen, M.; Zheng, X.; Yu, T. Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea. Carbohydr. Polym. 2018, 199, 341–352. [Google Scholar] [CrossRef]
- Le Floch, G.; Rey, P.; Déniel, F.; Benhamou, N.; Picard, K.; Tirilly, Y. Enhancement of development and induction of resistance in tomato plants by the antagonist, Pythium oligandrum. Agronomy 2003, 23, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Bala, K.; David, D.R.; Paul, B.; Elad, Y. Pythium elicitors in biological control of Botrytis cinerea. IOBC/WPRS Bull. 2009, 42, 11–14. [Google Scholar]
Species | Plant | Experimental Conditions | Hormonal Pathway Involved | Plant Defensive Responses | Reference | |||
---|---|---|---|---|---|---|---|---|
Acinetobacter lwoffii | Grapevine | Field | Root inoculation | Unidentified | Induction of chitinase and β-1,3 glucanase activity | [59] | ||
Bacillus amyloliquefaciens | Tobacco | Greenhouse | Leaf inoculation | SA and JA | Enhancement of PR-1a, PR1b PR-5, PAL, NPR1, PDF1.2, and COI1 expression | [60] | ||
Tomato | Greenhouse | Root inoculation | Unidentified | Enhancement of PR2a and Chi3 expression | [61] | |||
Strawberry | Greenhouse | Root inoculation | SA | Enhancement of PR1 and β-1,3-glucanase expression | [62] | |||
Tomato | Greenhouse | Root inoculation | Unidentified | Not described | [17] | |||
Arabidopsis | Growth chamber | Root inoculation | SA and JA/ET | Enhancement of β-1,3-glucanase expression | [63] | |||
Bacillus cereus | Tobacco | Maize | Greenhouse | Root inoculation | Unidentified | Not described | [64] | |
Arabidopsis | Growth chamber | Root inoculation | JA/ET | Enhancement of PR1 expression, hydrogen peroxide accumulation and callose deposition | [65] | |||
Bacillus subtilis | Bean | Tomato | Greenhouse | Root inoculation | JA | Induce LOX and LHP activity | [66] | |
Arabidopsis | Growth chamber | Root inoculation | SA and JA | Enhancement of PR1 and PDF1.2 expression | [67] | |||
Tomato | Greenhouse | Root inoculation | Unidentified | Enhancement of PR2a and Chi3 expression | [61] | |||
Bacillus thuringiensis | Tomato | Greenhouse | Root inoculation | SA | Enhancement of PR1 expression | [68] | ||
Bacillus velezensis | Pepper | Greenhouse | Root inoculation | SA | Induction of hydrogen peroxide accumulation and SOD, CAT, and POD activity | [69] | ||
Tomato | Strawberry | Greenhouse | Root inoculation | JA/ET | Reduce oxidative damage and induce callose deposition | [70] | ||
Brevibacillus laterosporus | Tobacco | Growth chamber | Leaf inoculation | Unidentified | Induction of SOD and POD activity | [71] | ||
Burkholderia cepacia | Grapevine | Growth chamber | Root inoculation | Unidentified | Not described | [72] | ||
Burkholderia phytofirmans | Grapevine | Growth chamber | Root inoculation | SA | Induction of callose deposition, H2O2 production and prime expression of PR1, PR2, and PR5 | [73] | ||
Cupriavidus campinensis | Arabidopsis | Greenhouse | Root inoculation | SA | Reduce oxalate concentration | [74] | ||
Micromonospora spp. | Tomato | Greenhouse | Root inoculation | JA | Enhancement of LOXa and PinII expression | [75] | ||
Paenibacillus terrae | Tomato | Greenhouse | Root inoculation | SA and JA | Not described | [76] | ||
Pantoea agglomerans | Grapevine | Growth chamber | Root inoculation | Unidentified | Induction of phytoalexin accumulation | [77] | ||
Grapevine | Field | Root inoculation | Unidentified | Induction of chitinase and β-1,3 glucanase activity | [78] | |||
Pantoea eucalyptii | Arabidopsis | Growth chamber | Root inoculation | JA/ET | Enhancement of callose deposition | [79] | ||
Pseudomonas aeruginosa | Tomato | Greenhouse | Root inoculation | SA | Not described | [80] | ||
Grapevine | Growth chamber | Leaf inoculation | Unidentified | Enhancement of Chit4c expression | [81] | |||
Grapevine | Growth chamber | Leaf inoculation | SA | Induction of phytoalexin accumulation | [82] | |||
Pseudomonas fluorescens | Grapevine | Field | Root inoculation | Unidentified | Induction of chitinase and β-1,3 glucanase activity | [59] | ||
Grapevine | Growth chamber | Leaf inoculation | SA | Induction of phytoalexin accumulation | [82] | |||
Arabidopsis | Growth chamber | Root inoculation | JA/ET | Enhancement of PDF1.2 expression | [83] | |||
Grapevine | Growth chamber | Root inoculation | JA/ET | Induction of phytoalexin accumulation | [84] | |||
Grapevine | Field | Root inoculation | Unidentified | Induction of phytoalexin accumulation | [85] | |||
Pseudomonas putida | Bean | Growth chamber | Root inoculation | JA/ET | Not described | [86] | ||
Bean | Growth chamber | Root inoculation | JA/ET | Induction of LOX and LHP activity | [87] | |||
Tomato | Bean | Growth chamber | Root inoculation | Unidentified | Not described | [88] | ||
Tomato | Greenhouse | Root inoculation | JA/ET | Induction of phytoalexin accumulation and LOX activity | [89] | |||
Pseudomonas syringae pv. phaseolicola | Chinese cabbage | Greenhouse | Seeds inoculation | Unidentified | Induction of CHI activity | [90] | ||
Saccharothrix algeriensis | Arabidopsis | Growth chamber | Root inoculation | JA/ET | Not described | [91] | ||
Serratia plymuthica | Cucumber | Greenhouse | Root inoculation | Unidentified | Not described | [92] | ||
Streptomyces sp. | Norway spruce | Growth chamber | Root inoculation | Unidentified | Induction POD activity | [93] | ||
Eucalyptus grandis | Growth chamber | Root inoculation | Unidentified | Induction of PPO and POD activity | Induction of total phenolic accumulation | [94] | ||
Chickpea | Greenhouse | Root inoculation | Unidentified | Induction of PAL, CAT, SOD, PPO, APX, and GPX activity | Induction of total phenolic accumulation | [95,96] |
Species | Plant | Experimental Conditions | Hormonal Pathway Involved | Plant Defensive Responses | Reference | |
---|---|---|---|---|---|---|
Clonostachys rosea | Tomato | Greenhouse | Leaf inoculation | JA | Enhancement of PAL and PPO activity | [105] |
Colletotrichum acutatum | Arabidopsis | Growth chamber | Root inoculation | Unidentified | Enhancement of PR1 expression, and callose deposition | [106] |
Strawberry | Growth chamber | Root inoculation | JA/ET | Not described | [107] | |
Colletotrichum fragariae | Strawberry | Greenhouse | Root inoculation | SA | Hydrogen peroxide accumulation and callose deposition | [108] |
Funneliformis mosseae | Tomato | Greenhouse | Root inoculation | Unidentified | Not described | [109] |
Fusarium oxysporum | Tomato | Greenhouse | Root inoculation | Unidentified | Enhancement of PR gene expression | [110] |
Pepper | Greenhouse | Root inoculation | Unidentified | Enhancement PR-1 expression | [111] | |
Fusarium oxysporum f. sp. lycopersici | Pepper | Greenhouse | Root inoculation | JA/ET | Enhancement chitinase activity | [112] |
Hanseniaspora opuntiae | Arabidopsis | Growth chamber | Leaf inoculation | JA/ET | Enhancement ACS6, PR4, and PDF1.2 expression | [113] |
Piriformospora indica | Chickpea | Growth chamber | Root inoculation | Unidentified | Enhancement GST activity | [114] |
Pseudozyma aphidis | Arabidopsis | Growth chamber | Leaf inoculation | JA/ET | Enhancement PR1 and PDF1.2 expression | [115] |
Rhizophagus irregularis | Tomato | Greenhouse | Root inoculation | JA | Indolic derivative and phenolic compound accumulation | [116] |
Tomato | Greenhouse | Root inoculation | JA | Lignan and oxylipin accumulation | [117] | |
Tomato | Greenhouse | Root inoculation | JA | Increased callose deposition | [118] | |
Saccharomyces cerevisiae | Arabidopsis | Growth chamber | Leaf inoculation | SA | Enhancement of PR1, PR2, and PR5 expression, and phytoalexin camalexin accumulation | [119] |
Trichoderma asperellum | Tomato | Greenhouse | Root inoculation | Unidentified | Inhibit ROS production | [120] |
Tomato | Growth chamber | Root inoculation | SA | Not described | [121] | |
Arabidopsis | Growth chamber | Root inoculation | JA | Enhancement of VSP2 and PDF1.2 expression | [122] | |
Trichoderma atroviride | Bean | Growth chamber | Root inoculation | Unidentified | Not described | [123] |
Bean | Growth chamber | Root inoculation | SA | Enhancement of thaumatin-like protein activity | [124] | |
Arabidopsis | Growth chamber | Root inoculation | SA and JA | Hydrogen peroxide and camalexin accumulation | [125] | |
Arabidopsis | Growth chamber | Root inoculation | SA and JA | Enhancement of PR-1a, PR-2, PDF1.2, LOX1, peroxidase, and camalexin-synthesis-enzyme expression | [126] | |
Tomato | Greenhouse | Root inoculation | SA and JA | Enhancement of PR1b1, LOXa, and PINI expression | [127] | |
Tomato | Greenhouse | Root inoculation | SA and JA | Enhancement of peroxidase and α-dioxygenase expression | [128] | |
Trichoderma hamatum | Geranium | Greenhouse | Root inoculation | Unidentified | Not described | [129] |
Arabidopsis | Growth chamber | Root inoculation | JA | Phenylpropanoids accumulation | [130] | |
Trichoderma harzianum | Arabidopsis | Growth chamber | Root inoculation | JA/ET | Not described | [131] |
Tomato | Greenhouse | Root inoculation | SA and JA | Enhancement of PR1b1, LOXa, and PINI expression | [127] | |
Arabidopsis | Growth chamber | Root inoculation | JA/ET | Enhancement of PDF1.2 expression | [83] | |
Tomato | Greenhouse | Root inoculation | JA | Enhancement of PINII expression | [132] | |
Tomato | Greenhouse | Root inoculation | JA | Enhancement of Chi9 expression | [133] | |
Tomato | Greenhouse | Root inoculation | SA | Enhancement of PR-2 and PINII expression | [134] | |
Arabidopsis | Growth chamber | Root inoculation | JA | Enhancement PDF1.2 expression | [122] | |
Trichoderma koningiopsis | Tomato | Greenhouse | Root inoculation | Unidentified | Not described | [135] |
Trichoderma pseudokoningii | Moth orchid | Growth chamber | Root inoculation | Unidentified | Enhancement POD, PPO, PAL, SOD and CAT activity | [136] |
Trichoderma virens | Arabidopsis | Growth chamber | Root inoculation | SA and JA | Hydrogen peroxide and camalexin accumulation | [125] |
Tomato | Greenhouse | Root inoculation | SA and JA | Enhancement peroxidase and α-dioxygenase expression | [128] | |
Tomato | Greenhouse | Root inoculation | Unidentified | Increase pectin content of cell walls | [137] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poveda, J.; Barquero, M.; González-Andrés, F. Insight into the Microbiological Control Strategies against Botrytis cinerea Using Systemic Plant Resistance Activation. Agronomy 2020, 10, 1822. https://doi.org/10.3390/agronomy10111822
Poveda J, Barquero M, González-Andrés F. Insight into the Microbiological Control Strategies against Botrytis cinerea Using Systemic Plant Resistance Activation. Agronomy. 2020; 10(11):1822. https://doi.org/10.3390/agronomy10111822
Chicago/Turabian StylePoveda, Jorge, Marcia Barquero, and Fernando González-Andrés. 2020. "Insight into the Microbiological Control Strategies against Botrytis cinerea Using Systemic Plant Resistance Activation" Agronomy 10, no. 11: 1822. https://doi.org/10.3390/agronomy10111822
APA StylePoveda, J., Barquero, M., & González-Andrés, F. (2020). Insight into the Microbiological Control Strategies against Botrytis cinerea Using Systemic Plant Resistance Activation. Agronomy, 10(11), 1822. https://doi.org/10.3390/agronomy10111822