Innovative Controlled-Release Polyurethane-Coated Urea Could Reduce N Leaching in Tomato Crop in Comparison to Conventional and Stabilized Fertilizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Analyses of Water, Soil, CU Granules and Plant Tissue Samples
2.3. Calculation of N and Water Balance Sheet and N Use Efficiency
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Effect on the Crop (Yield and Quality)
4.2. N Use Efficiency and Agronomical Implications
4.3. Effect on the Environment (N Leaching)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Long, S.P.; Marshall-Colon, A.; Zhu, X.-G. Meeting the Global Food Demand of the Future by Engineering Crop Photosynthesis and Yield Potential. Cell 2015, 161, 56–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Li, Q.; Xu, X.; Su, Y.; Yue, Q.; Gao, B. Characterization, swelling and slow-release properties of a new controlled release fertilizer based on wheat straw cellulose hydrogel. J. Taiwan Inst. Chem. Eng. 2016, 60, 564–572. [Google Scholar] [CrossRef]
- Lu, C.; Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 2017, 9, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Gaitán, C.; Granados, M.R.; Fernández, M.D.; Gallardo, M.; Thompson, R. Recovery of 15N Labeled Nitrogen Fertilizer by Fertigated and Drip Irrigated Greenhouse Vegetable Crops. Agronomy 2020, 10, 741. [Google Scholar] [CrossRef]
- Thompson, R.; Incrocci, L.; Van Ruijven, J.; Massa, D. Reducing contamination of water bodies from European vegetable production systems. Agric. Water Manag. 2020, 240, 106258. [Google Scholar] [CrossRef]
- Tei, F.; De Neve, S.; De Haan, J.; Kristensen, H.L. Nitrogen management of vegetable crops. Agric. Water Manag. 2020, 240, 106316. [Google Scholar] [CrossRef]
- Ti, C.; Luo, Y.; Yan, X. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China. Environ. Sci. Pollut. Res. 2015, 22, 18508–18518. [Google Scholar] [CrossRef]
- Da Costa, T.P.; Westphalen, G.; Nora, F.B.D.; Silva, B.D.Z.; Da Rosa, G.S.; De Zorzi, B. Technical and environmental assessment of coated urea production with a natural polymeric suspension in spouted bed to reduce nitrogen losses. J. Clean. Prod. 2019, 222, 324–334. [Google Scholar] [CrossRef]
- Thomson, A.J.; Giannopoulos, G.; Pretty, J.; Baggs, E.M.; Richardson, D.J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1157–1168. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.; Martínez-Gaitan, C.; Gallardo, M.; Giménez, C.; Fernández, M. Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agric. Water Manag. 2007, 89, 261–274. [Google Scholar] [CrossRef]
- D’Alessandro, W.; Bellomo, S.; Parello, F.; Bonfanti, P.; Brusca, L.; Longo, M.; Maugeri, R. Nitrate, sulphate and chloride contents in public drinking water supplies in Sicily, Italy. Environ. Monit. Assess. 2012, 184, 2845–2855. [Google Scholar] [CrossRef] [PubMed]
- Voogt, W.; Beerling, E.A.M.; Blok, C.; van der Maas, A.A.; van Os, E.A. The road to sustainable water and nutrient management in soil-less culture in Dutch greenhouse horticulture. In Proceedings of the NUTRIHORT: Nutrient Management, Nutrient Legislation and Innovative Techniques in Intensive Horticulture, Ghent, Belgium, 16–18 September 2013; Available online: https://edepot.wur.nl/290253 (accessed on 11 November 2020).
- Brés, W. Estimation of Nutrient Losses from Open Fertigation Systems to Soil during Horticultural Plants Cultivation. Pol. J. Environ. Stud. 2009, 183, 341–345. [Google Scholar]
- Chartzoulakis, K. Water resources management in the Island of Crete, Greece, with emphasis on the agricultural use. Hydrol. Res. 2001, 3, 193–205. [Google Scholar] [CrossRef]
- The European Council. Council Directive 91/676/EEC 12/12/1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off. J. Eur. Commun. 1991, L375, 1–8. [Google Scholar]
- Massa, D.; Incrocci, L.; Maggini, R.; Carmassi, G.; Campiotti, C.A.; Pardossi, A. Strategies to decrease water drainage and nitrate emission from soilless cultures of greenhouse tomato. Agric. Water Manag. 2010, 97, 971–980. [Google Scholar] [CrossRef]
- Van Grinsven, H.J.M.; Berge, H.F.M.T.; Dalgaard, T.; Fraters, B.; Durand, P.; Hart, A.; Hofman, G.; Jacobsen, B.H.; Lalor, S.T.J.; Lesschen, J.P.; et al. Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study. Biogeosciences 2012, 9, 5143–5160. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, S. Effects of Nitrogen and Phosphorus Fertilization on Plant Growth and Nitrate Accumulation in Vegetables. J. Plant Nutr. 2004, 27, 539–556. [Google Scholar] [CrossRef]
- Ahluwalia, A.; Gladwin, M.; Coleman, G.D.; Hord, N.; Howard, G.; Kim-Shapiro, D.B.; Lajous, M.; Larsen, F.J.; Lefer, D.J.; McClure, L.A.; et al. Dietary Nitrate and the Epidemiology of Cardiovascular Disease: Report from a National Heart, Lung, and Blood Institute Workshop. J. Am. Heart Assoc. 2016, 5, e003402. [Google Scholar] [CrossRef]
- Umar, S.; Iqbal, M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron. Sustain. Dev. 2007, 27, 45–57. [Google Scholar] [CrossRef]
- Zhong, W.; Hu, C.; Wang, M. Nitrate and nitrite in vegetables from north China: Content and intake. Food Addit. Contam. 2002, 19, 1125–1129. [Google Scholar] [CrossRef]
- The European Commission. Commission Regulation (EU) No. 1258/2011 amending Regulation (EC) No. 1881/2006 as regards maximum levels for nitrates in food stuffs. Off. J. Eur. Union 2011, L320, 15–17. [Google Scholar]
- Carson, L.C.; Ozores-Hampton, M. Methods for Determining Nitrogen Release from Controlled-release Fertilizers Used for Vegetable Production. HortTechnology 2012, 22, 20–24. [Google Scholar] [CrossRef]
- Chalk, P.M.; Craswell, E.T.; Polidoro, J.C.; Chen, C. Fate and efficiency of 15Nlabelledslow- and controlled release fertilizers. Nutr. Cycl. Agroecosyst. 2015, 102, 167–178. [Google Scholar] [CrossRef]
- Dubey, A.; Mailapalli, D.R. Zeolite coated urea fertilizer using different binders: Fabrication, material properties and nitrogen release studies. Environ. Technol. Innov. 2019, 16, 100452. [Google Scholar] [CrossRef]
- Azeem, B.; KuShaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release 2014, 181, 11–21. [Google Scholar] [CrossRef]
- Qiao, D.; Liu, H.; Yu, L.; Bao, X.; Simon, G.P.; Petinakis, E.; Chen, L. Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr. Polym. 2016, 147, 146–154. [Google Scholar] [CrossRef]
- Guertal, E. Slow-release Nitrogen Fertilizers in Vegetable Production: A Review. HortTechnology 2009, 19, 16–19. [Google Scholar] [CrossRef]
- Naz, M.Y.; Sulaiman, S.A. Slow release coating remedy for nitrogen loss from conventional urea: A review. J. Control. Release 2016, 225, 109–120. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Kempers, A.; Zweers, A. Ammonium determination in soil extracts by the salicylate method. Commun. Soil Sci. Plant Anal. 1986, 17, 715–723. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with NaHCO3, USDA No. 939; U.S. Department of Agriculture: Washington, DC, USA, 1954.
- Thomas, G.W. Exchangeable Cations. In Methods of Soil Analysis, 2nd ed.; Page, A., Ed.; American Society of Agronomy, Inc.; Soil Science Society of America, Inc.: Madison, WI, USA, 1982; pp. 159–165. [Google Scholar] [CrossRef]
- Ministero delle Politiche Agricole e Forestali. Decreto Ministeriale del 13/09/1999, Approvazione dei “Metodi Ufficiali di Analisi Chimica del Suolo”; Gazzetta Ufficiale della Repubblica Italiana Suppl. Ordin. n.248: Rome, Italy, 1999. (In Italian)
- Omar, L.; Ahmed, O.H.; Majid, N.M.A. Improving Ammonium and Nitrate Release from Urea Using Clinoptilolite Zeolite and Compost Produced from Agricultural Wastes. Sci. World J. 2015, 2015, 574201. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.K.; Ie, J.W.M.; Bako, Y. Nitrogen fertilizer response and use efficiency for three cereal crops in Niger Commun. Soil Sci. Plan. 2001, 32, 1465–1482. [Google Scholar] [CrossRef]
- Elia, A.; Conversa, G. Agronomic and physiological responses of a tomato crop to nitrogen input. Eur. J. Agron. 2012, 40, 64–74. [Google Scholar] [CrossRef]
- Haque, M.E.; Paul, A.K.; Sarker, J.R. Effect of Nitrogen and Boron on the Growth and Yield of Tomato (Lycopersicum esculentum L.). Int. J. Bio-Resour. Stress Manag. 2011, 2, 277–282. [Google Scholar]
- Addae-Kagya, K.; Norman, J.C. The influence of nitrogen levels on local cultivars of eggplant (Solanum integrifolium L.). Acta Hortic. 1977, 2, 397–402. [Google Scholar] [CrossRef]
- Tei, F.; Benincasa, P.; Guiducci, M. Critical nitrogen concentration in processing tomato. Eur. J. Agron. 2002, 18, 45–55. [Google Scholar] [CrossRef]
- Hirel, B.; Lemaire, G. From Agronomy and Ecophysiology to Molecular Genetics for Improving Nitrogen Use Efficiency in Crops. J. Crop. Improv. 2006, 15, 213–257. [Google Scholar] [CrossRef]
- Greenwood, D.J.; Hunt, J. Effect of nitrogen fertilizer on the nitrate contents of field vegetables grown in Britain. J. Sci. Food Agric. 1986, 37, 373–383. [Google Scholar] [CrossRef]
- Jiang, H.M.; Zhang, J.; Yang, J.C.; Liu, Z.H.; Song, X.Z.; Jiang, L.H. Effects of models of N application on greenhouse tomato N uptake, utilization and soil NO3−N accumulation. J. Agro-Environ. Sci. 2009, 28, 2623–2630. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHBH200912034.htm (accessed on 10 November 2020). (In Chinese).
- Min, J.; Zhao, X.; Shi, W.M.; Xing, G.X.; Zhu, Z.L. Nitrogen balance and loss in a greenhouse vegetable system in South eastern China. Pedosphere 2011, 21, 464–472. [Google Scholar] [CrossRef]
- Gao, X.; Li, C.; Zhang, M.; Wang, R.; Chen, B. Controlled release urea improved the nitrogen use efficiency, yield and quality of potato (Solanum tuberosum L.) on silt loamy soil. Field Crop. Res. 2015, 181, 60–68. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Zheng, L.; Cheng, D.-D.; Liu, M.; Geng, Y.-Q. Controlled Release Urea Improved Nitrogen Use Efficiency, Yield, and Quality of Wheat. Agron. J. 2011, 103, 479–485. [Google Scholar] [CrossRef]
- Shivay, Y.S.; Prasad, R.; Pal, M. Effect of Nitrogen Levels and Coated Urea on Growth, Yields and Nitrogen Use Efficiency in Aromatic Rice. J. Plant Nutr. 2015, 39, 875–882. [Google Scholar] [CrossRef]
- Taylor, M.; Locascio, S.; Alligood, M. Blossom-end Rot Incidence of Tomato as Affected by Irrigation Quantity, Calcium Source, and Reduced Potassium. HortScience 2004, 39, 1110–1115. [Google Scholar] [CrossRef]
- Yu, Q.; Ye, X.; Chen, Y.; Zhang, Z.; Tian, G. Influences of nitrification inhibitor 3,4-dimethyl pyrazole phosphate on nitrogen and soil salt-ion leaching. J. Environ. Sci. 2008, 20, 304–308. [Google Scholar] [CrossRef]
- Zerulla, W.; Barth, T.; Dressel, J.; Erhardt, K.; Von Locquenghien, K.H.; Pasda, G.; Rädle, M.; Wissemeier, A. 3,4-Dimethylpyrazole phosphate (DMPP)—A new nitrification inhibitor for agriculture and horticulture. Biol. Fertil. Soils 2001, 34, 79–84. [Google Scholar] [CrossRef]
- Shoji, S.; Delgado, J.; Mosier, A.; Miura, Y. Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality. Comm. Soil Sci. Plant Anal. 2001, 32, 1051–1070. [Google Scholar] [CrossRef]
- Guertal, E.A. Preplant Slow-Release Nitrogen Fertilizers Produce Similar Bell Pepper Yields as Split Applications of Soluble Fertilizer. Semigroup Forum 2000, 92, 388. [Google Scholar] [CrossRef]
- Kiran, J.K.; Khanif, Y.M.; Amminuddin, H.; Anuar, A.R. Effects of Controlled Release Urea on the Yield and Nitrogen Nutrition of Flooded Rice. Commun. Soil Sci. Plant Anal. 2010, 41, 811–819. [Google Scholar] [CrossRef]
- Baroncelli, P.; Landi, S.; Marzialetti, P.; Scavo, N. Uso Razionale delle Risorse nel Florovivaismo: I Fertilizzanti. In Quaderno ARSIA No. 2; ARSIA—Agenzia Regionale per lo Sviluppo e l’Innovazione nel settore Agricolo-forestale: Firenze, Italy, 2004; p. 281. (In Italian) [Google Scholar]
Treatment | Short Description | Total N Dose | Base Fertilization | Top-Dressing (Fertigation) | Total Cost of Fertilizers | Total Cost of N Fertilizers | ||
---|---|---|---|---|---|---|---|---|
kg N/ha (% total N) | ||||||||
kg N/ha | kg N/ha (% Total N) | NH4NO3 | Ca(NO3)2 | KNO3 | €/ha | |||
Experiment 1 | ||||||||
CON1 | Growers’ practice | 360 | 72 (20) as (NH4)2SO4 | 72 (20) | 166 (46) | 50 (14) | 1887.04 | 1216.13 |
DMPP20 | DMPP® 26.0.0 | 360 | 72 (20) as DMPP® | 72 (20) | 166 (46) | 50 (14) | 1874.51 | 1203.60 |
CU20 | CU | 360 | 72 (20) as CU | 72 (20) | 166 (46) | 50 (14) | 1875.47 | 1204.56 |
CU40 | CU | 360 | 144 (40) as CU | 0 | 166 (46) | 50 (14) | 1898.95 | 1228.04 |
CU75-1 | CU | 360 | 270 (75) as CU | 0 | 90 (25) | 0 | 2002.21 | 1049.25 |
Experiment 2 | ||||||||
CON2 | Growers’ practice | 300 | 75 (25) as (NH4)2SO4 | 90 (30) | 75 (25) | 60 (20) | 1624.54 | 1010.04 |
DMPP25 | DMPP® 26.0.0 | 300 | 75 (25) as DMPP | 90 (30) | 75 (25) | 60 (20) | 1611.50 | 997.00 |
CU50 | CU | 300 | 150 (50) as CU | 15 (5) | 75 (25) | 60 (20) | 1636.95 | 1022.45 |
CU75-2 | CU | 300 | 225 (75) as CU | 0 | 75 (25) | 0 | 1606.69 | 653.73 |
Experiment 3 | ||||||||
CON3 | Growers’ practice | 300 | 75 (25) as NH4NO3 | 90 (30) | 75 (25) | 60 (20) | 1624.54 | 1010.04 |
CUred | CU reduced dose | 225 | 150 (67) as CU | 0 | 75 (33) | 0 | 1475.88 | 522.92 |
Parameter | Experiment 1 Spring 2015 | Experiment 2 Autumn 2015 | Experiment 3 Summer/Autumn 2016 |
---|---|---|---|
Growing period | 20 March–7 July 2015 | 21 September 2015–28 January 2016 | 22 August–1 December 2016 |
Daily mean air temperature (°C) | 22.7 ± 5.5 | 16.4 ± 3.9 | 20.4 ± 4.2 |
Daily mean soil temperature (°C) | 22.4 ± 5.4 | 17.3 ± 3.9 | 20.7 ± 4.2 |
Air and soil temperature range (°C) | 15–32 | 11–26 | 14–28 |
Cumulative average daily soil temperature (°C) | 2459.9 ± 96.7 | 2245.8 ± 67.4 | 2079.1 ± 62.3 |
Relative humidity (%) | 62.7 ± 7.7 | 79.6 ± 10.7 | 77.9 ± 11.4 |
Average daily global radiation (MJ/m2·day) | 10.5 ± 3.6 | 2.4 ± 0.7 | 5.0 ± 1.6 |
Cumulative global radiation (MJ/m2) | 1151.7 ± 43.8 | 299.9 ± 9.0 | 506.3 ± 15.2 |
pH | 8.1 ± 0.1 | 6.8 ± 0.1 | 7.0 ± 0.1 |
Electrical Conductivity (mS/cm at 25 °C) | 0.22 ± 0.08 | 0.29 ± 0.06 | 0.39 ± 0.08 |
Nitrate (mg NO3−/kg) | 20 ± 2 | 28 ± 2 | 33 ± 4 |
Ammonium (mg NH4+/kg) | 1.2 ± 0.2 | 7.0 ± 0.2 | 8.0 ± 0.3 |
Exchangeable Potassium (mg K2O/kg) | 140 ± 7 | 136 ± 5 | 129 ± 9 |
Exchangeable Calcium (mg Ca/kg) | 2112 ± 11 | 2258 ± 13 | 2295 ± 13 |
Exchangeable Magnesium (mg Mg/kg) | 80 ± 8 | 110 ± 8 | 91 ± 7 |
Assimilable Phosphorous (mg P2O5/kg) | 76 ± 6 | 77 ± 6 | 70 ± 7 |
Assimilable Iron (mg Fe/kg) | 388 ± 10 | 334 ± 16 | 388 ± 15 |
Assimilable Manganese (mg Mn/kg) | 204 ± 8 | 215 ± 10 | 226 ± 11 |
Assimilable Zinc (mg Zn/kg) | 6.0 ± 0.1 | 4.3 ± 0.5 | 6.2 ± 0.7 |
Assimilable Copper (mg Cu/kg) | 5.9 ± 0.4 | 2.11 ± 0.02 | 3.20 ± 0.02 |
Soluble Boron (mg B/kg) | 0.45 ± 0.04 | 0.21 ± 0.02 | 0.35 ± 0.04 |
Organic matter content (%) | 2.31 ± 0.12 | 1.44 ± 0.10 | 4.15 ± 0.15 |
C/N | 33.6 ± 0.6 | 14.0 ± 0.4 | 17.2 ± 0.2 |
Cationic Exchange Capacity (meq/100 g) | 12.8 ± 1.0 | 11.6 ± 0.5 | 15.4 ± 1.1 |
Clay (%) | 11.6 ± 0.9 | 6.2 ± 0.6 | 7.6 ± 0.8 |
Silt (%) | 20.8 ± 1.2 | 20.5 ± 1.9 | 19.9 ± 1.1 |
Sand (%) | 67.6 ± 2.1 | 73.3 ± 1.1 | 72.5 ± 2.2 |
Sample | Fraction of Total N | Determination | Chemical Form |
---|---|---|---|
Cumulated water drainage | Ureic | Enzyme kit (urease) | Urea |
Nitric | Spectrophotometric assay (nitrosalycilate method) | Nitrate | |
Ammoniacal | Spectrophotometric assay (substituted indophenol method) | Ammonium + Ammonia | |
Soil | Ureic | Enzyme kit (urease) | Urea |
Reduced | Kjeldahl method | Organic + Ammonium + Ammonia | |
Nitric | Spectrophotometric assay (nitrosalycilate method) | Nitrate | |
Mineral | Nitrate + Ammoniacal N | Nitrate + Ammonium + Ammonia | |
Total | Reduced + Nitrate | Organic + Nitrate + Ammonium + Ammonia | |
Coated urea fertilizer | Ureic | Enzyme kit (urease) | Urea |
Ammoniacal | Spectrophotometric assay (substituted indophenol method) | Ammonium + Ammonia | |
Plant tissues | Nitric | Spectrophotometric assay (nitrosalycilate method) | Nitrate |
Reduced | Kjeldahl method | Organic + Ammonium + Ammonia | |
Organic | Reduced − Ammoniacal | N-containing organic compounds including urea | |
Total | Reduced + Nitrate | Organic + Nitrate + Ammonium + Ammonia |
Treatment | Water Supply (L/m2) | Water Drainage (L/m2) | Leaching Fraction (%) | Evapotranspiration (L/m2) |
---|---|---|---|---|
Experiment 1 | ||||
CON1 | 472.5 ± 19.2 | 67.5 ± 2.6 b | 14.3 ± 2.2 b | 405.0 ± 12.7 a |
DMPP20 | 472.7 ± 19.4 | 61.3 ± 2.5 b | 13.0 ± 2.9 b | 411.4 ± 12.5 a |
CU20 | 470.2 ± 20.1 | 66.6 ± 2.7 b | 14.2 ± 2.5 b | 403.5 ± 11.3 a |
CU40 | 475.8 ± 19.1 | 94.6 ± 3.7 a | 19.9 ± 3.4 a | 381.2 ± 11.9 b |
CU75-1 | 475.8 ± 17.7 | 97.8 ± 4.6 a | 20.7 ±3.3 a | 375,6 ± 11.0 b |
Experiment 2 | ||||
CON2 | 171.6 ± 9.3 | 38.4 ± 2.4 b | 22.4 ± 1.8 b | 133.3 ± 3.0 a |
DMPP25 | 173.6 ± 7.2 | 39.8 ± 3.1 b | 22.9 ± 2.1 b | 133.8 ± 2.9 a |
CU50 | 168.7 ± 6.9 | 41.7 ± 2.9 b | 24.7 ± 1.9 ab | 127.0 ± 3.2 ab |
CU75-2 | 171.9 ± 8.2 | 46.7 ± 3.2 a | 27.2 ± 2.1 a | 125.2 ± 2.8 b |
Experiment 3 | ||||
CON3 | 321.4 ± 11.2 | 94.7 ± 4.7 | 29.5 ± 2.1 | 226.7 ± 6.5 |
Cured | 326.3 ± 9.2 | 94.1 ± 5.6 | 28.8 ± 1.9 | 232.2 ± 5.8 |
Treatment | Dry Biomass (g/m2) | N Tissue Concentration (% Dry Biomass) | ||||
---|---|---|---|---|---|---|
Leaves | Stems | Fruits | Leaves | Stems | Fruits | |
Experiment 1 | ||||||
CON1 | 179.4 ± 6.7 b | 156.8 ± 10.1 | 717.0 ± 12.8 c | 2.52 ± 0.03 b | 2.25 ± 0.04 ab | 2.95 ± 0.04 b |
DMPP20 | 191.4 ± 9.4 a | 155.9 ± 9.9 | 762.3 ± 12.5 a | 2.60 ± 0.05 a | 2.23 ± 0.02 b | 3.04 ± 0.04 ab |
CU20 | 194.5 ± 9.7 a | 169.8 ± 9.7 | 714.7 ± 13.1 | 2.63 ± 0.04 a | 2.28 ± 0.03 ab | 3.00 ± 0.03 b |
CU40 | 167.4 ± 5.3 c | 155.3 ± 8.5 | 741.0 ± 15.1 b | 2.62 ± 0.04 a | 2.31 ± 0.03 a | 3.10 ± 0.02 a |
CU75-1 | 162,9 ± 5.5 c | 154.8 ± 7.9 | 759.9 ± 13.2 a | 2.68 ± 0.05 a | 2.24 ± 0.03 b | 3.12 ± 0.03 a |
Experiment 2 | ||||||
CON2 | 206.6 ± 10.6 a | 100.1 ± 6.7 a | 195.8 ± 14.2 b | 3.59 ± 0.03 a | 3.00 ± 0.01 ab | 3.44 ± 0.02 ab |
DMPP25 | 189.5 ± 7.9 b | 87.5 ± 6.5 b | 189.9 ± 12.1 b | 3.51 ± 0.02 a | 3.16 ± 0.02 a | 3.22 ± 0.01 b |
CU50 | 198.4 ± 9.3 ab | 85.9 ± 6.8 b | 216.2 ± 14.6 a | 3.46 ± 0.02 ab | 2.83 ± 0.02 bc | 3.49 ± 0.02 a |
CU75-2 | 190.5 ± 8.4 b | 101.0 ± 7.1 a | 234.1 ± 15.2 a | 3.22 ± 0.01 b | 2.52 ± 0.02 c | 3.60 ± 0.03 a |
Experiment 3 | ||||||
CON3 | 191.9 ± 9.5 | 82.5 ± 6.1 | 197.6 ± 18.1 | 3.72 ± 0.03 a | 2.61 ± 0.02 | 3.62 ± 0.02 |
Cured | 184.0 ± 8.2 | 77.4 ± 5.8 | 214.4 ± 19.2 | 3.20 ± 0.02 b | 2.72 ± 0.03 | 3.59 ± 0.02 |
Fruit Production | Fruit Quality | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | Fruit Yield (kg/m2) | Fruit Amount (n° Fruits/m2) | Average Fruit Weight (gFW/Fruit) | Fruit Dry Matter Content (%) | pH | EC (dS/m) | Total Soluble Solids (°Brix) | Titratable Acidity (g Citric Acid/100 mL) | ||
Total | Market Quality | Total | Market Quality | |||||||
Experiment 1 | ||||||||||
CON1 | 12.8 ± 0.68 | 9.8 ± 0.9 | 59.0 ± 1.4 b | 39.5 ± 1.6 ab | 247.8 ± 22.1 | 5.60 ± 0.11 | 4.17 ± 0.04 | 5.23 ± 0.20 | 4.65 ± 0.20 | 0.57 ± 0.03 |
DMPP20 | 13.8 ± 0.79 | 10.4 ± 1.1 | 63.2 ± 2.2 ab | 39.2 ± 1.5 ab | 265.6 ± 28.2 | 5.52 ± 0.09 | 4.14 ± 0.03 | 5.14 ± 0.19 | 4.62 ± 0.23 | 0.58 ± 0.04 |
CU20 | 12.7 ± 0.71 | 9.8 ± 0.7 | 59.5 ± 1.8 ab | 38.5 ± 1.6 b | 255.3 ± 20.5 | 5.63 ± 0.15 | 4.14 ± 0.03 | 5.37 ± 0.24 | 4.45 ± 0.21 | 0.57 ± 0.04 |
CU40 | 13.4 ± 0.82 | 10.7 ± 0.8 | 65.7 ± 2.1 a | 43.0 ± 2.9 a | 248.8 ± 20.5 | 5.53 ± 0.10 | 4.16 ± 0.04 | 5.28 ± 0.21 | 4.57 ± 0.25 | 0.58 ± 0.05 |
CU75 | 13.5 ± 0.87 | 10.8 ± 0.9 | 64.6 ± 1.9 a | 42.2 ± 3.1 a | 254.7 ± 21.1 | 5.63 ± 0.14 | 4.15 ± 0.02 | 5.36 ± 0.25 | 4.63 ± 0.22 | 0.59 ± 0.06 |
Experiment 2 | ||||||||||
CON2 | 4.21 ± 0.21 b | 3.80 ± 0.31 b | 33.5 ± 4.1 | 26.3 ± 2.4 b | 144.8 ± 9.7 b | 4.65 ± 0.08 | 4.42 ± 0.03 b | 6.22 ± 0.34 b | 4.10 ± 0.14 b | 0.40 ± 0.03 |
DMPP25 | 4.04 ± 0.23 b | 3.85 ± 0.41 b | 33.8 ± 3.8 | 25.3 ± 2.5 b | 152.5 ± 10.6 ab | 4.70 ± 0.11 | 4.41 ± 0.03 b | 6.87 ± 0.32 ab | 4.40 ± 0.18 ab | 0.45 ± 0.04 |
CU50 | 4.70 ± 0.31 ab | 4.30 ± 0.35 ab | 33.8 ± 3.9 | 27.3 ± 2.9 ab | 155.0 ± 10.3 ab | 4.60 ± 0.09 | 4.40 ± 0.04 b | 6.65 ± 0.34 b | 3.98 ± 0.14 b | 0.42 ± 0.03 |
CU75 | 4.99 ± 0.33 a | 4.70 ± 0.35 a | 37.2 ± 4.2 | 30.0 ± 3.1 a | 156.7 ± 10.1 a | 4.69 ± 0.10 | 4.52 ± 0.04 a | 7.54 ± 0.41 a | 4.50 ± 0.15 a | 0.41 ± 0.04 |
Experiment 3 | ||||||||||
CON3 | 4.39 ± 0.19 | 3.77 ± 0.28 | 38.3 ± 3.9 | 26.3 ± 2.5 | 143.6 ± 10.9 | 4.50 ± 0.13 | 3.90 ± 0.04 | 5.23 ± 0.25 | 4.47 ± 0.09 | 0.73 ± 0.06 |
CUred | 4.64 ± 0.18 | 4.08 ± 0.31 | 36.0 ± 3.7 | 28.8 ± 2.6 | 141.9 ± 11.2 | 4.62 ± 0.15 | 3.86 ± 0.05 | 5.14 ± 0.30 | 4.49 ± 0.07 | 0.65 ± 0.07 |
N Distribution (kg/ha) | Treatments | ||||||
---|---|---|---|---|---|---|---|
Experiment 1 | CON1 | DMPP20 | CU20 | CU40 | CU75-1 | ||
Input | Mineral soil content prior to fertilization (A) | 39.2 ± 1.0 | 39.2 ± 1.0 | 39.2 ± 1.0 | 39.2 ± 1.0 | 39.2 ± 1.0 | |
Supplied by base fertilization (B) | soluble salt | 72.0 ± 1.0 c | |||||
DMPP | 72.0 ± 1.0 c | ||||||
CU | 72.0 ± 1.0 c | 144.0 ± 1.0 b | 270.0 ± 1.0 a | ||||
Supplied by fertigation (C) | 288.2 ± 2.5 a | 287.5 ± 2.8 a | 287.8 ± 3.1 a | 216.3 ± 2.1 a | 90.6 ± 1.1 c | ||
Total N input (I) | 399.4 ± 1.8 | 398.7 ± 2.0 | 399.0 ± 2.2 | 399.5 ± 1.3 | 399.8 ± 3.0 | ||
Output | Mineral soil content after experiment (E) | 40.6 ± 3.3 c | 41.9 ± 4.3 c | 47.3 ± 5.1 c | 62.1 ± 5.8 b | 72.9 ± 6.1 a | |
Residual in CU granules (F) | 7.9 ± 1.5 c | 15.8 ± 1.9 b | 29.7 ± 2.5 a | ||||
Leached (G) | 127.2 ± 8.1 a | 97.8 ± 6.7 b | 97.0 ± 7.1 b | 57.2 ± 5.1 c | 25.4 ± 3.1 d | ||
Plant uptake (H) | 272.4 ± 12.1 b | 290.3 ± 13.5 a | 290.2 ± 13.1 a | 290.1 ± 12.7 a | 296.5 ± 15.1 a | ||
Total N output (O) | 440.2 ± 14.1 a | 430.0 ± 13.7 a,b | 442.4 ± 15.1 a | 425.2 ± 11.5 b | 424.5 ± 12.5 b | ||
N output − N input (∆) | 40.8 | 31.3 | 43.4 | 25.7 | 24.7 | ||
Relative error | 9.27% | 7.28% | 9.81% | 6.04% | 5.82% | ||
Experiment 2 | CON2 | DMPP25 | CU50 | CU75-2 | |||
Input | Mineral soil content prior to fertilization (A) | 14.9 ± 1.0 | 14.9 ± 1.0 | 14.9 ± 1.0 | 14.9 ± 1.0 | ||
Supplied by base fertilization (B) | soluble salt | 75.0 ± 1.0 c | |||||
DMPP | 75.0 ± 1.0 c | ||||||
CU | 150.0 ± 1.0 b | 225.0 ± 1.0 a | |||||
Supplied by fertigation (C) | 224.5 ± 2.7 a | 224.5 ± 2.9 a | 144.1 ± 1.7 b | 74.9 ± 0.3 c | |||
Total N input (I) | 314.4 ± 18.6 | 314.4 ± 18.7 | 309.0 ± 16.1 | 314.8 ± 14.5 | |||
Output | Mineral soil content after experiment (E) | 100.0 ± 9.1 a | 110.8 ± 8.6 a | 85.8 ± 7.1 b | 89.8 ± 6.8 b | ||
Residual in CU granules (F) | 21.0 ± 2.2 b | 31.5 ± 2.4 a | |||||
Leached (G) | 46.0 ± 3.1 a | 42.1 ± 2.9 a | 28.4 ± 1.9 b | 20.0 ± 2.1 c | |||
Plant uptake (H) | 171.4 ± 11.8 a | 155.2 ± 12.4 b | 168.5 ± 11.6 a | 171.1 ± 12.1 a | |||
Total N output (O) | 317.4 ± 20.1 | 308.1 ± 17.2 | 303.7 ± 18.6 | 312.4 ± 21.2 | |||
N output − N input (∆) | 3.0 | −6.3 | −5.3 | −2.4 | |||
Relative error | 0.95% | −2.04% | −1.75% | −0.77% | |||
Experiment 3 | CON3 | CUred | |||||
Input | Mineral soil content prior to fertilization (A) | 20.3 ± 1.0 | 20.3 ± 1.0 | ||||
Supplied by base fertilization (B) | soluble salt | 75.0 ± 1.0 b | |||||
CU | 150.0 ± 1.0 a | ||||||
Supplied by fertigation (C) | 229.0 ± 17.5 a | 79.0 ± 8.1 b | |||||
Total N input (I) | 324.3 ± 22.4 a | 249.3 ± 23.1 b | |||||
Output | Mineral soil content after experiment (E) | 122.9 ± 12.4 a | 87.8 ± 8.8 b | ||||
Residual in CU granules (F) | 16.5 ± 1.8 | ||||||
Leached (G) | 60.8 ± 6.1 a | 21.0 ± 2.2 b | |||||
Plant uptake (H) | 164.6 ± 15.4 a | 156.9 ± 11.2 b | |||||
Total N output (O) | 348.3 ± 21.1 a | 282.2 ± 17.5 b | |||||
N output − N input (∆) | 24.0 | 32.9 | |||||
Relative error | 6.89% | 11.66% |
Fertilization Treatment | AE (g FW/g N) | PFP (g FW/g N) | REC (g N/g N) | PE (g FW/g N) |
---|---|---|---|---|
Experiment 1 | ||||
CON1 | 306.7 ± 15.4 | 355.0 ± 20.3 | 0.54 ± 0.05 b | 568.5 ± 31.9 |
DMPP20 | 333.9 ± 20.1 | 382.2 ± 22.2 | 0.58 ± 0.04 a,b | 576.9 ± 40.2 |
CU20 | 303.1 ± 15.1 | 351.4 ± 21.5 | 0.57 ± 0.03 b | 534.1 ± 35.1 |
CU40 | 323.9 ± 16.2 | 372.2 ± 26.4 | 0.59 ± 0.04 a | 548.9 ± 21.3 |
CU75-1 | 325.3 ± 18.3 | 373.6 ± 25.1 | 0.61 ± 0.05 a | 532.8 ± 19.2 |
Experiment 2 | ||||
CON2 | 102.39 ± 8.6 b | 134.3 ± 10.2 b,c | 0.19 ± 0.02 b,c | 537.7 ± 23.5 |
DMPP25 | 96.97 ± 5.9 b | 128.9 ± 12.3 c | 0.17 ± 0.02 c | 568.2 ± 27.2 |
CU50 | 120.09 ± 12.5 a | 152.6 ± 14.1 a,b | 0.22 ± 0.03 a,b | 544.9 ± 21.1 |
CU75-2 | 125.84 ± 10.6 a | 157.7 ± 12.0 a | 0.24 ± 0.04 a | 515.0 ± 20.9 |
Experiment 3 | ||||
CON3 | 114.8 ± 10.4 b | 144.4 ± 16.1 b | 0.21 ± 0.03 b | 536.9 ± 21.5 |
CUred | 163.3 ± 12.6 a | 202.6 ± 20.1 a | 0.31 ± 0.04 a | 530.5 ± 20.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Incrocci, L.; Maggini, R.; Cei, T.; Carmassi, G.; Botrini, L.; Filippi, F.; Clemens, R.; Terrones, C.; Pardossi, A. Innovative Controlled-Release Polyurethane-Coated Urea Could Reduce N Leaching in Tomato Crop in Comparison to Conventional and Stabilized Fertilizers. Agronomy 2020, 10, 1827. https://doi.org/10.3390/agronomy10111827
Incrocci L, Maggini R, Cei T, Carmassi G, Botrini L, Filippi F, Clemens R, Terrones C, Pardossi A. Innovative Controlled-Release Polyurethane-Coated Urea Could Reduce N Leaching in Tomato Crop in Comparison to Conventional and Stabilized Fertilizers. Agronomy. 2020; 10(11):1827. https://doi.org/10.3390/agronomy10111827
Chicago/Turabian StyleIncrocci, Luca, Rita Maggini, Tommaso Cei, Giulia Carmassi, Luca Botrini, Ferruccio Filippi, Ronald Clemens, Cristian Terrones, and Alberto Pardossi. 2020. "Innovative Controlled-Release Polyurethane-Coated Urea Could Reduce N Leaching in Tomato Crop in Comparison to Conventional and Stabilized Fertilizers" Agronomy 10, no. 11: 1827. https://doi.org/10.3390/agronomy10111827
APA StyleIncrocci, L., Maggini, R., Cei, T., Carmassi, G., Botrini, L., Filippi, F., Clemens, R., Terrones, C., & Pardossi, A. (2020). Innovative Controlled-Release Polyurethane-Coated Urea Could Reduce N Leaching in Tomato Crop in Comparison to Conventional and Stabilized Fertilizers. Agronomy, 10(11), 1827. https://doi.org/10.3390/agronomy10111827