Improvement of Soil Health through Residue Management and Conservation Tillage in Rice-Wheat Cropping System of Punjab, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection, Climatic Conditions, and Soil Descriptions
2.2. Treatments and Experimental Design
2.3. Wheat Management
2.4. Rice Management
2.5. Soil Sampling and Processing
2.6. Soil Parameters Measurement
2.7. Statistical Analysis
3. Results
3.1. Soil Physio-Chemical Properties under Tillage and Residue Management
3.2. DTPA-Extractable Micronutrients under Tillage and Residue Management Practices
3.3. Correlation Matrix
4. Discussions
4.1. Soil Physio-Chemical Properties under Tillage-Residue Management Practices
4.2. Soil DTPA-Extractable Micronutrients under Tillage-Residue Management
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nawaz, A.; Farooq, M.; Nadeem, F.; Siddique, K.H.M.; Lal, R. Rice-wheat cropping systems in South Asia: Issues, options and opportunities. Crop Pasture Sci. 2019, 70, 395–427. [Google Scholar] [CrossRef]
- McDermid, S.P.; Dileepkumar, G.; Kadiyala, M.D.M.; Nedumaran, S.; Singh, P.; Srinivas, C.; Gangwar, B.; Subash, N.; Ahmad, A.; Zubair, L.; et al. Integrated Assessments of the Impact of Climate Change on Agriculture; International Crops Research Institute for the Semi-Arid Tropics: Patancheruvu, India, 2015; pp. 201–217. ISBN 9781783265640. [Google Scholar]
- Nawaz, A.; Farooq, M. Weed management in resource conservation production systems in Pakistan. Crop. Prot. 2016, 85, 89–103. [Google Scholar] [CrossRef]
- Asam, H.M.; Mehmood, T.; Nawaz, M.K.; Haidree, S.R.; Qadeer, A. Engineering management of cropping system of Indo-Gangetic plain: A review. Int. J. Biosci. 2020, 6655, 320–328. [Google Scholar]
- Bhatt, R.; Kukal, S.S.; Busari, M.A.; Arora, S.; Yadav, M. Sustainability issues on rice–wheat cropping system. Int. Soil Water Conserv. Res. 2016, 4, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Shiwakoti, S.; Zheljazkov, V.D.; Gollany, H.T.; Xing, B.; Kleber, M. Micronutrient concentrations in soil and wheat decline by long-term tillage and winter wheat–pea rotation. Agronomy 2019, 9, 359. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Jat, K.R.D.; Kumar, S.; Choudhary, K.K. Integrated nutrient management for improving, fertilizer use efficiency soil biodiversity and productivity of wheat in irrigated rice wheat cropping system in indo-gangatic plains of India. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 152–163. [Google Scholar]
- Ramos, E.; Robles, A.B.; Sa, A.; Gonza, L. Soil responses to different management practices in rainfed orchards in semiarid environments. Soil Tillage Res. 2011, 112, 85–91. [Google Scholar] [CrossRef]
- Khan, S.; Shah, A.; Nawaz, M.; Khan, M. Impact of different tillage practices on soil physical properties, nitrate leaching and yield attributes of maize (Zea mays L.). J. Soil Sci. Plant Nutr. 2017, 17, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Badarinath, K.V.S.; Kiran Chand, T.R.; Krishna Prasad, V. Agriculture crop residue burning in the Indo-Gangetic Plains—A study using IRS-P6 AWiFS satellite data. Curr. Sci. 2006, 91, 1085–1089. [Google Scholar]
- Meena, R.P.; Venkatesh, K.; Khobra, R.; Tripathi, S.C.; Prajapat, K.; Sharma, R.K.; Singh, G.P. Effect of rice residue retention and foliar application of K on water productivity and profitability of wheat in North West India. Agronomy 2020, 10, 434. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Nabi, G.; Gill, S.M.; Mahmood-ul-hassan, M. Crop residue management in rice-wheat system of Pakistan and its impact on yield and nutrient uptake. Int. J. Biosci. 2019, 14, 221–236. [Google Scholar]
- Chai, Q.; Gan, Y.; Turner, N.C.; Zhang, R.Z.; Yang, C.; Niu, Y.; Siddique, K.H.M. Water-Saving Innovations in Chinese Agriculture; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Bouman, B.A.M.; Lampayan, R.M.; Tuong, T.P. Water Management in Irrigated Rice: Coping with Water Scarcity; International Rice Research Institute: Los Banos, Philippines, 2007; p. 54. [Google Scholar]
- Wu, X.H.; Wang, W.; Yin, C.M.; Hou, H.J.; Xie, K.J.; Xie, X.L. Water consumption, grain yield, and water productivity in response to field water management in double rice systems in China. PLoS ONE 2017, 12, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gathala, M.K.; Ladha, J.K.; Saharawat, Y.S.; Kumar, V.; Kumar, V.; Sharma, P.K. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year rice−wheat rotation. Soil Sci. Soc. Am. J. 2011, 75, 1851–1862. [Google Scholar] [CrossRef]
- Panwar, A.S.; Shamim, M.; Babu, S.; Ravishankar, N.; Prusty, A.K.; Alam, N.M.; Singh, D.K.; Bindhu, J.S.; Kaur, J.; Dashora, L.N.; et al. Enhancement in productivity, nutrients use efficiency, and economics of rice-wheat cropping systems in India through farmer’s participatory approach. Sustainability 2019, 11, 122. [Google Scholar] [CrossRef] [Green Version]
- Dikgwatlhe, S.B.; Du-Chen, Z.; Lal, R.; Zhang, H.L.; Chen, F. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat-maize cropping system in the North China Plain. Soil Tillage Res. 2014, 144, 110–118. [Google Scholar] [CrossRef]
- Bhatt, R.; Kaur, R.; Ghosh, A. Strategies to Practice Climate-Smart Agriculture to Improve the Livelihoods under the Rice-Wheat Cropping System in South Asia; Kumar, S., Meena, R., Jat, M., Bohra, J., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2019. [Google Scholar]
- Thierfelder, C.; Wall, P.C. Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil Tillage Res. 2009, 105, 217–227. [Google Scholar] [CrossRef]
- Das, A.; Layek, J.; Idapuganti, R.G.; Basavaraj, S.; Lal, R.; Rangappa, K.; Yadav, G.S.; Babu, S.; Ngachan, S. Conservation tillage and residue management improves soil properties under a upland rice–rapeseed system in the subtropical eastern Himalayas. Land Degrad. Dev. 2020, 1–17. [Google Scholar] [CrossRef]
- Ekenler, M.; Tabatabai, M.A. Tillage and residue management effects on β-glucosaminidase activity in soils. Soil Biol. Biochem. 2003, 35, 871–874. [Google Scholar] [CrossRef]
- Thomas, G.A.; Dalal, R.C.; Standley, J. No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil Tillage Res. 2007, 94, 295–304. [Google Scholar] [CrossRef]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Front. Sustain. Food Syst. 2020, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Roldán, A.; Salinas-García, J.R.; Alguacil, M.M.; Caravaca, F. Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Appl. Soil Ecol. 2005, 30, 11–20. [Google Scholar] [CrossRef]
- Kennedy, A.C.; Schillinger, W.F. Soil quality and water intake in traditional-till vs. no-till paired farms in Washington’s palouse region. Soil Sci. Soc. Am. J. 2006, 70, 940–949. [Google Scholar] [CrossRef]
- Bu, R.; Ren, T.; Lei, M.; Liu, B.; Li, X.; Cong, R.; Zhang, Y.; Lu, J. Tillage and straw-returning practices effect on soil dissolved organic matter, aggregate fraction and bacteria community under rice-rice-rapeseed rotation system. Agric. Ecosyst. Environ. 2020, 287, 106681. [Google Scholar] [CrossRef]
- Singh, A.; Phogat, V.K.; Dahiya, R.; Batra, S.D. Impact of long-term zero till wheat on soil physical properties and wheat productivity under rice-wheat cropping system. Soil Tillage Res. 2014, 140, 98–105. [Google Scholar] [CrossRef]
- Singh, V.K.; Dwivedi, B.S.; Mishra, R.P.; Shukla, A.K.; Timsina, J.; Upadhyay, P.K.; Shekhawat, K.; Majumdar, K.; Panwar, A.S. Yields, soil health and farm profits under a rice-wheat system: Long-term effect of fertilizers and organic manures applied alone and in combination. Agronomy 2019, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Salahin, N.; Alam, K.; Mondol, A.T.M.A.I.; Islam, M.S.; Rashid, M.H.; Hoque, M.A. Effect of tillage and residue retention on soil properties and crop yields in wheat-mungbean-rice crop rotation under subtropical humid climate. Open J. Soil Sci. 2017, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Nandan, R.; Singh, V.; Singh, S.S.; Kumar, V.; Hazra, K.K.; Nath, C.P.; Poonia, S.P.; Malik, R.K.; Bhattacharyya, R.; McDonald, A. Impact of conservation tillage in rice–based cropping systems on soil aggregation, carbon pools and nutrients. Geoderma 2019, 340, 104–114. [Google Scholar] [CrossRef]
- Ghimire, R.; Lamichhane, S.; Acharya, B.S.; Bista, P.; Sainju, U.M. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. J. Integr. Agric. 2017, 16, 1–15. [Google Scholar] [CrossRef]
- FAO. World reference base for soil resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014. [Google Scholar]
- USDA-SSS. Keys to soil taxonomy. Soil Conserv. Serv. 2014, 12, 410. [Google Scholar]
- Baruah, T.C.; Barthakur, B.H. A Text Book of Soil Analysis; Vikas Publishing Houses Pvt, Ltd.: New Delhi, India, 1999. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-total. In Methods of Soil Analysis, Part 2 Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Olson, K.; Ebelhar, S.A.; Lang, J.M. Long-term effects of cover crops on crop yields, soil organic carbon stocks and sequestration. Open J. Soil Sci. 2014, 4, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Richards, L.A. Diagnosis and improvement of saline sodic and alkali soils. In USDA Agricultural Handbook 60; United States Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of a rapid method for determination of organic carbon in sois-effect of variation in digestion conditions and inorganic soil constituents. Soil Sci. 1934, 63, 251–263. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometric Approach, 3rd ed.; McGraw Hill Book Co. Inc.: New York, NY, USA, 1996. [Google Scholar]
- Claupein, W.; Gruber, S.; Mo, J. On the way towards conservation tillage-soil moisture and mineral nitrogen in a long-term field experiment in Germany. Soil Tillage Res. 2011, 116, 80–87. [Google Scholar]
- Mupangwa, W.; Twomlow, S.; Walker, S. Cumulative effects of reduced tillage and mulching on soil properties under semi-arid conditions. J. Arid Environ. 2013, 91, 45–52. [Google Scholar] [CrossRef]
- Małecka, I.; Blecharczyk, A.; Sawinska, Z.; Dobrzeniecki, T. The effect of various long-term tillage systems on soil properties and spring barley yield. Turk. J. Agric. For. 2012, 36, 217–226. [Google Scholar]
- Galdos, M.V.; Pires, L.F.; Cooper, H.V.; Calonego, J.C.; Rosolem, C.A.; Mooney, S.J. Geoderma Assessing the long-term effects of zero-tillage on the macroporosity of Brazilian soils using X-ray Computed Tomography. Geoderma 2019, 337, 1126–1135. [Google Scholar] [CrossRef]
- Wahbi, A.; Miwak, H.; Singh, R. Effects of conservation agriculture on soil physical properties and yield of lentil in Northern Syria. Geophys. Res. Abstr. 2014, 16, 3280. [Google Scholar]
- Jat, H.S.; Datta, A.; Sharma, P.C.; Kumar, V.; Yadav, A.K.; Choudhary, M.; Choudhary, V.; Gathala, M.K.; Sharma, D.K.; Jat, M.L.; et al. Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Arch. Agron. Soil Sci. 2018, 64, 531–545. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, M.; Singh, S.K.; Jat, R.K. Impact of conservation agriculture on soil physical properties in rice-wheat system of eastern indo-gangetic plains. J. Anim. Plant Sci. 2018, 28, 1432–1440. [Google Scholar]
- Bachchan, R.K.; Satyendra, S.; Singh, V. Soil physical properties under zero and conventional tillage systems for a rice wheat cropping system. Int. J. Soil Sci. Agron. 2018, 5, 167–178. [Google Scholar]
- Chimsah, F.A.; Cai, L.; Wu, J.; Zhang, R. Outcomes of long-term conservation tillage research in Northern China. Sustainability 2020, 12, 1062. [Google Scholar] [CrossRef] [Green Version]
- Limousin, G.; Tessier, D. Effects of no-tillage on chemical gradients and topsoil acidification. Soil Tillage Res. 2007, 92, 167–174. [Google Scholar] [CrossRef]
- Singh, M.; Bhullar, M.S.; Chauhan, B.S. The critical period for weed control in dry-seeded rice. Crop Prot. 2014, 66, 80–85. [Google Scholar] [CrossRef]
- Sinha, A.K.; Ghosh, A.; Dhar, T.; Bhattacharya, P.M.; Mitra, B.; Rakesh, S.; Paneru, P.; Shrestha, S.R.; Manandhar, S.; Beura, K.; et al. Trends in key soil parameters under conservation agriculture-based sustainable intensi fi cation farming practices in the Eastern Ganga Alluvial Plains. Soil Res. 2019, 57, 883–893. [Google Scholar] [CrossRef]
- Rahman, M.H.; Okubo, A.; Sugiyama, S.; Mayland, H.F. Physical, chemical and microbiological properties of an Andisol as related to land use and tillage practice. Soil Tillage Res. 2008, 101, 10–19. [Google Scholar] [CrossRef]
- Ghimire, R.; Machado, S.; Bista, P. Soil pH, soil organic matter, and crop yields in winter wheat–summer fallow systems. Agron. J. 2017, 109, 706–717. [Google Scholar] [CrossRef] [Green Version]
- Ligowe, I.S.; Nalivata, P.C.; Njoloma, J.; Makumba, W.; Thierfelder, C. Medium-term effects of conservation agriculture on soil quality. Afr. J. Agric. Res. 2017, 12, 2412–2420. [Google Scholar]
- Cookson, W.R.; Murphy, D.V.; Roper, M.M. Characterizing the relationships between soil organic matter components and microbial function and composition along a tillage disturbance gradient. Soil Biol. Biochem. 2008, 40, 763–777. [Google Scholar] [CrossRef]
- Botha, P.B. The Effect of Long-Term Tillage Practices on Selected Soil Properties in the Swartland Wheat Production Area of the Western Cape; Stellenbosch University: Stellenbosch, South Africa, 2013; p. 192. [Google Scholar]
- Krauss, M.; Berner, A.; Perrochet, F.; Frei, R.; Niggli, U.; Mäder, P. Enhanced soil quality with reduced tillage and solid manures in organic farming—A synthesis of 15 years. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Mishra, J.S.; Mondal, S.; Meena, R.S.; Sundaram, P.K.; Bhatt, B.P.; Pan, R.S.; Lal, R.; Saurabh, K.; Chandra, N.; et al. Designing an ecofriendly and carbon-cum-energy efficient production system for the diverse agroecosystem of South Asia. Energy 2021, 214. [Google Scholar] [CrossRef]
- Issaka, F.; Zhang, Z.; Zhao, Z.Q.; Asenso, E.; Li, J.H.; Li, Y.T.; Wang, J.J. Sustainable conservation tillage improves soil nutrients and reduces nitrogen and phosphorous losses in maize farmland in southern China. Sustainability 2019, 11, 2397. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Liu, W.; Zheng, J.; Luo, Y.; Li, R. Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. PLoS ONE 2018, 13, e0199523. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Pu, C.; Liu, S.; Chen, Z.; Chen, F.; Xiao, X.; Lal, R.; Zhang, H. Soil & Tillage Research Effects of tillage systems on soil organic carbon and total nitrogen in a double paddy cropping system in Southern China. Soil Tillage Res. 2015, 153, 161–168. [Google Scholar]
- Timsina, J. Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics. Adv. Agron. 2005, 85, 269–407. [Google Scholar]
- Datta, A.; Jat, H.S.; Yadav, A.K.; Choudhary, M.; Sharma, P.C.; Rai, M. Carbon mineralization in soil as influenced by crop residue type and placement in an Alfisols of Northwest India. Carbon Manag. 2019, 10, 37–50. [Google Scholar] [CrossRef]
- Deubel, A.; Hofmann, B.; Orzessek, D. Long-term effects of tillage on stratification and plant availability of phosphate and potassium in a loses chernozem. Soil Tillage Res. 2011, 117, 85–92. [Google Scholar] [CrossRef]
- Chatterjee, R.; Gajjela, S.; Thirumdasu, R.K. Recycling of organic wastes for sustainable soil health and crop growth. Int. J. Waste Res. 2017, 7, 296–302. [Google Scholar] [CrossRef]
- Baulch, H.M.; Elliott, J.A.; Cordeiro, M.R.C.; Flaten, D.N.; Lobb, D.A.; Wilson, H.F. Soil and water management: Opportunities to mitigate nutrient losses to surface waters in the Northern Great Plains. Environ. Rev. 2019, 27, 447. [Google Scholar] [CrossRef]
- Sarwar, G.; Hussain, N.; Muhammad, S.; Safdar, M.E. Improvement of soil physical and chemical properties with compost application in Rice-wheat cropping system rice-wheat cropping system. Pak. J. Bot. 2008, 40, 275–282. [Google Scholar]
- Khorami, S.S.; Kazemeini, S.A.; Afzalinia, S. Changes in soil properties and productivity under different tillage practices and wheat genotypes: A short-term study in Iran. Sustainability 2018, 10, 3273. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.K.; Ladha, J.K. Placement effects on rice residue decomposition and nutrient dynamics on two soil types during wheat cropping in rice—Wheat system in northwestern India. Nutr. Cycl. Agroecosyst. 2010, 471–480. [Google Scholar] [CrossRef]
- Obour, A.; Holman, J.D. Long-term tillage and nitrogen fertilization effects on soil surface chemistry. Kans. Agric. Exp. Station Res. Rep. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Yadav, D.B.; Ravisankar, N.; Yadav, A.; Singh, H. Crop residue management in rice–wheat cropping system for resource conservation and environmental protection in north-western India. Environ. Dev. Sustain. 2020, 22, 3871–3896. [Google Scholar] [CrossRef]
- De Santiago, A.; Quintero, J.M.; Delgado, A. Long-term effects of tillage on the availability of iron, copper, manganese, and zinc in a Spanish Vertisol. Soil Tillage Res. 2008, 98, 200–207. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S.; Kumari, R.; Vimal, B.K.; Parveen, H.; Kumar, S.; Priyanka. Impact of conservation agriculture on vertical distribution of DTPA-zinc and organic carbon of soil. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 585–593. [Google Scholar] [CrossRef]
- Mahashabde, J.P.; Patel, S. DTPA—Extractable micronutrients and fertility status of soil in shirpur tahasil region. Int. J. ChemTech Res. 2012, 4, 1681–1685. [Google Scholar]
- Nnabude, P.C. Organic carbon, total nitrogen and available phosphorous concentration in aggregate fractions of four soils under two land use systems. Int. J. Res. Appl. 2014, 2, 273–288. [Google Scholar]
- Reardon, C.L.; Wuest, S.B.; Melle, C.J.; Klein, A.M.; Williams, J.D.; Long, D.S. Soil microbial and chemical properties of a minimum and conventionally tilled wheat–fallow system. Soil Sci. Soc. Am. J. 2019, 83, 1100–1110. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.P.; Srivastava, P.C. Different forms of sulphur in soils of Udham Singh Nagar district, Uttarakhand and their relationship with soil properties different forms of sulphur in soils of Udham Singh Nagar district, Uttarakhand and their relationship with soil properties. Agropedology 2009, 19, 68–74. [Google Scholar]
- Yadav, G.S.; Lal, R.; Meena, R.S.; Babu, S.; Das, A.; Bhowmik, S.N.; Datta, M.; Layak, J.; Saha, P. Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecol. Indic. 2019, 105, 303–315. [Google Scholar] [CrossRef]
- Nandan, R.; Poonia, S.P.; Singh, S.S.; Nath, C.P.; Kumar, V.; Malik, R.K.; McDonald, A.; Hazra, K.K. Potential of conservation agriculture modules for energy conservation and sustainability of rice-based production systems of Indo-Gangetic Plain region. Environ. Sci. Pollut. Res. 2020, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M. Introduction to Modern Climate Change; Andrew, E.D., Ed.; Cambridge University Press: Cambridge, UK, 2011; p. 252. ISBN 10:0521173159. [Google Scholar]
- Ahmed, M.; Stockle, C.O. Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability; Springer: New York, NY, USA, 2016. [Google Scholar]
- Ahmad, S.; Abbas, G.; Ahmed, M.; Fatima, Z.; Anjum, M.A.; Rasul, G.; Khan, M.A.; Hoogenboom, G. Climate warming and management impact on the change of phenology of the rice-wheat cropping system in Punjab, Pakistan. Field Crop Res. 2019, 230, 46–61. [Google Scholar] [CrossRef]
- Ahmad, A.; Ashfaq, M.; Rasul, G.; Wajid, S.A.; Khaliq, T.; Rasul, F.; Saeed, U.; Habib ur Rahman, M.; Hussain, J.; Baig, I.A.; et al. Impact of climate change on the rice–wheat cropping system of Pakistan. In Handbook of Climate Change and Agroecosystems; Rosenzweig, C., Hillel, D., Eds.; World Scientific: Singapore, 2015; Volume 3, pp. 219–258. [Google Scholar]
- Ishfaq, M.; Farooq, M.; Zulfiqar, U.; Hussain, S.; Akbar, N.; Nawaz, A.; Anjum, S.A. Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agric. Water Manag. 2020, 241, 106363. [Google Scholar] [CrossRef]
- Fatima, Z.; Ahmed, M.; Hussain, M.; Abbas, G.; Ul-Allah, S.; Ahmad, S.; Ahmed, N.; Ali, M.A.; Sarwar, G.; Haque, E.U.; et al. The fingerprints of climate warming on cereal crops phenology and adaptation options. Sci. Rep. 2020, 10, 18013. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Hassan, F.U.; Ahmad, S. Climate variability impact on rice production: Adaptation and mitigation strategies. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability; Ahmed, M., Stockle, C.O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 91–111. [Google Scholar]
- Ahmed, M. Greenhouse gas emissions and climate variability: An overview. In Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability; Ahmed, M., Stockle, C.O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–26. [Google Scholar]
- Ahmed, M. Systems Modeling; Springer Nature Singapore Pte Ltd.: Singapore, 2020; Available online: https://link.springer.com/book/10.1007%2F978-981-15-4728-7#toc (accessed on 5 November 2020).
Soil Properties | Soil Depth | ||
---|---|---|---|
0–15 cm | 15–30 cm | 30–45 cm | |
Texture | Clay loam | Clay loam | Clay loam |
pH | 8.1–8.5 | 8.3–8.7 | 8.3–8.7 |
EC (mS-cm) | 1.4–2.2 | 1.3–1.8 | 1.3–1.8 |
Organic matter (%) | 0.52–0.69 | 0.48–0.56 | 0.40–0.51 |
Bulk density (g cm−3) | 1.18 | 1.18 | 1.17 |
Saturation (%) | 58–62 | 56–60 | 50–55 |
Available P (mg kg−1) | 4–6.5 | 3.5–5.8 | 3.5–5.8 |
Available K (mg kg−1) | 135–160 | 128–148 | 128–148 |
Scenarios | SC1 | SC2 | SC3 | SC4 | SC5 |
---|---|---|---|---|---|
Crop rotation | Rice-Wheat | Rice-Wheat | Rice-Wheat | Rice—Wheat | Rice—Wheat |
Tillage | Rice-puddled Wheat-CT | Rice-puddled Wheat-CT | Rice-DSR Wheat-ZT | Rice-puddled Wheat-ZT | Rice-ZT Wheat-ZT |
Soil disturbance (%) | Rice:100% Wheat:100% | Rice:100% Wheat:100% | Rice:90% Wheat:2% | Rice:90% Wheat:2% | Rice:2% Wheat:2% |
Sowing Method | Rice-transplanting Wheat-broadcast | Rice-transplanting Wheat-broadcast | Rice-broadcast Wheat-ZT (drill) | Rice-transplanting Wheat-ZT (drill) | Rice-ZT (drill) Wheat-ZT (drill) |
Residue management | Removed + burn | Incorporated | Rice-retained Wheat-removed | Rice-retained Wheat-removed | Rice-retained Wheat-retained |
Left residue % age | Rice:2% Wheat:2% | Rice:65% Wheat:65% | Rice:10% Wheat:65% | Rice:10% Wheat:65% | Rice:65% Wheat:65% |
Scenarios | Gravimetric Water Content (GWC, %) | Electrical Conductivity (dS m−1) | pH | Organic Matter (g kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil Depths (cm) | ||||||||||||
0–15 cm | 15–30 cm | 30–45 cm | 0–15 cm | 15–30 cm | 30–45 cm | 0–15 cm | 15–30 cm | 30–45 cm | 0–15 cm | 15–30 cm | 30–45 cm | |
SC1 | 18.08 h | 21.00 fgh | 23.69 ef | 1.4 d | 1.8 c | 1.3 de | 8.4 abc | 8.6 ab | 8.8 a | 6.5 bc | 5.5 def | 4.4 g |
SC2 | 19.60 gh | 24.77 de | 31.61 c | 1.4 d | 2.1 b | 2.9 a | 8.1 abcd | 8.4 abc | 8.6ab | 6.5 bc | 5 efg | 4.71 fg |
SC3 | 22.78 efg | 28.02 d | 36.75 b | 1.00 g | 1.4 d | 1.4 d | 7.6 cd | 7.9 abcd | 8.3 abcd | 6.3 bcd | 5.6 de | 5.21 efg |
SC4 | 21.07 fgh | 27.34 d | 36.42 b | 1.3 de | 1.30 de | 1.1 fg | 7.81 bcd | 8 abcd | 8.2 abcd | 6.2 bcd | 5.5 def | 5 efg |
SC5 | 25.34 de | 35.67 b | 41.85 a | 1.3 de | 1.2 ef | 1.1 fg | 7.4 d | 7.7 bcd | 8.21 abcd | 7.6 a | 6.6 b | 5.75 cde |
Scenarios | Total Nitrogen (g kg−1) | Available Phosphorus (mg kg−1) | Available Potassium (mg kg−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
Soil Depths (cm) | |||||||||
0–15 cm | 15–30 cm | 30–45 cm | 0–15 cm | 15–30 cm | 30–45 cm | 0–15 cm | 15–30 cm | 30–45 cm | |
SC1 | 0.33 b | 0.28 ef | 0.22 h | 4.5 efg | 4.1 fgh | 3.9 gh | 127 efgh | 110 gh | 105 h |
SC2 | 0.33 b | 0.25 fgh | 0.235 gh | 4.7 ef | 4.2 fgh | 3.8 h | 141 de | 130 efg | 111.13 gh |
SC3 | 0.32 bc | 0.28 def | 0.26 efg | 6 bc | 5.5 cd | 4.9 de | 154 cd | 128 efg | 116.14 fgh |
SC4 | 0.31 bcd | 0.28 def | 0.25 fgh | 6.3 b | 5.7 bc | 4.1 fgh | 171 bc | 154 cd | 135 def |
SC5 | 0.38 a | 0.33 b | 0.29 cde | 7.4 a | 6.2 b | 4.51 efg | 208 a | 185 b | 144.00 de |
pH | EC | Av P | Av K | SOM | TN | GWC | Zn | Mn | Fe | Cu | |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||||
EC | 0.339 | 1 | |||||||||
Av P | −0.546 ** | −0.424 ** | 1 | ||||||||
Av K | −0.592 ** | −0.385 ** | 0.836 ** | 1 | |||||||
SOM | −0.515 ** | −0.352 * | 0.716 ** | 0.836 ** | 1 | ||||||
TN | −0.462 ** | −0.327 * | 0.708 ** | 0.743 ** | 0.879 ** | 1 | |||||
GWC | −0.033 | −0.039 | −0.074 | 0.053 | −0.196 | −0.142 | 1 | ||||
Zn | −0.501 ** | −0.452 ** | 0.879 ** | 0.810 ** | 0.661 ** | 0.696 ** | −0.168 | 1 | |||
Mn | −0.446 ** | −0.335 * | 0.784 ** | 0.838 ** | 0.727 ** | 0.750 ** | −0.022 | 0.809 ** | 1 | ||
Fe | −0.206 | −0.119 | 0.405 ** | 0.211 | 0.168 | 0.151 | −0.441 ** | 0.415 ** | −0.042 | 1 | |
Cu | −0.326 | −0.052 | 0.513 ** | 0.533 ** | 0.742 ** | 0.667 ** | −0.512 ** | 0.442 ** | 0.538 ** | 0.162 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahid, A.; Ali, S.; Ahmed, M.; Iqbal, N. Improvement of Soil Health through Residue Management and Conservation Tillage in Rice-Wheat Cropping System of Punjab, Pakistan. Agronomy 2020, 10, 1844. https://doi.org/10.3390/agronomy10121844
Zahid A, Ali S, Ahmed M, Iqbal N. Improvement of Soil Health through Residue Management and Conservation Tillage in Rice-Wheat Cropping System of Punjab, Pakistan. Agronomy. 2020; 10(12):1844. https://doi.org/10.3390/agronomy10121844
Chicago/Turabian StyleZahid, Adnan, Sajid Ali, Mukhtar Ahmed, and Nadeem Iqbal. 2020. "Improvement of Soil Health through Residue Management and Conservation Tillage in Rice-Wheat Cropping System of Punjab, Pakistan" Agronomy 10, no. 12: 1844. https://doi.org/10.3390/agronomy10121844
APA StyleZahid, A., Ali, S., Ahmed, M., & Iqbal, N. (2020). Improvement of Soil Health through Residue Management and Conservation Tillage in Rice-Wheat Cropping System of Punjab, Pakistan. Agronomy, 10(12), 1844. https://doi.org/10.3390/agronomy10121844