Effects of Landscape, Soils, and Weather on Yields, Nitrogen Use, and Profitability with Sensor-Based Variable Rate Nitrogen Management in Cotton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lint Yield and Fertilizer N Data
2.2. Landscape, Soil, and Weather Data
2.3. Fertilizer N Management Net Returns
2.4. Statistical Analysis
3. Results and Discussion
3.1. VRN vs. FP Mean Differences
3.1.1. Lint Yields
3.1.2. N Fertilizer Rates
3.1.3. N Efficiency
3.1.4. Net Returns
3.2. VRN and Risk
3.2.1. Lint Yields
3.2.2. N Fertilizer Rates
3.2.3. N Efficiency
3.2.4. Net Returns
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- U.S. Department of Agriculture (USDA). Natural Resources Conservation Service (NRCS). Available online: http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/programs/initiatives/?cid=stelprdb1048200 (accessed on 2 October 2020).
- USDA, National Agricultural Statistics Service (NASS). Quick Stats. Cotton, Planted Area (ha). Available online: http://quickstats.nass.usda.gov (accessed on 2 October 2020).
- Main, C.L.; Barber, L.T.; Boman, R.K.; Chapman, K.; Dodds, D.M.; Duncan, S.; Edmisten, K.L.; Horn, P.; Jones, M.A.; Morgan, G.D.; et al. Effects of nitrogen and planting seed size on cotton growth, development, and yield. Agron. J. 2013, 105, 1853–1859. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, B.C.T.; Rochester, I.J.; Nadelko, A. High yielding cotton produced without excessive nitrous oxide emissions. Agron. J. 2015, 107, 1673–1681. [Google Scholar] [CrossRef]
- Hake, K.; Cassman, K.; Ebelhar, W. Cotton Physiology Today. 1991. Available online: https://www.cotton.org/tech/physiology/cpt/upload/CPT-Jan91-v2-3.pdf (accessed on 2 October 2020).
- Lund, E.D.; Wolcott, M.C.; Hanson, G.P. Applying nitrogen site-specifically using soil electrical conductivity maps and precision agriculture technology. In Proceedings of the 2nd International Nitrogen Conference on Science and Policy, Potomac, MD, USA, 14–18 October 2001; pp. 767–776. [Google Scholar]
- U.S. Environmental Protection Agency. National Water Quality Inventory: Report to Congress, 2004 Reporting Cycle (EPA 841-R-08-001); Environmental Protection Agency, Office of Water: Washington, DC, USA, 2014.
- USDA, NRCS. Environmental Quality Incentives Program. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/financial/eqip/ (accessed on 2 October 2020).
- Zhou, X.; English, B.C.; Larson, J.A.; Lambert, D.M.; Roberts, R.K.; Boyer, C.; Velandia, M.; Falconer, L.L.; Martin, S.W. Precision farming adoption trends in the southern U.S. J. Cotton Sci. 2017, 21, 143–155. [Google Scholar]
- Isik, M.; Khanna, M. Stochastic technology, risk preferences, and adoption of site-specific technologies. Amer. J. Agric. Econ. 2003, 85, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Rütting, T.; Aronsson, H.; Delin, S. Efficient use of nitrogen in agriculture. Nutr. Cycl. Agroecosyst. 2018, 110, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Miao, Y.; Dong, R.; Chen, Z.; Kusnierek, K.; Mi, G.; Mulla, D.J. Economic Optimal Nitrogen Rate Variability of Maize in Response to Soil and Weather Conditions: Implications for Site-Specific Nitrogen Management. Agronomy 2020, 10, 1237. [Google Scholar] [CrossRef]
- Walker, E.R.; Mengistu, A.; Bellaloui, N.; Koger, C.H.; Roberts, R.K.; Larson, J.A. Plant population and row-spacing effects on maturity group III soybean. Agron. J. 2010, 102, 821–826. [Google Scholar] [CrossRef] [Green Version]
- Quine, T.A.; Zhang, Y. An Investigation of Spatial Variation in Soil Erosion, soil Properties, and Crop Production in Agricultural fields in Devon, United Kingdom. J. Soil Water Cons. 2002, 57, 55–65. [Google Scholar]
- Breitenbeck, G.A. Use of soil nitrate tests for nitrogen recommendations: Research perspective. In Nitrogen Nutrition in Cotton: Practical Issues; Miley, W.N., Oosterhuis, D.M., Eds.; American Society of Agronomy: Madison, WI, USA, 1990; pp. 77–87. [Google Scholar] [CrossRef]
- Duncan, L.; Raper, T. Cotton Nitrogen Management in Tennessee. University of Tennessee Extension, Publication W 783. 2019. Available online: http://www.utcrops.com/cotton/PDF%20files/W783.pdf (accessed on 2 October 2020).
- Raper, T.B.; Varco, J.J.; Hubbard, K.J. Canopy-based normalized difference vegetation index sensors for monitoring cotton nitrogen status. Agron. J. 2013, 105, 1345–1354. [Google Scholar] [CrossRef] [Green Version]
- Biermacher, J.T.; Brorsen, B.W.; Epplin, F.M.; Solie, J.B.; Raun, W.R. Economic feasibility of site-specific optical sensing for managing nitrogen fertilizer for growing wheat. Precis. Agric. 2009, 10, 213–230. [Google Scholar] [CrossRef]
- Biermacher, J.T.; Brorsen, B.W.; Epplin, F.M.; Solie, J.B.; Raun, W.R. The Economic potential of precision nitrogen application with wheat based on plant sensing. Agric. Econ. 2009, 40, 397–407. [Google Scholar] [CrossRef]
- Boyer, C.N.; Brorsen, B.W.; Solie, J.B.; Raun, W.R. Profitability of variable rate nitrogen application in wheat production. Precis. Agric. 2011, 12, 473–487. [Google Scholar] [CrossRef]
- Butchee, K.S.; May, J.; Arnall, B. Sensor based nitrogen management reduced nitrogen and maintained yield. Crop Manag. 2011, 10, 1–5. [Google Scholar] [CrossRef]
- Ortiz-Monasterio, J.I.; Raun, W.R. Reduced nitrogen and improved farm income for irrigated spring wheat in the Yaqui Valley, Mexico, using sensor based nitrogen management. J. Agric. Sci. 2007, 145, 1–8. [Google Scholar] [CrossRef]
- Stamatiadis, S.; Schepers, J.S.; Evangelou, E.; Glampedakis, A.; Glampedakis, M.; Dercas, N.; Tsadilas, C.; Tserlikakis, N.; Tsadila, E. Variable-rate application of high spatial resolution can improve cotton N-use efficiency and profitability. Precis. Agric. 2020, 21, 695–712. [Google Scholar] [CrossRef]
- Stefanini, M.; Larson, J.A.; Lambert, D.M.; Yin, X.; Boyer, C.; Scharf, P.; Tubaña, B.S.; Varco, J.J.; Dunn, D.; Savoy, H.J.; et al. Effects of optical sensing based variable rate nitrogen management on yields, nitrogen use, and profitability for cotton. Precis. Agric. 2019, 20, 591–610. [Google Scholar] [CrossRef]
- Scharf, P.C.; Shannon, D.K.; Palm, H.L.; Sudduth, K.A.; Drummond, S.T.; Kitchen, N.R.; Mueller, L.J.; Hubbard, V.C.; Oliveira, L.F. Sensor-based nitrogen applications out-performed producer-chosen rates for corn in on-farm demonstrations. Agron. J. 2011, 103, 1683–1691. [Google Scholar] [CrossRef]
- Lowenberg-DeBoer, J. Risk management potential of precision farming technologies. J. Agric. Appl. Econ. 1999, 31, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Karatay, Y.N.; Meyer-Aurich, A. Profitability and downside risk implications of site-specific nitrogen management with respect to wheat grain quality. Precis. Agric. 2020, 21, 449–472. [Google Scholar] [CrossRef]
- Lowenberg-DeBoer, J.; Erickson, B. Setting the record straight on precision agriculture adoption. Agron. J. 2019, 111, 1552–1569. [Google Scholar] [CrossRef] [Green Version]
- U.S. Geology Survey. National Elevation Dataset: Metadata. Available online: http://ned.usgs.gov/ (accessed on 2 October 2020).
- USDA NRCS. Soil Survey Geographic (SSURGO) Database. Available online: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_053627 (accessed on 2 October 2020).
- USDA NRCS. Soil Texture Calculator. Available online: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167 (accessed on 2 October 2020).
- USDA Agricultural Research Service. Revised Universal Soil Loss Equation, Version 2. Available online: http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm (accessed on 2 October 2020).
- PRISM Climate Group. Northwest Alliance for Computational Science and Engineering. Oregon State University. Available online: http://www.prism.oregonstate.edu/recent (accessed on 2 October 2020).
- Federal Reserve Bank of St. Louis. Gross Domestic Product: Implicit Price Deflator. Available online: http://research.stlouisfed.org/fred2/series/GDPDEF/ (accessed on 24 November 2020).
- USDA NASS. Quick Stats. Cotton, Price Received, Measured in $ lb−1. Available online: http://quickstats.nass.usda.gov/ (accessed on 2 October 2020).
- USDA NASS. Mississippi. 2014 Statewide EQIP Practice, Ranking and Rate Information. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/ms/programs/financial/eqip/?cid=stelprdb1193441 (accessed on 2 October 2020).
- Coreil, C. Louisiana EQIP Cost Share Payments NRCS Precision Nutrient Management Practice Code Number 590; USDA NRCS: Alexandria, LA, USA, 2014.
- Turman, P. Tennessee EQIP Cost Share Payments NRCS Precision Nutrient Management Practice Code Number 590; USDA NRCS: Murfreesboro, TN, USA, 2014.
- Reisner, J. Tennessee EQIP Cost Share Payments NRCS Precision Nutrient Management Practice Code Number 590; USDA NRCS: Columbia, MO, USA, 2014.
- USDA NRCS. Quick Stats. Nitrogen, Price Paid, Measured in $ ton−1. Available online: http://quickstats.nass.usda.gov (accessed on 2 October 2020).
- Mooney, D.F.; Roberts, R.K.; English, B.C.; Lambert, D.M.; Larson, J.A.; Velandia, M.; Larkin, S.L.; Marra, M.C.; Matin, S.W.; Mishra, A.; et al. Precision Farming by Cotton Producers in Twelve Southern States: Results From the 2009 Southern Cotton Precision Farming Survey; Department of Agricultural and Resource Economics, University of Tennessee: Knoxville, TN, USA, 2010. [Google Scholar] [CrossRef]
- Schabenberger, O.; Pierce, F.J. Contemporary Statistical Models for the Plant and Soil Sciences; CRC Press: Boca Raton, FL, USA, 2001; pp. 474–479. [Google Scholar]
- Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D.; Schabenberger, O. SAS® for Mixed Models, 2nd ed.; SAS Institute Inc: Cary, NC, USA, 2006. [Google Scholar]
- Chatterjee, S.; Price, P. Regression Analysis by Example, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1991. [Google Scholar]
- Tiessen, H.; Cuevas, E.; Chacon, P. The role of soil organic matter in sustaining soil fertility. Nature 1994, 371, 783–785. [Google Scholar] [CrossRef]
- Madden, R.A.; Williams, J. The correlation between temperature and precipitation in the United States and Europe. Mon. Wea. Rev. 1978, 106, 142–147. [Google Scholar] [CrossRef] [Green Version]
State | County/Parish Field Locations | Years (Number of Field Sub-Plots) A | ||
---|---|---|---|---|
Louisiana | Tensas Parish Res Station | 2012 (89) | ||
Louisiana | Tensas Parish Middle | 2012 (90) | 2013 (90) | |
Louisiana | Tensas Parish Middle Low | 2014 (90) | ||
Louisiana | Tensas North | 2012 (90) | 2013 (100) | |
Louisiana | Tensas Parish South | 2012 (90) | 2013 (90) | 2014 (80) |
Missouri | Dunklin | 2013 (12) | ||
Missouri | New Madrid East | 2012 (24) | ||
Missouri | New Madrid North | 2012 (33) | ||
Missouri | New Madrid South | 2012 (12) | ||
Missouri | Pemiscot North | 2013 (6) | ||
Missouri | Pemiscot South | 2013 (6) | ||
Mississippi | Adams | 2012 (107) | ||
Mississippi | Leflore East | 2014 (35) | ||
Mississippi | Leflore North | 2013 (60) | ||
Mississippi | Leflore South | 2013 (48) | ||
Tennessee | Carroll | 2014 (72) | ||
Tennessee | Gibson | 2011 (72) | 2012 (88) | |
Tennessee | Lauderdale | 2012 (90) | 2013 (90) | 2014 (90) |
Tennessee | Madison North | 2012 (72) | 2013 (72) | |
Tennessee | Madison South | 2014 (72) | ||
Tennessee | Tipton | 2012 (72) |
Variable Name/Summary Statistics | Fertilizer N Treatment | ||
---|---|---|---|
FP a | VRN 1 b | VRN 2 c | |
Lint yield (kg ha−1) | |||
Mean | 1332 | 1360 | 1349 |
Maximum | 2397 | 2585 | 2565 |
Minimum | 226 | 133 | 204 |
Observations | 649 | 658 | 635 |
Fertilizer N rate (kg ha−1) | |||
Mean | 107 | 109 | 114 |
Maximum | 244 | 226 | 253 |
Minimum | 34 | 54 | 34 |
Observations | 660 | 659 | 635 |
Nitrogen efficiency (lint yield/fertilizer N rate, index) | |||
Mean | 18 | 14 | 14 |
Maximum | 120 | 54 | 40 |
Minimum | 1 | 1 | 1 |
Observations | 649 | 658 | 635 |
Net return (USD ha−1) | |||
Mean | 2226 | 2315 | 2264 |
Maximum | 4081 | 4233 | 4167 |
Minimum | 481 | 239 | 333 |
Observations | 649 | 658 | 635 |
Variable Name | Mean | Minimum | Maximum | Observations |
---|---|---|---|---|
Mean difference regression dependent variables | ||||
∆YLD a | 37.05 | −1941.20 | 2077.53 | 1263 |
∆FN b | 4.95 | −67.59 | 125.36 | 1263 |
∆FNEFF c | −3.21 | −96.52 | 20.18 | 1263 |
∆FNR d | 102.37 | −3630.32 | 3668.06 | 1263 |
Logit regression dependent variables | ||||
YLDprob e | 0.45 | 0 | 1 | 1263 |
FNprob f | 0.55 | 0 | 1 | 1263 |
FNEFFprob g | 0.47 | 0 | 1 | 1263 |
FNRprob h | 0.37 | 0 | 1 | 1263 |
Fixed Effects | ||||
Soil texture index i | 2.14 | 1 | 4 | 1221 |
Elevation j | 64.20 | 21.64 | 136.36 | 1262 |
WHC k | 0.21 | 0.08 | 0.23 | 1168 |
SOM l | 1.85 | 0.52 | 2.25 | 1166 |
SEI m | 7.03 | 0.21 | 39.13 | 1158 |
Depth n | 21.32 | 8.00 | 64.00 | 1152 |
GDD o | 1574.3 | 1025.93 | 1943.27 | 1263 |
p | 0.33 | 0 | 1 | 1263 |
Fixed Effect a | Lint Yield | N Fertilizer Rate | N Efficiency | Net Return |
---|---|---|---|---|
(kg ha−1) | (kg ha−1) | (Index) | (USD ha1) | |
Intercept b,c | 32.54 | −7.77 | −9.87 | 856.58 |
(20.83) | (1.91) *** | (8.78) | (372.90) ** | |
Clay c | −4.63 | 6.33 | −12.41 | −195.82 |
(−6.61) | (0.61) *** | (2.77) *** | (118.31) * | |
Silt c | −24.45 | −1.68 | −2.67 | −376.13 |
(4.92) *** | (0.45) *** | (2.08) | (87.97) *** | |
Loam c | −14.00 | −2.41 | 6.19 | −190.16 |
(6.15) ** | (0.56) *** | (2.59) ** | (110.02) * | |
Elevation | −1.98 | −0.05 | 0.03 | −3.80 |
(0.53) *** | (0.05) | (0.02) | (0.95) *** | |
WHC d | 6.74 | 1.92 | 6.54 | 929.64 |
(−6.41) | (0.59) *** | (26.80) | (1148.78) | |
SOM e | 1.71 | −0.03 | 8.39 | 297.60 |
(0.48) *** | −4.44 | (2.01) *** | (86.15) *** | |
Depth | 3.76 | −0.27 | 0.08 | 6.58 |
(1.26) *** | (0.12) ** | (0.05) | (2.27) *** | |
SEI | 5.89 | 0.90 | −0.43 | 6.62 |
(2.09) *** | (0.19) *** | (0.09) *** | (3.75) * | |
GDD | −0.34 | 0.04 | −0.01 | −0.71 |
(0.05) *** | (0.00) *** | (0.00) *** | (0.09) *** | |
24.82 | 5.81 | 0.02 | 26.02 | |
(−20.59) | (1.91) *** | (0.86) | (36.90) | |
Observations | 1140 | 1140 | 1140 | 1140 |
Fixed Effect a | Lint Yield | N Fertilizer Rate | N Efficiency | Net Return |
---|---|---|---|---|
Intercept b,c | −0.9069 | −1.1892 | −2.5115 | −1.3077 |
(1.2204) | (1.4787) | (1.3020) * | (1.3024) | |
Clay c | −0.2694 | 1.9090 | 4.1468 | 0.1044 |
(0.4686) | (1.1793) | (1.0628) *** | (0.4491) | |
Silt c | 1.7455 | −3.8551 | −0.1331 | 0.9767 |
(0.3584) *** | (0.6889) *** | (0.2960) | (0.3522) *** | |
Loam c | 1.2943 | −3.7156 | −0.9842 | 0.8824 |
(0.3934) *** | (0.6505) *** | (0.3852) ** | (0.4067) ** | |
Elevation | 0.0044 | −0.0177 | −0.0025 | 0.0050 |
(0.0032) | (0.0041) *** | (0.00342) | (0.0033) | |
WHC d | −6.9961 | 17.7126 | 3.2916 | −3.2100 |
(3.9285) * | (5.3030) *** | (4.4964) | (4.0088) | |
SOM e | −0.6101 | 0.4142 | −0.3834 | −0.5137 |
(0.2880) ** | (0.3775) | (0.3052) | (0.2940) * | |
Depth | −0.01872 | 0.0040 | −0.0174 | −0.0121 |
(0.0075) ** | (0.0090) | (0.0080) ** | (0.0077) | |
SEI | −0.0178 | 0.1221 | 0.0304 | . 0.0003 |
(0.01217) | (0.0166) *** | (0.0129) ** | (0.0125) | |
GDD | 0.0012 | 0.0002 | 0.0018 | 0.0010 |
(0.0003) *** | (0.0003) | (0.0003) *** | (0.0003) *** | |
0.1126 | 0.4640 | 0.0321 | 0.1378 | |
(0.1238) | (0.1398) *** | (0.1286) | (0.1262) | |
Observations | 1140 | 1140 | 1140 | 1140 |
Fixed Effect b | Statistic | Lint Yield | N Fertilizer Rate | N Efficiency | Net Return |
---|---|---|---|---|---|
Intercept c,d | Odds ratio | NS | NS | 0.0811 * | NS |
Percent change | NS | NS | −9.1885 * | NS | |
Clay c | Odds ratio | NS | NS | 63.2313 *** | NS |
Percent change | NS | NS | 622.3134 *** | NS | |
Silt d | Odds ratio | 5.7287 *** | 0.0212 *** | NS | 2.6557 *** |
Percent change | 47.2877 *** | −9.7883 *** | NS | 16.5568 *** | |
Loam d | Odds ratio | 3.6484 *** | 0.0243 *** | 0.3737 ** | 2.4167 ** |
Percent change | 26.4844 *** | −9.7566 *** | −6.2626 ** | 14.1669 ** | |
Elevation | Odds ratio | NS | 0.9825 *** | NS | NS |
Percent change | NS | −1.75443 *** | NS | NS | |
WHC e | Odds ratio | 0.0009 * | 4.9259 × 107 *** | NS | NS |
Percent change | −0.999 1* | 4.9259 × 108 *** | NS | NS | |
SOM f | Odds ratio | 0.5433 ** | NS | NS | NS |
Percent change | −0.4567 ** | NS | NS | NS | |
Depth | Odds ratio | 0.9815 ** | NS | 0.9828 ** | NS |
Percent change | −1.8546 ** | NS | −1.7200 ** | NS | |
SEI | Odds ratio | NS | 1.1299 | 1.0309 ** | NS |
Percent change | NS | 12.9867 *** | 3.0898 ** | NS | |
GDD | Odds ratio | 1.0012 | NS | 1.0018 *** | 1.0010 *** |
Percent change | 0.1248 *** | NS | 0.1845 *** | 0.0965 *** | |
Odds ratio | NS | 1.5904*** | NS | NS | |
Percent change | NS | 59.0423 *** | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larson, J.A.; Stefanini, M.; Yin, X.; Boyer, C.N.; Lambert, D.M.; Zhou, X.V.; Tubaña, B.S.; Scharf, P.; Varco, J.J.; Dunn, D.J.; et al. Effects of Landscape, Soils, and Weather on Yields, Nitrogen Use, and Profitability with Sensor-Based Variable Rate Nitrogen Management in Cotton. Agronomy 2020, 10, 1858. https://doi.org/10.3390/agronomy10121858
Larson JA, Stefanini M, Yin X, Boyer CN, Lambert DM, Zhou XV, Tubaña BS, Scharf P, Varco JJ, Dunn DJ, et al. Effects of Landscape, Soils, and Weather on Yields, Nitrogen Use, and Profitability with Sensor-Based Variable Rate Nitrogen Management in Cotton. Agronomy. 2020; 10(12):1858. https://doi.org/10.3390/agronomy10121858
Chicago/Turabian StyleLarson, James A., Melissa Stefanini, Xinhua Yin, Christopher N. Boyer, Dayton M. Lambert, Xia Vivian Zhou, Brenda S. Tubaña, Peter Scharf, Jac J. Varco, David J. Dunn, and et al. 2020. "Effects of Landscape, Soils, and Weather on Yields, Nitrogen Use, and Profitability with Sensor-Based Variable Rate Nitrogen Management in Cotton" Agronomy 10, no. 12: 1858. https://doi.org/10.3390/agronomy10121858
APA StyleLarson, J. A., Stefanini, M., Yin, X., Boyer, C. N., Lambert, D. M., Zhou, X. V., Tubaña, B. S., Scharf, P., Varco, J. J., Dunn, D. J., Savoy, H. J., & Buschermohle, M. J. (2020). Effects of Landscape, Soils, and Weather on Yields, Nitrogen Use, and Profitability with Sensor-Based Variable Rate Nitrogen Management in Cotton. Agronomy, 10(12), 1858. https://doi.org/10.3390/agronomy10121858