Changes in Root Architecture and Aboveground Traits of Red Clover Cultivars Driven by Breeding to Improve Persistence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Plant Establishment and Growing Conditions
2.3. Phenotypic Characterization of Shoot System
2.4. Phenotypic Characterization of Root System
2.5. Experimental Design and Statistical Analyses
3. Results
3.1. Shoot System
3.2. Root System
3.3. Dry Matter Partitioning and Phenotypic Relationship among Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Riday, H. Progress Made in Improving Red Clover (Trifolium pratense L.) Through Breeding. Int. J. Plant Breed. 2010, 4, 22–29. [Google Scholar]
- Annicchiarico, P.; Barrett, B.; Brummer, E.C.; Julier, B.; Marshall, A.H. Achievements and Challenges in Improving Temperate Perennial Forage Legumes. CRC Crit. Rev. Plant Sci. 2015, 34, 327–380. [Google Scholar] [CrossRef]
- McKenna, P.; Cannon, N.; Conway, J.; Dooley, J. The use of red clover (Trifolium pratense) in soil fertility-building: A Review. Field Crop. Res. 2018, 221, 38–49. [Google Scholar] [CrossRef]
- Ortega, F.; Parra, L.; Quiroz, A. Breeding red clover for improved persistence in Chile: A review. Crop Pasture Sci. 2014, 65, 1138–1146. [Google Scholar] [CrossRef]
- Hoekstra, N.J.; De Deyn, G.B.; Xu, Y.; Prinsen, R.; Van Eekeren, N. Red clover varieties of Mattenklee type have higher production, protein yield and persistence than Ackerklee types in grass–clover mixtures. Grass Forage Sci. 2018, 73, 297–308. [Google Scholar] [CrossRef]
- Marshall, A.H.; Collins, R.P.; Vale, J.; Lowe, M. Improved persistence of red clover (Trifolium pratense L.) increases the protein supplied by red clover/grass swards grown over four harvest years. Eur. J. Agron. 2017, 89, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Ford, J.L.; Barrett, B.A. Improving Red Clover Persistence under Grazing; New Zealand Grassland Association: Palmerston North, New Zealand, 2011; pp. 119–124. [Google Scholar]
- Herrmann, D.; Boller, B.; Studer, B.; Widmer, F.; Kölliker, R. Improving Persistence in Red Clover: Insights from QTL Analysis and Comparative Phenotypic Evaluation. Crop Sci. 2008, 48, 269–277. [Google Scholar] [CrossRef]
- Conaghan, P.; Casler, M.D. A theoretical and practical analysis of the optimum breeding system for perennial ryegrass. Ir. J. Agric. Food Res. 2011, 50, 47–63. [Google Scholar]
- Bouton, J.H. Breeding lucerne for persistence. Crop Pasture Sci. 2012, 63, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Inostroza, L.; Acuña, H.; Méndez, J. Multi-physiological-trait selection indices to identify Lotus tenuis genotypes with high dry matter production under drought conditions. Crop Pasture Sci. 2015, 66, 90–99. [Google Scholar] [CrossRef]
- Vásquez, C.; Inostroza, L.; Acuña, H. Phenotypic variation of cold stress resistance-related traits of white clover populations naturalized in patagonian cold environments. Crop Sci. 2018, 58. [Google Scholar] [CrossRef]
- Inostroza, L.; Acuña, H.; Munoz, P.; Vásquez, C.; Ibáñez, J.; Tapia, G.; Pino, M.T.; Aguilera, H. Using aerial images and canopy spectral reflectance for high-throughput phenotyping of white clover. Crop Sci. 2016, 56, 2629–2637. [Google Scholar] [CrossRef]
- Inostroza, L.; Acuña, H.; Tapia, G. Relationships between phenotypic variation in osmotic adjustment, water-use efficiency, and drought tolerance of seven cultivars of Lotus corniculatus L. Chil. J. Agric. Res. 2015, 75. [Google Scholar] [CrossRef] [Green Version]
- Inostroza, L.; Acuña, H. Water use efficiency and associated physiological traits of nine naturalized white clover populations in Chile. Plant Breed. 2010, 129, 700–706. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S.; Maatougui, M.; Michael, M.; Slash, M.; Haghparast, R.; Rahmanian, M.; Taheri, A.; Al-Yassin, A.; Benbelkacem, A.; et al. Plant breeding and climate changes. J. Agric. Sci. 2010, 148, 627–637. [Google Scholar] [CrossRef]
- Montpetit, J.M.; Coulman, B.E. Responses to divergent selection for adventitious root growth in red clover (Trifolium pratense L.). Euphytica 1991, 58, 119–127. [Google Scholar] [CrossRef]
- Ortega, F.; Inostroza, L.; Moscoso, C.; Parra, L.; Quiroz, A. Persistence and yield stability of temperate grassland legumes for sustainable animal production. In Improving Grassland and Pasture Management in Temperate Agriculture; Marshall, A., Collins, R., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; ISBN 978-1-78676-200-9. [Google Scholar]
- Alarcón, D.; Ortega, F.; Perich, F.; Fernando, P.; Parra, L.; Quiroz, A. Relationship Between Radical Infestation of Hylastinus obscurus (Marsham) and the Yield of Cultivars and Experimental Lines of Red Clover (Trifolium pratense L.). Rev. Cienc. Suelo Nutr. Veg. 2010, 10, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Palma, R.; Mutis, A.; Manosalva, L.; Ceballos, R.; Quiroz, A. Behavioral and electrophysiological responses of Hylastinus obscurus to volatiles released from the roots of Trifolium pratense L. J. Soil Sci. Plant Nutr. 2012, 12, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Manosalva, L.; Pardo, F.; Perich, F.; Mutis, A.; Parra, L.; Ortega, F.; Isaacs, R.; Quiroz, A. Behavioral Responses of Clover Root Borer to Long-Chain Fatty Acids From Young Red Clover (Trifolium pratense) Roots. Environ. Entomol. 2011, 40, 399–404. [Google Scholar] [CrossRef] [Green Version]
- Fitter, A.H. An Architectural Approach to the Comparative Ecology of Plant Root Systems. New Phytol. 1987, 106, 61–77. [Google Scholar] [CrossRef]
- Fitter, A. Characterisitcs and and functions of root systems. In Plant Roots the Hidden Half; Waisel, Y., Eshel, A., Kafkafi, U., Eds.; CRC Press: New York, NY, USA, 2002; pp. 15–32. ISBN 0-8247-0631-5. [Google Scholar]
- Fitter, A.H. The Topology and Geometry of Plant Root Systems: Influence of Watering Rate on Root System Topology in Trifolium pratense. Ann. Bot. 1986, 58, 91–101. [Google Scholar] [CrossRef]
- Skipp, A.R.; Christensen, M.J. Selection for persistence in red clover: Influence of root disease and stem nematode. N. Z. J. Agric. Res. 1990, 33, 319–333. [Google Scholar] [CrossRef]
- Lynch, J.P. Roots of the Second Green Revolution. Aust. J. Bot. 2007, 55, 493–512. [Google Scholar] [CrossRef]
- Lynch, J.P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytol. 2019, 223, 548–564. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wan, L.; Nie, Z.; Li, X. Fractal and Topological Analyses and Antioxidant Defense Systems of Alfalfa (Medicago sativa L.) Root System under Drought and Rehydration Regimes. Agronomy 2020, 10, 805. [Google Scholar] [CrossRef]
- Beidler, K.V.; Taylor, B.N.; Strand, A.E.; Cooper, E.R.; Schönholz, M.; Pritchard, S.G. Changes in root architecture under elevated concentrations of CO2 and nitrogen reflect alternate soil exploration strategies. New Phytol. 2015, 205, 1153–1163. [Google Scholar] [CrossRef]
- Kahm, M.; Hasenbrink, G.; Lichtenberg-Fraté, H.; Ludwig, J.; Kschischo, M. Grofit: Fitting Biological Growth Curves with R. J. Stat. Softw. 2010, 1, 1–21. [Google Scholar] [CrossRef]
- Butler, D. Asreml: Fits the Linear Mixed Model, R package version 4.1.0.130.; VSN International: Brisbane, Australia, 2020. [Google Scholar]
- Brien, C. AsremlPlus: Augments “ASReml-R” in Fitting Mixed Models and Packages Generally in Exploring Prediction Differences, 4.2-18. R package version; The R Foundation: Indianapolis, IN, USA, 2020. [Google Scholar]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 1. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses, R package version 1.0.7.; The R Foundation: Indianapolis, IN, USA, 2020. [Google Scholar]
- Taylor, N.L. A century of clover breeding developments in the United States. Crop Sci. 2008, 48, 1–13. [Google Scholar] [CrossRef]
- Biazzi, E.; Nazzicari, N.; Pecetti, L.; Brummer, E.C.; Palmonari, A.; Tava, A.; Annicchiarico, P. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits. PLoS ONE 2017, 12, e0169234. [Google Scholar] [CrossRef]
- Inostroza, L.; Quezada, C.; Inostroza, W.; Matus, I.; Tapia, M.; del Pozo, A. Seedling vigor variation among 80 recombinant chromosome substitution lines (RCSL) of barley (Hordeum vulgare). Cienc. Investig. Agrar. 2011, 38, 137–147. [Google Scholar]
- Vile, D.; Garnier, E.; Shipley, B.; Laurent, G.; Navas, M.; Roumet, C.; Lavorel, S.; Díaz, S.; Hodgson, J.G.; Lloret, F.; et al. Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann. Bot. 2005, 96, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Westoby, M.; Warton, D.; Reich, P.B. The Time Value of Leaf Area. Am. Nat. 2000, 155, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Tapia, T.; Perich, F.; Pardo, F.; Palma, G.; Quiroz, A. Identification of volatiles from differently aged red clover (Trifolium pratense) root extracts and behavioural responses of clover root borer (Hylastinus obscurus) (Marsham) (Coleoptera: Scolytidae) to them. Biochem. Syst. Ecol. 2007, 35, 61–67. [Google Scholar] [CrossRef]
- Quiroz, A.; Mendez, L.; Mutis, A.; Hormazabal, E.; Ortega, F.; Birkett, M.A.; Parra, L. Antifeedant activity of red clover root isoflavonoids on Hylastinus obscurus. J. Soil Sci. Plant Nutr. 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Eissenstat, D.M. Costs and benefits of constructing roots of small diameter. J. Plant Nutr. 1992, 15, 763–782. [Google Scholar] [CrossRef]
- Thilakarathna, M.S.; Papadopoulos, Y.A.; Grimmett, M.; Fillmore, S.A.E.; Crouse, M.; Prithiviraj, B. Red clover varieties show nitrogen fixing advantage during the early stages of seedling development. Can. J. Plant Sci. 2017, 98, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Bolinder, M.A.; Angers, D.A.; Bélanger, G.; Michaud, R.; Laverdière, M.R. Root biomass and shoot to root ratios of perennial forage crops in eastern Canada. Can. J. Plant Sci. 2002, 82, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Skinner, R.H.; Comas, L.H. Root Distribution of Temperate Forage Species Subjected to Water and Nitrogen Stress. Crop Sci. 2010, 50, 2178–2185. [Google Scholar] [CrossRef]
- Houde, S.; Thivierge, M.-N.; Fort, F.; Bélanger, G.; Chantigny, M.H.; Angers, D.A.; Vanasse, A. Root growth and turnover in perennial forages as affected by management systems and soil depth. Plant Soil 2020, 451, 371–387. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, C.; Lynch, J.P. The utility of phenotypic plasticity of root hair length for phosphorus acquisition. Funct. Plant Biol. 2010, 37, 313–322. [Google Scholar] [CrossRef]
Populations | Grate (cm day−1) | Lag Time (days) | Hmax (cm) | Leaf Size (cm2) | SLA (cm2 g−1) | Chlorophyll Content (SPAD Unit) |
---|---|---|---|---|---|---|
Quiñequeli | 1.48 | 71.6 | 109.8 | 29.9 | 430.9 | 50.3 |
Redqueli | 1.73 | 77.8 | 115.3 | 29.3 | 400.0 | 51.5 |
Superqueli | 1.27 | 66.5 | 106.2 | 25.4 | 399.1 | 52.6 |
Starfire | 1.41 | 67.9 | 109.2 | 27.3 | 380.5 | 51.8 |
Tuscan | 1.17 | 59.3 | 99.6 | 18.2 | 450.5 | 48.0 |
Sel Syn IntIV | 1.32 | 67.5 | 104.4 | 27.4 | 407.6 | 49.6 |
Syn IntIV | 1.26 | 64.8 | 101.4 | 28.3 | 392.1 | 50.4 |
Syn IntV | 1.30 | 73.4 | 93.1 | 22.2 | 505.5 | 47.4 |
Sel Syn PreI | 1.37 | 73.6 | 103.9 | 23.0 | 410.7 | 49.3 |
Sel Syn PreIII | 1.36 | 69.5 | 100.5 | 25.1 | 429.0 | 53.3 |
Syn PreIII | 1.37 | 65.8 | 112.5 | 27.1 | 394.2 | 53.3 |
LSD value | 0.280 | 9.15 | 12.48 | 3.9 | 48.76 | 3.25 |
p value | ** | ** | * | *** | *** | ** |
H2 | 0.51 ± 0.10 | 0.61 ± 0.15 | 0.54 ± 0.12 | 0.51 ± 0.13 | 0.38 ± 0.14 | 0.22 ± 0.08 |
Populations | CrownD (cm) | avgD (cm) | RLD (cm cm3) | Vol (cm3) | Altitude | EPL | DBI |
---|---|---|---|---|---|---|---|
Quiñequeli | 8.66 | 1.79 | 0.23 | 12.3 | 36.5 | 638.6 | 0.64 |
Redqueli | 10.57 | 2.62 | 0.25 | 18.8 | 37.3 | 686.3 | 0.52 |
Superqueli | 10.50 | 2.68 | 0.37 | 21.5 | 45.0 | 976.8 | 0.52 |
Starfire | 10.64 | 2.11 | 0.24 | 18.9 | 37.7 | 658.1 | 0.55 |
Tuscan | 8.47 | 1.67 | 0.19 | 10.4 | 38.4 | 503.2 | 0.67 |
Sel Syn IntIV | 11.17 | 2.08 | 0.28 | 16.7 | 39.7 | 753.7 | 0.58 |
Syn IntIV | 10.02 | 2.20 | 0.34 | 18.8 | 44.6 | 1171.6 | 0.47 |
Syn IntV | 8.49 | 1.69 | 0.21 | 9.5 | 40.1 | 617.3 | 0.57 |
Sel Syn PreI | 10.71 | 1.92 | 0.32 | 16.7 | 38.2 | 933.6 | 0.45 |
Sel Syn PreIII | 9.56 | 1.86 | 0.28 | 16.0 | 38.0 | 766.8 | 0.55 |
Syn PreIII | 11.63 | 2.32 | 0.32 | 20.0 | 44.2 | 1118.9 | 0.50 |
LSD | 1.7 | 0.51 | 0.07 | 5.61 | 5.84 | 325.06 | 0.11 |
p value | *** | *** | *** | *** | * | *** | *** |
H2 | 0.30 ± 0.09 | 0.34 ± 0.08 | 0.48 ± 0.10 | 0.36 ± 0.09 | 0.20 ± 0.08 | 0.32 ± 0.08 | 0.37 ± 0.10 |
Populations | LeavesDM (g) | StemDM (g) | ShootDM (g) | RootDM20 cm (g) | FineRootDM (g) | RootDM (g) | RootDM:ShootDM |
---|---|---|---|---|---|---|---|
Quiñequeli | 24.8 | 20.2 | 45.0 | 2.97 | 0.66 | 6.47 | 0.12 |
Redqueli | 29.9 | 28.8 | 58.7 | 4.31 | 1.12 | 7.66 | 0.11 |
Superqueli | 33.6 | 23.3 | 56.9 | 4.25 | 1.04 | 7.35 | 0.13 |
Starfire | 22.7 | 19.1 | 41.8 | 4.63 | 1.03 | 7.40 | 0.18 |
Tuscan | 15.9 | 11.0 | 26.8 | 2.98 | 0.68 | 4.85 | 0.18 |
Sel Syn IntIV | 31.9 | 19.5 | 51.4 | 3.67 | 1.01 | 6.16 | 0.12 |
Syn IntIV | 30.5 | 27.2 | 57.7 | 4.38 | 1.08 | 7.34 | 0.13 |
Syn IntV | 17.5 | 7.7 | 25.1 | 1.87 | 0.41 | 3.34 | 0.13 |
Sel Syn PreI | 31.5 | 22.5 | 54.0 | 2.94 | 0.85 | 6.13 | 0.11 |
Sel Syn PreIII | 23.2 | 17.4 | 40.6 | 3.35 | 1.07 | 6.77 | 0.14 |
Syn PreIII | 26.6 | 22.1 | 48.7 | 4.05 | 0.86 | 6.79 | 0.14 |
LSD | 6.56 | 5.80 | 11.8 | 0.98 | 0.28 | 1.47 | 0.035 |
p value | ** | *** | *** | * | ** | * | * |
H2 | 0.39 ± 0.10 | 0.55 ± 0.14 | 0.51 ± 0.11 | 0.21 ± 0.08 | 0.18 ± 0.08 | 0.15 ± 0.05 | 0.22 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inostroza, L.; Ortega-Klose, F.; Vásquez, C.; Wilckens, R. Changes in Root Architecture and Aboveground Traits of Red Clover Cultivars Driven by Breeding to Improve Persistence. Agronomy 2020, 10, 1896. https://doi.org/10.3390/agronomy10121896
Inostroza L, Ortega-Klose F, Vásquez C, Wilckens R. Changes in Root Architecture and Aboveground Traits of Red Clover Cultivars Driven by Breeding to Improve Persistence. Agronomy. 2020; 10(12):1896. https://doi.org/10.3390/agronomy10121896
Chicago/Turabian StyleInostroza, Luis, Fernando Ortega-Klose, Catalina Vásquez, and Rosemarie Wilckens. 2020. "Changes in Root Architecture and Aboveground Traits of Red Clover Cultivars Driven by Breeding to Improve Persistence" Agronomy 10, no. 12: 1896. https://doi.org/10.3390/agronomy10121896
APA StyleInostroza, L., Ortega-Klose, F., Vásquez, C., & Wilckens, R. (2020). Changes in Root Architecture and Aboveground Traits of Red Clover Cultivars Driven by Breeding to Improve Persistence. Agronomy, 10(12), 1896. https://doi.org/10.3390/agronomy10121896