Integrated Weed and Nutrient Management Improve Yield, Nutrient Uptake and Economics of Maize in the Rice-Maize Cropping System of Eastern India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Treatments
2.3. Crop Management
2.4. Measurements and Analytical Procedure
2.5. Statistical Analysis
3. Results
3.1. Weed Growth
3.2. Crop Growth
3.3. Nutrients Uptake by Maize
3.4. Economics
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IndiaStat. IndiaStat Data Base. Available online: www.indiastat.org (accessed on 1 July 2017).
- Timsina, J.; Jat, M.L.; Majumdar, K. Rice-maize systems of South Asia: Current status, future prospects and research priorities for nutrient management. Plant Soil 2010, 335, 65–82. [Google Scholar] [CrossRef]
- Rakshit, R.; Das, A.; Padbhushan, R.; Sharma, R.P.; Sushant; Kumar, S. Assessment of soil quality and identification of parameters influencing system yield under long-term fertilizer trial. J. Indian Soc. Soil Sci. 2018, 66, 166. [Google Scholar] [CrossRef]
- Zhang, Y.; Chunsheng, H.; Jiabao, Z.; Deli, C. Nitrogenbalance in intensive agriculture in the north china plain. In Proceedings of the International Plant Nutrition Colloquium XVI, Davis, CA, USA, 26–30 August 2009; Department of Plant Science, US Davis: Davis, CA, USA, 2009. [Google Scholar]
- Jeyabal, A.; Kuppuswamy, G. Recycling of organic wastes for the production of vermicompost and its response in rice–legume cropping system and soil fertility. Eur. J. Agron. 2001, 15, 153–170. [Google Scholar] [CrossRef]
- Triberti, L.; Nastri, A.; Giordani, G.; Comellini, F.; Baldoni, G.; Toderi, G. Canmineral and organic fertilization help sequestrate carbon dioxide in cropland? Eur. J. Agron. 2008, 29, 13–20. [Google Scholar] [CrossRef]
- Alluvione, F.; Fiorentino, N.; Bertora, C.; Zavattaro, L.; Fagnano, M.; Chiarandà, F.Q.; Grignani, C. Short-term crop and soil response to C-friendly strategies in two contrasting environments. Eur. J. Agron. 2013, 45, 114–123. [Google Scholar] [CrossRef]
- Grignani, C.; Zavattaro, L.; Sacco, D.; Monaco, S. Production, nitrogen and carbon balance of maize-based forage systems. Eur. J. Agron. 2007, 26, 442–453. [Google Scholar] [CrossRef]
- Li, L.-J.; You, M.-Y.; Shi, H.-A.; Ding, X.; Qiao, Y.-F.; Han, X.Z. Soil CO2 emissions from a cultivated Mollisol: Effects of organic amendments, soil temperature, and moisture. Eur. J. Soil Biol. 2013, 55, 83–90. [Google Scholar] [CrossRef]
- Melero, S.; Madejón, E.; Ruiz, J.-C.; Herencia, J.F. Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization. Eur. J. Agron. 2007, 26, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Saha, P.K.; Ishaque, M.; Saleque, M.A.; Miah, M.A.M.; Panaullah, G.M.; Bhuiyan, N.I. Long-Term Integrated Nutrient Management for Rice-Based Cropping Pattern: Effect on Growth, Yield, Nutrient Uptake, Nutrient Balance Sheet, and Soil Fertility. Commun. Soil Sci. Plant Anal. 2007, 38, 579–610. [Google Scholar] [CrossRef]
- Narwal, R.P.; Chaudhary, M. Effect of long-term application of FYM and fertilizer N on available P, K and S content of soil. In Proceedings of the 18th World Congress of Soil Science, Philadelphia, PA, USA, 9–15 July 2006. [Google Scholar]
- Tadesse, T.; Dechassa, N.; Bayu, W.; Gebeyehu, S. Effects of Farmyard Manure and Inorganic Fertilizer Application on Soil Physico-Chemical Properties and Nutrient Balance in Rain-Fed Lowland Rice Ecosystem. Am. J. Plant Sci. 2013, 4, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Hoagland, L.; Carpenter-Boggs, L.; Reganold, J.; Mazzola, M. Role of native soil biology in Brassicaceous seed meal-induced weed suppression. Soil Biol. Biochem. 2008, 40, 1689–1697. [Google Scholar] [CrossRef]
- Abdulla, M.K.; Kumar, S. Phytotoxic Effect of Mustard Cake on Seed Germination and Seedling Growth of Crop and Weeds. Nat. Environ. 2014, 19, 132–136. [Google Scholar]
- Xuan, T.D.; Tsuzuki, E.; Hiroyuki, T.; Mitsuhiro, M.; Khanh, T.D.; Chung, I.-M. Evaluation on phytotoxicity of neem (Azadirachta indica. A. Juss) to crops and weeds. Crop Prot. 2004, 23, 335–345. [Google Scholar] [CrossRef]
- Marley, P.S.; Shebayan, J.A.Y.; Aba, D.A.; Ideam, B.A. Possibilities for control of Striga hermonthica in Sorghum (Sorghum bicolor) using neem (Azadirachta indica) and parkia (Parkia biglobosa)-based products. Int. J. Pest Manag. 2004, 50, 291–296. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, R.; Chauhan, B.S. Understanding crop-weed-fertilizer-water interactions and their implications for weed management in agricultural systems. Crop Prot. 2018, 103, 65–72. [Google Scholar] [CrossRef]
- Ghosh, D.; Singh, U.P.; Brahmachari, K.; Singh, N.K.; Das, A. An integrated approach to weed management practices in direct-seeded rice under zero-tilled rice–wheat cropping system. Int. J. Pest Manag. 2017, 63, 37–46. [Google Scholar] [CrossRef]
- Ghosh, D.; Singh, R.; Chander, S. Effect of nitrogen fertilizer and weed management practices on weed growth and crop yield of zero-till transplanted rice. Indian J. Weed Sci. 2018, 50, 287. [Google Scholar] [CrossRef]
- Kumar, M.; Ghosh, D.; Singh, R. Effect of crop establishment and weed management practices on growth and yield of wheat. Indian J. Weed Sci. 2018, 50, 129. [Google Scholar] [CrossRef]
- Ghosh, D.; Rathore, M.; Brahmachari, K.; Singh, R.; Kumar, B. Impact of burial and flooding depths on Indian weedy rice. Crop Prot. 2017, 100, 106–110. [Google Scholar] [CrossRef]
- Gharde, Y.; Ghosh, D.; Singh, P.; Dubey, R.P. Fitting dose-response curve to identify herbicide efficacy and ED50 value in mixture. Indian J. Weed Sci. 2017, 49, 165. [Google Scholar] [CrossRef]
- Eo, I.; Jo, O. Weed Infestation, Growth and Yield of Maize (Zea mays L.) as Influenced by Periods of Weed Interference. Adv. Crop Sci. Technol. 2017, 5, 267. [Google Scholar] [CrossRef] [Green Version]
- Thobatsi, T. Growth and Yield Responses of Maize (Zea mays L.) and Cowpea (Vigna unguiculatea) in an Intercropping System. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2009; p. 149. [Google Scholar]
- Mimmo, T.; Bartucca, M.L.; Del Buono, D.; Cesco, S. Italian ryegrass for the phytoremediation of solutions polluted with terbuthylazine. Chemosphere 2015, 119, 31–36. [Google Scholar] [CrossRef]
- Singh, R.; Ghosh, D.; Dubey, R.P.; Singh, V. Weed control in sesame with pre-emergence herbicides. Indian J. Weed Sci. 2018, 50, 91. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, H.; Garai, S.; Sarkar, S.; Ghosh, D.; Samanta, S.; Mahato, M. Efficacy of herbicides against canary grass and wild oat in wheat and their residual effects on succeeding greengram in coastal Bengal. Indian J. Weed Sci. 2019, 51, 246. [Google Scholar] [CrossRef]
- Kundu, R.; Mondal, M.; Garai, S.; Banerjee, H.; Ghosh, D.; Majumder, A.; Poddar, R. Efficacy of herbicides on weed control, rhizospheric micro-organisms, soil properties and leaf qualities in tea plantation. Indian J. Weed Sci. 2020, 52, 160. [Google Scholar] [CrossRef]
- Kumar, A.; Nandan, R.; Singh, K.K.; Ghosh, D. Integrated weed management in lentil (Lens culinaris) in calcareous alluvial soils of Bihar. Indian J. Agron. 2016, 61, 75–78. [Google Scholar]
- Ghosh, D.; Singh, U.P.; Ray, K.; Das, A. Weed management through herbicide application in direct-seeded rice and yield modeling by artificial neural network. Span. J. Agric. Res. 2016, 14, e1003. [Google Scholar] [CrossRef] [Green Version]
- Arias-Estévez, M.; López-Periago, E.; Martínez-Carballo, E.; Simal-Gandara, J.; Mejuto, J.-C.; García-Río, L. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 2008, 123, 247–260. [Google Scholar] [CrossRef]
- Magne, C.; Saladin, G.; Clement, C. Transient effect of the herbicide flazasulfuronon carbohydrate physiology in Vitis vinifera L. Chemosphere 2006, 62, 650–657. [Google Scholar] [CrossRef]
- Boily, M.; Sarrasin, B.; Deblois, C.; Aras, P.; Chagnon, M. Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: Laboratory and field experiments. Environ. Sci. Pollut. Res. 2013, 20, 5603–5614. [Google Scholar] [CrossRef]
- Van Der Meulen, A.; Chauhan, B.S. A review of weed management in wheat using crop competition. Crop Prot. 2017, 95, 38–44. [Google Scholar] [CrossRef]
- O’Donovan, J.T.; McAndrew, D.W.; Thomas, A.G. Tillage and Nitrogen Influence Weed Population Dynamics in Barley (Hordeum vulgare). Weed Technol. 1997, 11, 502–509. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Day, P.R. Particle Fractionation and Particle-Size Analysis. Agron. Monogr. 2015, 545–567. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1967; p. 498. [Google Scholar]
- Subbiah, B.; Asija, G.L. A rapid procedure for the estimation of available N in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanale, F.S.; Dean, L.A. Estimation of Available Phosphorus in Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954.
- Brown, A.J.; Warncke, D. Recommended Chemical Soil Test Procedures for the North Carolina Region; Dahnke, W.C., Ed.; North Dakota Agricultural Experimental Station Bulletin: Bismarck, ND, USA, 1988; pp. 15–16. [Google Scholar]
- Ghosh, D.; Brahmachari, K.; Skalicky, M.; Hossain, A.; Sarkar, S.; Dinda, N.K.; Das, A.; Pramanick, B.; Moulick, D.; Brestic, M.; et al. Nutrients Supplementation through Organic Manures Influence the Growth of Weeds and Maize Productivity. Molecules 2020, 25, 4924. [Google Scholar] [CrossRef]
- Singh, N.; Rajendran, R.A.; Shekhar, M.; Jat, S.L.; Kumar, R.; Kumar, R.S. Rabi Maize Opportunities & Challenges. Tech. Bull. 2012, 9, 32. [Google Scholar]
- GOI. Department of Agriculture Cooperation & Farmers Welfare. Minimum Support Price for Kharif Crops. 2016. Available online: http://www.agricoop.nic.in/recentinitiatives/minimum-support-price-kharif-crops (accessed on 11 October 2018).
- Babu, S.; Rana, D.S.; Rana, K.S.; Prasad, D. Effect of sunflower stover and nutrient management on productivity and nutrient uptake pattern of pigeon pea (Cajanus cajan) in pigeon pea-sunflower (Helianthus annuus) cropping system. Indian J. Agron. 2013, 58, 35–41. [Google Scholar]
- Faostat. Statistical Databases and Data-Sets of the Food and Agriculture Organization of the United Nations. Available online: http://faostat.fao.org/default.aspx (accessed on 2 November 2020).
- Rosegrant, M.R.; Ringler, C.; Sulser, T.B.; Ewing, M.; Palazzo, A.; Zhu, T.; Nelson, G.C.; Koo, J.; Robertson, R.; Msangi, S.; et al. Agriculture and Food Security Under Global Change: Prospects for 2025/2050; International Food Policy Research Institute: Washington, DC, USA, 2009. [Google Scholar]
- Pinitpaitoon, S.; Bell, R.; Suwanarit, A. The significance of available nutrient fluxes in N and P budgets for maize cropping on a Rhodic Kandiustox: A study with compost, NP fertilizer and stubble removal. Nutr. Cycl. Agroecosyst. 2010, 89, 199–217. [Google Scholar] [CrossRef]
- Pinitpaitoon, S.; Suwanarit, A.; Bell, R.W. A framework for determining the efficient combination of organic materials and mineral fertilizer applied in maize cropping. Field Crops Res. 2011, 124, 302–315. [Google Scholar] [CrossRef]
- Xu, H.L.; Wang, R.; Xu, R.Y.; Mridha, M.A.U.; Goyal, S. Yield and quality of leafy vegetables grown under organic fertilization. Acta Hortic. 2003, 627, 25–33. [Google Scholar] [CrossRef]
- Nagavani, A.V.; Subbian, P. Effect of Integrated Nutrient Management (INM) on weeds and yield of hybrid maize. Curr. Biotica 2015, 8, 432–436. [Google Scholar]
- Malviya, A.; Singh, B. Weed dynamics, productivity and economics of maize (Zea mays) as affected by integrated weed management under rainfed condition. Indian J.Agron. 2007, 52, 321–324. [Google Scholar]
- Rao, C.H.R.; Prasad, P.V.N.; Venkateswarlu, B. Assessment of different herbicides on yield and economics of kharif maize (Zea mays L.). Intern. J. Agric. Sci. Res. 2016, 6, 409–414. [Google Scholar]
- Sunitha, N.; Reddy, P.M.; Reddy, D.S. Influence of planting pattern and weed control practices on weed growth, nutrient uptake and productivity of sweet corn (Zea mays L.). Crop Res. 2011, 41, 13–20. [Google Scholar]
- Lakshmi, P.V.; Luther, M.M. Studies on influence of herbicides on nutrient uptake and yield in maize. Int. J. Farm Sci. 2017, 7, 37–39. [Google Scholar]
- Singh, S.; Walia, U.S.; Kaur, R.; Singh, S.L. Chemical Control of Cyperus rotundus in Maize. Indian J. Weed Sci. 2010, 42, 189–192. [Google Scholar]
Properties | Value | Methods Followed |
---|---|---|
Sand (%) | 34.7 | Hydrometer method [37] |
Silt (%) | 29.2 | |
Clay (%) | 36.1 | |
Textural class | Clay-loam | Textural triangle [38] |
pH | 6.27 | (in 1:2.5—Soil: Water) [39] |
Electrical conductivity (dS m−1) | 0.19 | (in 1:2.5—Soil: Water) [39] |
Organic carbon (%) | 0.52 | Walkley and Black method [39] |
Available N (kg ha−1) | 215 | Alkaline Permanganate method [40] |
Available P (kg ha−1) | 36.3 | 0.5 M NaHCO3 extractable [41] |
Available K (kg ha−1) | 173 | Flame Photometric method (Ammonium acetate/NH4OAc extract [42] |
Treatments | Treatment Annotation | Treatment Details | Remarks |
---|---|---|---|
Nutrient Management | NM1 | 100% RDNPK | Inorganic nutrient |
NM2 | 100% RDPK + 75% RDN + 25% N (Vermicompost) | Integrated nutrient management with bulky organic manure | |
NM3 | 100% RDPK + 75% RDN + 25% N (FYM) | ||
NM4 | 100% RDPK + 75% RDN + 25% N (BSM) | Integrated nutrient management with concentrated organic manure | |
NM5 | 100% RDPK + 75% RDN + 25% N (Neemcake) | ||
Weed Management | WM1 | Weedy | |
WM2 | Atrazine 1000 g/ha at 2 DAS | ||
WM3 | Atrazine 1000 g/ha at 2 DAS followed by hoeing at 30 DAS |
Treatment | Weed Growth | N Uptake (kg ha−1) by Weeds | Dry Matter Accumulation (kg ha−1) | Grain Yield (t ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Weed Density (no. m−2) | Weed Dry Weight (g m−2) | |||||||||
Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | |
NM1 × WM1 | 46.9 (2196 #) | 41.2 (1695) | 277.2 | 140.9 | 78.8 | 39.0 | 736 | 627 | 4.30 | 4.39 |
×WM2 | 19.4 (376) | 14.6 (214) | 91.1 | 45.8 | 23.9 | 11.2 | 1391 | 1433 | 5.85 | 5.99 |
×WM3 | 12.4 (154) | 8.7 (74) | 25.0 | 12.4 | 5.95 | 2.76 | 1914 | 1970 | 6.44 | 6.60 |
NM2 × WM1 | 42.7 (1820) | 39.9 (1588) | 234.3 | 161.4 | 66.6 | 44.9 | 771 | 793 | 4.17 | 4.26 |
×WM2 | 21.4 (455) | 16.3 (264) | 102.5 | 45.7 | 26.5 | 11.5 | 1726 | 1778 | 6.15 | 6.61 |
×WM3 | 13.2 (174) | 9.6 (91) | 21.6 | 15.4 | 5.42 | 3.65 | 2055 | 2115 | 6.35 | 6.82 |
NM3 × WM1 | 46.2 (2136) | 35.9 (1288) | 246.1 | 125.3 | 69.8 | 34.4 | 719 | 741 | 4.36 | 5.37 |
×WM2 | 18.4 (340) | 17.0 (288) | 105.0 | 43.9 | 27.9 | 10.7 | 1668 | 1718 | 5.94 | 6.77 |
×WM3 | 12.0 (144) | 9.2 (84) | 23.0 | 17.4 | 5.68 | 4.08 | 2260 | 2324 | 6.55 | 6.65 |
NM4 × WM1 | 39.8 (1581) | 31.8 (1013) | 235.1 | 107.1 | 65.8 | 28.9 | 781 | 804 | 4.93 | 5.04 |
×WM2 | 22.7 (517) | 14.1 (197) | 99.5 | 25.5 | 26.7 | 5.94 | 1551 | 1964 | 5.96 | 7.06 |
×WM3 | 14.1 (200) | 8.6 (74) | 34.2 | 11.3 | 8.20 | 2.45 | 2283 | 2351 | 7.83 | 8.07 |
NM5 × WM1 | 44.1 (1946) | 29.5 (869) | 243.6 | 109.1 | 68.1 | 29.6 | 646 | 665 | 4.61 | 5.12 |
×WM2 | 20.1 (405) | 15.0 (225) | 113.6 | 33.4 | 28.9 | 8.17 | 1701 | 1933 | 6.41 | 7.07 |
×WM3 | 14.2 (201) | 8.4 (70) | 51.4 | 13.6 | 13.1 | 3.13 | 2002 | 2061 | 6.85 | 7.36 |
SEm± | 2.04 | 1.26 | 24.8 | 9.6 | 7.11 | 2.68 | 179 | 152 | 0.33 | 0.34 |
CD (p ≤ 0.05) | 5.92 | 3.64 | 71.9 | 27.8 | 20.6 | 7.77 | 519 | 440 | 0.99 | 0.97 |
Source of variation | ||||||||||
NM | ns | *** | ns | * | ns | * | ns | ns | ns | ** |
WM | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
NM × WM | * | *** | * | * | * | * | * | * | * | * |
Treatment | N Uptake (kg ha−1) | N total Uptake (kg ha−1) | N Harvest Index | P Uptake (kg ha−1) | K Uptake (kg ha−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain | Stover | Grain | Stover | Grain | Stover | |||||||||||
Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | |
NM1 × WM1 | 83.0 | 76.1 | 94.1 | 91.8 | 177 | 168 | 0.468 | 0.453 | 8.7 | 8.9 | 19.8 | 14.7 | 50.0 | 28.2 | 82.6 | 72.9 |
×WM2 | 108.2 | 110.6 | 86.1 | 78.9 | 194 | 190 | 0.557 | 0.585 | 8.3 | 12.8 | 13.8 | 11.6 | 75.0 | 76.7 | 62.6 | 62.8 |
×WM3 | 110.3 | 113.1 | 108.0 | 112.4 | 218 | 226 | 0.505 | 0.502 | 14.8 | 15.2 | 23.7 | 24.7 | 58.5 | 60.0 | 111.7 | 92.8 |
NM2 × WM1 | 78.3 | 79.9 | 71.8 | 78.6 | 150 | 159 | 0.525 | 0.501 | 6.9 | 7.0 | 14.9 | 16.3 | 46.8 | 47.8 | 71.3 | 78.1 |
×WM2 | 108.5 | 129.9 | 88.0 | 89.7 | 196 | 220 | 0.554 | 0.590 | 10.8 | 11.6 | 18.5 | 18.8 | 72.3 | 50.6 | 68.7 | 92.9 |
×WM3 | 106.7 | 114.5 | 90.5 | 104.6 | 197 | 219 | 0.541 | 0.523 | 9.1 | 14.6 | 17.1 | 18.2 | 72.6 | 78.0 | 113.8 | 121.3 |
NM3 × WM1 | 69.6 | 89.2 | 91.4 | 95.9 | 161 | 185 | 0.433 | 0.484 | 7.5 | 9.2 | 16.7 | 17.6 | 50.7 | 87.7 | 80.3 | 84.3 |
×WM2 | 113.0 | 128.8 | 102.8 | 112.7 | 216 | 241 | 0.523 | 0.535 | 12.5 | 14.2 | 12.2 | 20.3 | 67.0 | 76.3 | 73.3 | 75.0 |
×WM3 | 123.0 | 117.1 | 93.1 | 91.2 | 216 | 208 | 0.569 | 0.562 | 12.2 | 13.2 | 14.7 | 22.2 | 79.9 | 79.7 | 76.5 | 90.6 |
NM4 × WM1 | 93.9 | 96.0 | 104.3 | 95.1 | 198 | 191 | 0.473 | 0.501 | 10.8 | 11.0 | 20.8 | 11.9 | 62.9 | 64.3 | 86.7 | 79.1 |
×WM2 | 110.2 | 140.2 | 78.9 | 126.1 | 189 | 266 | 0.584 | 0.527 | 10.6 | 12.5 | 13.3 | 16.5 | 71.3 | 67.6 | 68.4 | 92.4 |
×WM3 | 140.4 | 144.7 | 112.1 | 112.4 | 252 | 257 | 0.556 | 0.563 | 9.8 | 17.2 | 15.5 | 24.4 | 68.2 | 70.3 | 117.1 | 91.4 |
NM5 × WM1 | 72.2 | 86.0 | 77.1 | 78.9 | 149 | 165 | 0.484 | 0.524 | 13.2 | 11.1 | 19.9 | 13.7 | 53.8 | 59.7 | 75.2 | 76.9 |
×WM2 | 114.9 | 135.7 | 106.8 | 104.5 | 222 | 240 | 0.526 | 0.573 | 9.6 | 13.8 | 14.4 | 22.5 | 54.9 | 60.5 | 89.0 | 71.5 |
×WM3 | 120.9 | 123.4 | 80.4 | 91.5 | 201 | 215 | 0.600 | 0.575 | 18.7 | 20.1 | 23.3 | 26.5 | 81.9 | 70.5 | 64.3 | 73.1 |
SEm± | 5.99 | 6.32 | 8.17 | 8.4 | 12.6 | 10.3 | 0.017 | 0.024 | 0.66 | 0.68 | 1.45 | 1.68 | 3.75 | 3.72 | 7.26 | 6.54 |
CD (p ≤ 0.05) | 17.4 | 18.3 | 23.7 | 24.2 | ns | 30 | 0.049 | ns | 1.92 | 1.98 | 4.21 | 4.88 | 10.9 | 10.8 | 21.0 | 18.9 |
Source of variation | ||||||||||||||||
NM | * | *** | ns | * | ns | *** | ns | ns | *** | *** | ** | * | ns | *** | ns | *** |
WM | *** | *** | ns | * | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
NM × WM | * | ns | * | * | ns | * | ** | ns | *** | ** | ** | ** | *** | *** | *** | * |
Treatment Combinations | Additional Cost Due to Treatment (USD ha−1) | Gross Return (USD ha−1) | Net Return (USD ha−1) | B:C Ratio | Economic Efficiency (USD/Day/ha) |
---|---|---|---|---|---|
NM1 × WM1 | 147 | 1261 | 548 | 1.77 | 4.17 |
×WM2 | 206 | 1658 | 928 | 2.27 | 7.06 |
×WM3 | 191 | 1814 | 1025 | 2.30 | 7.80 |
NM2 × WM1 | 208 | 1202 | 428 | 1.55 | 3.26 |
×WM2 | 267 | 1710 | 919 | 2.16 | 6.99 |
×WM3 | 191 | 1841 | 990 | 2.16 | 7.53 |
NM3 × WM1 | 208 | 1321 | 546 | 1.71 | 4.16 |
×WM2 | 267 | 1732 | 941 | 2.19 | 7.16 |
×WM3 | 344 | 1880 | 1030 | 2.21 | 7.83 |
NM4 × WM1 | 362 | 1428 | 500 | 1.54 | 3.80 |
×WM2 | 421 | 1801 | 856 | 1.91 | 6.51 |
×WM3 | 465 | 2109 | 1105 | 2.10 | 8.40 |
NM5 × WM1 | 482 | 1380 | 331 | 1.32 | 2.51 |
×WM2 | 541 | 1812 | 746 | 1.70 | 5.67 |
×WM3 | 147 | 1911 | 787 | 1.70 | 5.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, D.; Brahmachari, K.; Brestic, M.; Ondrisik, P.; Hossain, A.; Skalicky, M.; Sarkar, S.; Moulick, D.; Dinda, N.K.; Das, A.; et al. Integrated Weed and Nutrient Management Improve Yield, Nutrient Uptake and Economics of Maize in the Rice-Maize Cropping System of Eastern India. Agronomy 2020, 10, 1906. https://doi.org/10.3390/agronomy10121906
Ghosh D, Brahmachari K, Brestic M, Ondrisik P, Hossain A, Skalicky M, Sarkar S, Moulick D, Dinda NK, Das A, et al. Integrated Weed and Nutrient Management Improve Yield, Nutrient Uptake and Economics of Maize in the Rice-Maize Cropping System of Eastern India. Agronomy. 2020; 10(12):1906. https://doi.org/10.3390/agronomy10121906
Chicago/Turabian StyleGhosh, Dibakar, Koushik Brahmachari, Marian Brestic, Peter Ondrisik, Akbar Hossain, Milan Skalicky, Sukamal Sarkar, Debojyoti Moulick, Nirmal Kumar Dinda, Anupam Das, and et al. 2020. "Integrated Weed and Nutrient Management Improve Yield, Nutrient Uptake and Economics of Maize in the Rice-Maize Cropping System of Eastern India" Agronomy 10, no. 12: 1906. https://doi.org/10.3390/agronomy10121906
APA StyleGhosh, D., Brahmachari, K., Brestic, M., Ondrisik, P., Hossain, A., Skalicky, M., Sarkar, S., Moulick, D., Dinda, N. K., Das, A., Pramanick, B., Maitra, S., & Bell, R. W. (2020). Integrated Weed and Nutrient Management Improve Yield, Nutrient Uptake and Economics of Maize in the Rice-Maize Cropping System of Eastern India. Agronomy, 10(12), 1906. https://doi.org/10.3390/agronomy10121906