Seed Phosphorus Effects on Rice Seedling Vigour in Soils Differing in Phosphorus Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. High- and Low-P Seed Material
2.2. Experiment 1—Effect of Seed P Levels on Seedling Growth in a Soil with High P Fertility
2.3. Experiment 2—Effect of Seed P Levels and P Fertiliser on Seedling Growth in a Soil with Low P Fertility
2.4. Experiment 3—Reconfirmation of Results from Experiment 2
2.5. Shoot Biomass and P Concentration Measurements
2.6. Statistical Analyses
3. Results
3.1. Experiment 1
3.2. Experiment 2
3.3. Experiment 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, F.; Lomgkumar, T.; Catausan, S.C.; Calumpang, C.L.F.; Tarun, J.A.; Cattin-Ortola, J.; Ishizaki, T.; Pariasca-Tanaka, J.; Rose, T.J.; Wissuwa, M.; et al. Genome wide association and gene validation studies for early root vigor to improve direct seeding of rice. Plant Cell Environ. 2018, 41, 2731–2743. [Google Scholar]
- Rebetzke, G.J.; Richards, R.A. Genetic improvement of early vigour in wheat. Aust. J. Agric. Res. 1999, 50, 291–301. [Google Scholar] [CrossRef]
- Welch, R.M. Importance of seed mineral nutrient reserves in crop growth and development. In Mineral Nutrition of Crops. Fundamental Mechanisms and Implications; Rengel, Z., Ed.; Food Products Press: New York, NY, USA, 1999; pp. 205–226. [Google Scholar]
- White, P.J.; Veneklaas, E.J. Nature and nurture: The importance of seed phosphorus content. Plant Soil 2012, 357, 1–8. [Google Scholar] [CrossRef]
- Groom, P.K.; Lamont, B.B. Phosphorus accumulation in Proteaceae seeds: A synthesis. Plant Soil 2010, 334, 61–72. [Google Scholar] [CrossRef]
- Rose, T.J.; Pariasca-Tanaka, J.; Rose, M.T.; Fukuta, Y.; Wissuwa, M. Genotypic variation in grain phosphorus concentration; and opportunities to improve P-use efficiency in rice. Field Crop Res. 2010, 119, 154–160. [Google Scholar] [CrossRef]
- Wang, F.; King, D.J.M.; Rose, T.J.; Kretzschmar, T.; Wissuwa, M. Can natural variation in grain P concentrations be exploited in rice breeding to lower fertilizer requirements? PLoS ONE 2017, 12, e0179484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandamme, E.; Wissuwa, M.; Rose, T.J.; Dieng, I.; Drame, K.N.; Fofana, M.; Senthilkumar, K.; Venuprasad, R.; Jallow, D.; Segda, Z.; et al. Genotypic variation in grain P loading across diverse rice growing environments and implications for field P balances. Front. Plant Sci. 2016, 7, 1435. [Google Scholar] [CrossRef] [Green Version]
- Bolland, M.D.A.; Baker, M.J. High phosphorus concentrations in seed of wheat and annual medic are related to higher rates of dry matter production of seedlings and plants. Aust. J. Exp. Agric. 1988, 28, 765–770. [Google Scholar] [CrossRef]
- De Marco, D.G. Effect of seed weight, and seed phosphorus and nitrogen concentrations on the early growth of wheat seedlings. Aust. J. Exp. Agric. 1990, 30, 545–549. [Google Scholar] [CrossRef]
- Ros, C.; Bell, R.W.; White, P.F. Effects of seed phosphorus and soil phosphorus application on early growth of rice (Oryza sativa L.) cv. IR66. J. Soil Sci. Plant Nutr. 1997, 43, 499–509. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Nyborg, M.; McGill, W.B. Phosphorus concentration in barley (Hordeum vulgare L.) seed: Influence on seedling growth and dry matter production. Plant Soil 1990, 122, 79–83. [Google Scholar] [CrossRef]
- Rose, T.J.; Pariasca-Tanaka, J.; Rose, M.T.; Mori, A.; Wissuwa, M. Seeds of doubt: Re-assessing the impact of grain P concentrations on seedling vigor. J. Soil Sci. Plant Nutr. 2012, 175, 799–804. [Google Scholar] [CrossRef]
- Pariasca-Tanaka, J.; Vandamme, E.; Mori, A.; Segda, Z.; Saito, K.; Rose, T.J.; Wissuwa, M. Does reducing seed-P concentrations affect seedling vigor and grain yield of rice? Plant Soil 2015, 392, 253–266. [Google Scholar] [CrossRef]
- Vandamme, E.; Wissuwa, M.; Rose, T.J.; Abouaton, K.; Saito, K. Strategic phosphorus (P) application to the nursery bed increases seedling growth and yield of transplanted rice at low P supply. Field Crop Res. 2016, 186, 10–17. [Google Scholar] [CrossRef]
- Nadeem, M.; Mollier, A.; Morel, C.; Vives, A.; Prud’Homme, L.; Pellerin, S. Relative contribution of seed phosphorus reserves and exogenous phosphorus uptake to maize (Zea mays L.) nutrition during early growth stages. Plant Soil 2011, 346, 231–244. [Google Scholar] [CrossRef]
- Julia, C.; Rose, T.J.; Pariasca-Tanaka, J.; Wissuwa, M. Phosphorus uptake commences at the earliest stages of seedling development in rice (Oryza sativa L.). J. Exp. Bot. 2018, 69, 5233–5240. [Google Scholar] [CrossRef]
- Burnett, V.F.; Newton, P.J.; Coventry, D.R. Effect of seed source and seed phosphorus content on the growth and yield of wheat in north-eastern Victoria. Aust. J. Exp. Agric. 1997, 37, 191–197. [Google Scholar] [CrossRef]
- Derrick, J.W.; Ryan, M.H. Influence of seed phosphorus content on seedling growth in wheat: Implications for organic and conventional farm management in South East Australia. Biol. Agric. Hort. 1998, 16, 223–237. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Smith, S.E. Seed phosphorus (P) content affects growth, and P uptake of wheat plants and their association with arbuscular mycorrhizal (AM) fungi. Plant Soil 2001, 231, 105–112. [Google Scholar] [CrossRef]
- Vandamme, E.; Rose, T.J.; Saito, K.; Jeong, K.; Wissuwa, M. Integration of P acquisition efficiency, P utilization efficiency and low grain P concentrations into P-efficient rice genotypes for specific target environments. Nutr. Cycl. Agroecosyst. 2015, 104, 413–427. [Google Scholar] [CrossRef]
- Julia, C.C.; Wissuwa, M.; Kretzschmar, T.; Jeong, K.; Rose, T.J. Phosphorus uptake, partitioning and redistribution during grain filling in rice. Ann. Bot. 2016, 118, 1151–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, S.; Forno, D.A.; Cock, J.H.; Gomez, K.A. Laboratory Manual for Physiological Studies of Rice, 3rd ed.; International Rice Research Institute: Los Baños, CA, USA, 1976. [Google Scholar]
- Jeong, K.; Julia, C.C.; Waters, D.L.E.; Pantoja, O.; Wissuwa, M.; Heuer, S.; Liu, L.; Rose, T.J. Remobilisation of phosphorus fractions in rice flag leaves during grain filling: Implications for photosynthesis and grain yields. PLoS ONE 2017. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 3rd ed.; FAO: Rome, Italy, 2014. [Google Scholar]
- Rayment, G.E.; Lyons, D.J. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata Press: Port Melbourne, Australia, 2011. [Google Scholar]
- Anstoetz, M.; Rose, T.J.; Clark, M.W.; Yee, L.H.; Raymond, C.A.; Vancov, T. Novel applications for oxalate-phosphate-amine metal-organic-frameworks (OPAMOFs): Can an iron-based OPA-MOF be used as slow-release fertilizer? PLoS ONE 2015. [Google Scholar] [CrossRef]
- Dunn, B.W.; Dunn, T.S.; Beecher, H.G. Nitrogen timing and rate effects on growth and grain yield of delayed permanent-water rice in south-eastern Australia. Crop Pasture Sci. 2014, 65, 878–887. [Google Scholar] [CrossRef]
- Rose, T.J.; Erler, D.V.; Farzana, T.; van Zwieten, L. Delayed permanent water rice production systems do not improve the recovery of 15N-urea compared to continuously flooded systems. Eur. J. Agron. 2016, 81, 46–51. [Google Scholar] [CrossRef]
- Haefele, S.M.; Nelson, A.; Hijmans, R.J. Soil quality and constraints in global rice production. Geoderma 2014, 235–236, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Burkitt, L.L.; Moody, P.W.; Gourley, C.J.P.; Hannah, M.C. A simple phosphorus sorption index for Australian soils. Aust. J. Soil Res. 2001, 46, 676–685. [Google Scholar] [CrossRef]
- Kovar, J.L.; Barber, S.A. Reasons for differences among soils in placement of phosphorus for maximum yield predicted uptake. Soil Sci. Soc. Am. J. 1989, 53, 1733–1763. [Google Scholar] [CrossRef]
- MacDonald, G.K.; Bennet, E.M.; Potter, P.A.; Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl. Acad. Sci. USA 2011, 108, 3086–3091. [Google Scholar] [CrossRef] [Green Version]
- Raboy, V. Low phytic acid crops: Observations based on four decades of research. Plants 2020, 9, 140. [Google Scholar] [CrossRef] [Green Version]
Genotype | Seed P Level | Mean Seed Biomass (mg) | Seed P Concentration (mg g−1) | Seed P Content (µg Seed−1) |
---|---|---|---|---|
IR64 | High | 27.5 | 1.77 | 48.6 |
Low | 26.9 | 1.29 | 34.8 | |
Dular | High | 27.8 | 1.92 | 53.4 |
Low | 28.2 | 0.98 | 27.7 | |
Kasalath | High | 20.7 | 1.47 | 30.5 |
Low | 21.2 | 0.82 | 17.4 | |
Seratus Hari | High | 24.9 | 1.81 | 45.1 |
Low | 24.2 | 1.35 | 32.6 |
Property | Gleysol | Ferralsol |
---|---|---|
Basic texture | clay loam | loam |
Total carbon (%) | 2.29 | 3.97 |
Total nitrogen (%) | 0.18 | 0.32 |
KCl extractable ammonium (mg kg−1) | 9.9 | 20 |
KCl extractable nitrate (mg kg−1) | 0.9 | 47 |
pH (1:5 water) | 5.57 | 5.04 |
EC (dS m−1) | 0.04 | 0.18 |
Bray 2 P (mg kg−1) | 92 | 32 |
Cation exchange capacity (cmol+ kg−1) | 27.34 | 5.57 |
Base cations (cmol+ kg−1) | ||
Calcium | 14.8 | 4.13 |
Magnesium | 10.1 | 0.43 |
Potassium | 0.63 | 0.39 |
Sodium | 0.37 | 0.22 |
Aluminium | 0.88 | 0.28 |
Effect | Shoot Biomass | Shoot P Content |
---|---|---|
p-value | ||
Genotype (G) | <0.001 | <0.001 |
Seed P (SP) | 0.491 | 0.351 |
G × SP | 0.599 | 0.254 |
Genotype | g plant−1 | mg plant−1 |
Dular | 0.067 b | 0.168 b |
IR64 | 0.087 c | 0.234 c |
Kasalath | 0.057 a | 0.092 a |
Seratus Hari | 0.051 a | 0.101 a |
Effect | Shoot Biomass | Shoot P Content |
---|---|---|
p value | ||
Genotype (G) | 0.002 | <0.001 |
Fertiliser P (FP) | 0.003 | <0.001 |
Seed P (SP) | 0.003 | 0.056 |
G × FP | 0.050 | 0.031 |
G × SP | 0.673 | 0.849 |
FP × SP | 0.504 | 0.512 |
FP × SP × G | 0.916 | 0.613 |
g plant−1 | mg plant−1 | |
Genotype | ||
Seratus Hari | 0.056 a | 0.213 b |
Dular | 0.059 a | 0.169 a |
IR64 | 0.068 b | 0.242 c |
Kasalath | 0.068 b | 0.179 a |
Seed P | ||
Low P seed | 0.059 a | 0.192 * |
High P seed | 0.067 b | 0.210 |
Fertiliser P | ||
Nil P | 0.057 a | 0.174 a |
Banded P | 0.064 b | 0.193 a |
Broadcast P | 0.068 b | 0.235 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rose, T.J.; Raymond, C.A. Seed Phosphorus Effects on Rice Seedling Vigour in Soils Differing in Phosphorus Status. Agronomy 2020, 10, 1919. https://doi.org/10.3390/agronomy10121919
Rose TJ, Raymond CA. Seed Phosphorus Effects on Rice Seedling Vigour in Soils Differing in Phosphorus Status. Agronomy. 2020; 10(12):1919. https://doi.org/10.3390/agronomy10121919
Chicago/Turabian StyleRose, Terry J., and Carolyn A. Raymond. 2020. "Seed Phosphorus Effects on Rice Seedling Vigour in Soils Differing in Phosphorus Status" Agronomy 10, no. 12: 1919. https://doi.org/10.3390/agronomy10121919
APA StyleRose, T. J., & Raymond, C. A. (2020). Seed Phosphorus Effects on Rice Seedling Vigour in Soils Differing in Phosphorus Status. Agronomy, 10(12), 1919. https://doi.org/10.3390/agronomy10121919