Azospirillum brasilense and Solarized Manure on the Production and Phytochemical Quality of Tomato Fruits (Solanum lycopersicum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbiological Material
2.2. Manure Solarization
2.3. Chemical fertilization
2.4. Inoculation of Tomato Seeds with Azospirillum brasilense (Ab)
2.5. Crop Management
2.6. Irrigation
2.7. Harvest
2.8. Treatments and Experimental Design
2.9. Variables Evaluated
2.9.1. Emergence Rate and Final Percentage
2.9.2. Rate and Plant Height, Nitrate Content in Sap (N-NO3 mg.mL−1 of Sap) and Volume of Root and Proteins, Total Lipids and Chlorophyll by Plant
2.9.3. Fruit Size (Polar Diameter and Equatorial Diameter), Soluble Solids, Firmness, Average Weight and Yield (kg.m2)
2.9.4. Nutraceutical Quality: Phenolic Content, Flavonoids, Vitamin C and Lycopenes
2.9.5. Quantification of Bacteria
2.10. Statistic Analysis
3. Results
3.1. Emergence Rate and Final Percentage, Rate and Plant Height, Volume of Roots, Nitrats Content in Sap and Proteins, Total Lipids and Chlorophyll by Plant
3.2. Fruit Size (Polar Diameter and Equatorial Diameter), Soluble Solids, Firmness, Average Weight and Yield (kg.m2)
3.3. Nutraceutical Quality: Phenolic Content, Flavonoids, Vitamin C, Lycopene, and Quantification of Bacteria Ab
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martínez-Damián, M.T.; Cano-Hernández, R.; Moreno-Pérez, E.C.; Sánchez-del Castillo, F.; Cruz-Álvarez, O. Effect of preharvest growth bioregulators on physicochemical quality of saladette tomato. Rev. Chapingo Ser. Hortic. 2019, 25, 29–43. [Google Scholar] [CrossRef]
- Wakchaure, G.C.; Minhas, P.S.; Kamlesh, K.M.; Satis, K.; Jagadish, R. Effect of plant growth regulators and deficit irrigation on canopy traits, yield, water productivity and fruit quality of eggplant (Solanum melongena L.) grown in the water scarce environment. J. Environ. Manag. 2020, 11, 110320. [Google Scholar] [CrossRef] [PubMed]
- SAGARPA. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Delegación Comarca Lagunera. 2019. Available online: http://www.sagarpa.gob.mx/dlg/laguna/informacion.htm. (accessed on 19 June 2020).
- Acevedo-Peralta, A.I.; Leos-Rodríguez, J.A.; Figueroa-Viramontes, U.; Romo Lozano, J.L. Política ambiental: Uso y manejo del estiércol en la Comarca Lagunera. Multidiscip. Sci. J. 2018, 27, 3–12. [Google Scholar] [CrossRef]
- CONAGUA. Comisión Nacional del Agua. Actualización de la Disponibilidadad Media Annual de Agua en el Acuifero Principal—Region Lagunera (0523). 2015. Available online: https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/coahuila/DR_0523.pdf (accessed on 11 July 2020).
- SIAP. Servicio de Información Agroalimentaria y Pesquera. 2019. Available online: http//nube.siap.gob.mx/cierre agrícola (accessed on 11 July 2020).
- Galindo, O.G.; Viramontes, U.F.; Cueto-Wong, J.A.; Núñez-Hernández, G.; Gallegos-Robles, M.A.; López-Martínez, J.D. Disponibilidad de nitrógeno usando dos tipos de estiércol de bovino lechero en cultivos de maíz forrajero y triticale. Nova Sci. 2019, 22, 124–141. [Google Scholar] [CrossRef] [Green Version]
- Ali, Q. Organic Manuring for Agronomic Crops. In Agronomic Crops; Hasanuzzaman, M., Ed.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Amir, K.; Fouzia, I. Chemical nutrient analysis of different composts (Vermicompost and Pitcompost) and their effect on the growth of a vegetative crop Pisum sativum. Asian J. Plant Sci. Res. 2011, 1, 116–130. [Google Scholar]
- Vázquez, V.; García, H.; Salazar, S.; López, M.; Valdez, C.; Orona, C.; Preciado, R. Aplicación de estiércol solarizado al suelo y la producción de chile jalapeño (Capsicum annuum L.). Chapingo Ser. Hortic. 2011, 17, 69–74. [Google Scholar]
- Lopez, M.J.D.; Salazar, S.E.; Trejo-Escareño, H.I.; García, H.J.L.; Navarro, M.M.; Vázquez-Vázquez, C. Produccion de algodón con altas densidades de siembra usando fertilizantes organicos. Phyton Rev. Inter. Bot. 2014, 83, 237–242. [Google Scholar]
- Raffi, M.M.; Charyulu, P.B.B.N. Azospirillum-biofertilizer for sustainable cereal crop production: Current status. Recent Dev. Appl. Microbiol. Biochem. 2020, 193–209. [Google Scholar] [CrossRef]
- Niño Paul, M.B.; Pompe, C.S.C.; Edna, A.A.; Rodrigo, B.B.; Stephan, M.H. Evaluation of Biofertilizers in Irrigated Rice: Effects on Grain Yield at Different Fertilizer Rates. Agriculture 2012, 2, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Bona, E.; Lingua, G.; Todeschini, V. Effect of Bioinoculants on the Quality of Crops. In Bioformulations: For Sustainable Agriculture; Arora, N., Mehnaz, S., Balestrini, R., Eds.; Springer: New Delhi, India, 2016; pp. 93–124. [Google Scholar] [CrossRef]
- Sangoquiza, C.A.; Viera, Y.; Yánez Guzmán, C.F. Biological Response of Azospirillum spp. to Different Types of Stress. Revista Centro Agrícola Universidad Central “Marta Abreu” de las Villas. 2018. Available online: http://cagricola.uclv.edu.cu (accessed on 3 October 2020).
- Florez-Márquez, J.F.; Leal-Medina, G.I.; Ardila-Leal, L.D.; Cárdenas-Caro, D.M. Isolation and Characterization of Chizobacteria Associated with rice Crops (Oryza sativa L.) in norte de santander (Colombia). Agrociencia 2017, 51, 4. [Google Scholar]
- Salazar-Sosa, E.; Fortis-Hernández, M.; López-Martínez, J.D.; Muños-Alvarado, C.L.; Lara-Macías, M.E.; Amado-Álvarez, J.P.; Vázquez-Vázquez, C.; Trejo-Escareño, H.I.; Chavarría-Galicia, J.A. Comparison among solarization kind of pailes and their impact in the control of Cryptosporidium parvum and Giardia lamblia. Int. Res. J. Agric. Sci. Soil Sci. 2011, 1, 355–364. [Google Scholar]
- SMART. La Fertilización del Cultivo de Tomate. 2020. Available online: https://www.smart fertilizer.com/es/articles/tomato-fertilizer/ (accessed on 10 January 2020).
- Lin, T.F.; Huang, H.I.; Shen, F.T.; Young, C.C. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC Al74. Bioresour. Technol. 2006, 97, 957–960. [Google Scholar] [CrossRef] [PubMed]
- Maeso, D.; Walasek, W. Evaluación de métodos para desinfectar semillas de tomate contra cancro bacteriano (Clavibacter michiganensis subsp. michiganensis). Agrociencia Urug. 2011, 16, 134–141. [Google Scholar]
- Briones-Domínguez, E.J.; Velázquez-López, A.A.; Gómez-Cruz, L.A.; Vela-Gutiérrez, G. Viabilidad de bacterias ácido lácticas encapsuladas en un embutido de Pleorotus ostreatus Viability of encapsulated lactic acid bacteria in a Pleorotus ostreatus sausage. Rev. Int. Investig. Innov. Tecnol. 2020, 8, 47. [Google Scholar]
- Mesfin Bogale, A.B.; DiGennaro. Nematode Identification Techniques and Recent Advances. Plants 2020, 9, 1260. [Google Scholar] [CrossRef]
- Jalili, B.; Bagheri, H.; Azadi, S.; Soltani, J. Identification and salt tolerance evaluation of endophyte fungi isolates from halophyte plants. Int. J. Environ. Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Coromoto-Alcedo, Y.; Reyes, I. Microorganismos Promotores de Crecimiento en el Biocontrol de alternaria alternata en tomate (Solanum Lycopersicum L.). Bioagro 2018, 30, 59–66. [Google Scholar]
- Ochoa-Jiménez, V.A.; Berumen-Varela, G.; Rivera-Domínguez, M.; Báez-Sañudo, B.; Troncoso-Rojas, R.; Tiznado-Hernandez, M.E. Development of a regeneration and genetic transformation protocol for tomato (Solanum lycopersicum L.) cv. Rutgers. Agrociencia Cienc. 2019, 53, 725–740. [Google Scholar]
- López-Corona, B.E.; Mondaca-Fernández, P.; Gortáres-Moroyoqui, M.M.; Meza-Montenegro, J.; Balderas-Cortés, J.; Ruíz-Alvarado, C.; Rueda-Puente, E.O. Ecophysiology and biochemistry of salicornia bigelovii (Torr.) by effect of chitosanaib effect under Sonora desert conditions. Polibotánica 2020, 49, 75–92. [Google Scholar] [CrossRef]
- Parra-Terraza, S.; Lara-Murrieta, P.; Villarreal-Romero, V.; Hernández-Verdugo, V. Crecimiento de plantas y rendimiento de tomate en diversas relaciones Nitrato/Amonio y concentraciones de bicarbonato. Fitotec. Mex. 2012, 35, 143–153. [Google Scholar] [CrossRef]
- Liang, Y.; Urano, D.; Liao, K.L.; Hedrick, T.L.; Gao, Y.; Jones, A.M. A nondestructive method to estimate the chlorophyll content of Arabidopsis seedlings. Plant Methods 2017, 13, 26. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhao, P.; He, C.; Li, C.; Zhou, J.; Huang, Z. Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock. Bioresour. Technol. 2012, 121, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Esparza-Rivera, J.R.; Stone, M.B.; Stushnoff, C.; Pilon-Smith, E.; Kendall, P.A. Effects of Ascorbic acid applied by two hydrocooling methods on physical and chemical properties of green leaf lettuce stored at 5 °C. J. Food Sci. 2006, 71, 270–276. [Google Scholar] [CrossRef]
- Hernández-Hernández, H.; Quiterio-Gutiérrez, T.; Cadenas-Pliego, G.; Ortega-Ortiz, H.; Hernández-Fuentes, A.D.; Cabrera de la Fuente, M.; Valdés-Reyna, J.; Juárez-Maldonado, A. Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants 2019, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Tlahque, J.; Santiago-Sáenz, Y.O.; Hernández-Fuentes, A.D.; Pinedo-Espinoza, J.M.; López- Buenabad, G.; López Palestina, C.U. Influencia de los métodos de cocción sobre la actividad antioxidante y compuestos bioactivos de tomate (Solanum lycopersicum L.). Nova Sci. 2019, 11, 53–68. [Google Scholar]
- Fernandez, C.; Pitre, A.; Llobregat, M.J.; Rondon, Y. Evaluacion del contenido de licopeno en pastas de tomate comerciales. [Determination of the Lycopene Content in Different Commercial Tomato Pastes]. Inf. Tecnol. 2007, 18, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Tortora, M.L.; Vera, L.; Naval, N.G.; Dantur, K.; Núñez, M.D.A.; Alderete, M.; Romero, E.R. Aislamiento, caracterización y actividad de cepas de Azospirillum brasilense asociadas a la caña de azúcar. Cultiv. Trop. 2019, 40, a07–e07. [Google Scholar]
- Ocegueda-Reyes, M.D.; Casas-Solís, J.; Virgen-Calleros, G.; González-Eguiarte, D.R.; López-Alcocer, E. Isolation, identification and characterization of antagonistic rhizobacteria to Sclerotium Cepivorum. Mex. J. Phytopathol. 2019, 38, 146–159. [Google Scholar] [CrossRef]
- SAS (Statistical Analysis System). SAS/STAT 9.4 User’s Guide; SAS: Cary, NC, USA, 2016; Available online: https://support.sas.com/documentation/cdl/en/statugintroduction/61750/PDF/default/statugintroduction.pdf (accessed on 3 October 2020).
- Platel, K. Functional foods in Indian tradition and their significance for health. In Nutritional and Health Aspects of Food in South Asian Countries; Academic Press: Cambridge, MA, USA, 2020; pp. 87–98. [Google Scholar]
- Ayed, L.; Mhir, S.; Hamdi, M. Microbiological, Biochemical, and Functional Aspects of Fermented Vegetable and Fruit Beverages. J. Chem. 2020. [Google Scholar] [CrossRef]
- Chauhan, M.; Garg, V.; Zia, G.; Dutt, R. Potential Role of Phytochemicals of Fruits and Vegetables in Human Diet. Res. J. Pharm. Technol. 2020, 13, 1587–1591. [Google Scholar] [CrossRef]
- FIT. Foreign and International Trade, Dedicated to the Promotion of Customs, Incoterms, Export and Import Articles. 2020. Available online: https://www.comercioyaduanas.com.mx/comercioexterior/tomate-exicano/ (accessed on 20 May 2020).
- Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Santini, J.M.K.; Alves, C.J.; Nogueira, L.M.; Ludkiewicz, M.G.Z.; Andreotti, M.; Bellotte, J.L.M. Corn Yield and Foliar Diagnosis Affected by Nitrogen Fertilization and Inoculation with Azospirillum Brasilense. Rev. Bras. Ciênc. Solo 2016, 40, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Coniglio, A.; Mora, V.; Puente, M.; Cassán, F. Azospirillum as Biofertilizer for Sustainable Agriculture: Azospirillum brasilense AZ39 as a Model of PGPR and Field Traceability; Springer Nature: Cham, Switzerland, 2019; Chapter 4. [Google Scholar] [CrossRef]
- Domingues-Duarte, C.F.; Cecato, U.; Biserra, T.T.; Mamédio, D.; Galbeiro, S. Azospirillum spp. in grasses and forages. Rev. Mex. Cienc. Pecu. 2020, 11, 223–240. [Google Scholar] [CrossRef]
- Domenico, P. Effect of Azospirillum brasilense on garlic (Allium sativum L.) cultivation. World J. Adv. Res. Rev. 2019, 2, 008–013. [Google Scholar] [CrossRef]
- Araújo, E.O.; Martins, M.R.; Vitorino, A.C.T.; Mercante, F.M.; Urquiaga, S.S. Effect of nitrogen fertilization associated with diazotrophic bacteria inoculation on nitrogen use efficiency and its biological fixation by corn determined using 15 N. Afr. J. Microbiol. Res. 2015, 9, 643–650. [Google Scholar]
- Beltrán-Peña, E.M.; Ayala-Rodríguez, J.A.; Bucio, J.L. Interrelaciones entre la disponibilidad de fosfato y el ambiente biótico del suelo en el crecimiento y desarrollo de las plantas. Cienc. Nicolaita 2020, 78, 59–74. [Google Scholar]
- Moreno-Reséndez, A.; García-Mendoza, V.; Reyes-Carrillo, J.L.; Vásquez-Arroyo, J.; Cano-Ríos, P. Rizobacterias promotoras del crecimiento vegetal: Una alternativa de biofertilización para la agricultura sustentable. Rev. Colomb. Biotecnol. 2018, 20, 68–83. [Google Scholar] [CrossRef]
- García-Rojas, D.E.; Vázquez-Vázquez, P.; Pérez-Corral, D.A.; Ruiz-Cisneros, M.F.; Berlanga-Reyes, D.I.; Ornelas-Paz, J.D.J.; Acosta-Muñiz, C.H.; Rios-Velasco, C.; Salas-Marina, M.A.; Osorio-Hernández, E. Streptomyces como biocontroladores in vitro de Exserohilum rostratum y productores de sustancias promotoras del crecimiento vegetal. J. Phytopathol. 2019, 37, 48–56. [Google Scholar] [CrossRef]
- Licea-Herrera, J.I.; Quiroz-Velásquez, J.D.; Hernández-Mendoza, J.L. Impact of Azospirillum Brasilense, a rhizobacterium stimulating the production of indole-3-acetic acid as the mechanism of improving plants’ grow in agricultural crops. Rev. Boliviana Quim. 2020, 37, 34–39. [Google Scholar] [CrossRef]
- Sánchez, D.B.; Pérez, J.V. Caracterización y evaluación de PGPRs sobre el crecimiento de plántulas de Dioscorea rotundata in vitro. Agron. Costarric. 2018, 42, 75–91. [Google Scholar] [CrossRef]
- Robson, R.L.; Jones, R.; Robson, M.R.; Schwartz, A.; Richardson, T.H. Azotobacter genomes: The genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412). PLoS ONE 2015, 10, e0127997. [Google Scholar] [CrossRef] [Green Version]
- Doncel, A.; Chamorro, L.; Pérez, A. Actividad in vitro de bacterias endófitas promotoras de crecimiento asociadas con pasto colosoana en el municipio de Corozal, Sucre. Rev. Colomb. Cienc. Anim. 2016, 8, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Baars, O.; Zhang, X.; Gibson, M.I.; Stone, A.T.; Morel, F.M.; Seyedsayamdost, M.R. Seyedsayamdost. Crochelins: Siderophores with an unprecedented iron-chelating moiety from the nitrogen-fixing bacterium Azotobacter chroococcum. Angew. Chem. Int. Ed. Engl. 2018, 57, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Benimeli, M.F.; Plasencia, A.; Corbella, R.D.; Guevara, D.A.; Sanzano, A.; Sosa, F.A.; de Ullivari, J.F. El Nitrógeno del Suelo; Cátedra de Edafología Facultad de Agronomía y Zootecnia Universidad Nacional de Tucumán: Tucumán, Argentina, 2019. [Google Scholar]
- Steiner, F.; Queiroz, L.F.M.; Zuffo, A.M.; da Silva, K.C.; Lima, I.M.D.O. Respuesta de cacahuete a la co-inoculación de Bradyrhizobium spp. y Azospirillum brasilense y aplicación de molibdeno en suelo arenoso del Cerrado brasileño. Rev. Agron. 2020. [Google Scholar] [CrossRef]
- Kai, M.; Piechulla, B. Plant growth promotion due to rhizobacterial volatiles—An effect of CO2. FEBS Lett. 2009, 583, 3473–3477. [Google Scholar] [CrossRef] [Green Version]
- Karlidag, H.; Esitken, A.; Yildirim, E.; Donmez, M.F.; Turan, M. Effects of plant growth promoting bacteria on yield, growth, leaf water content, membrane permeability, and ionic composition of strawberry under saline conditions. J. Plant Nutr. 2010, 34, 34–45. [Google Scholar] [CrossRef]
- Maidana, E.; Melgarejo, A.M.; Amarilla, D.; Ocampos, L.V.; Colman, P.; Mendoza, M.; Bogado, M.; Franco, R.; Silvero, O. Agronomic characteristics of corn inoculated with different doses of Azospirillum Brasiliense. Rev. Soc. Cient. Parag. 2020, 25, 49–57. [Google Scholar] [CrossRef]
- Zambrano-Gavilanes, F.; Souza-Andrade, D.; Zucareli, C.; Sarkis-Yunes, J.; Amaral, H.; Matias da Costa, R.; Raia, D.; García, M.; de Fάtima Guimarães, M. Efecto de la inoculación con cianobacterias y coinoculación con Azospirillum Brasilense sobre características fitométricas en maíz. Bioagro 2019, 31, 193–202. [Google Scholar]
- González, F.; Fuentes, M. Mechanism of action of five plant growth promoters microorganism. Rev. Cienc. Agrícolas 2017, 34, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Almeida Moreira, B.R.; Silva Viana, R.; Lopes Favato, V.; Monteiro de Figueiredo, P.A.; Manzani Lisboa, L.A.; Tadao Miasaki, C.; Chagas Magalhaes, A.; Bispo Ramos, S.; Almeida Viana, C.R.; Dias Rezende Trindade, V.; et al. Azospirillum brasilense puede mejorar impresionantemente el crecimiento y desarrollo de Urochloa brizantha bajo riego. Agricultura 2020, 10, 220. [Google Scholar]
- Souza, R.D.; Ambrosini, A.; Passaglia, L.M. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 2015, 38, 401–419. [Google Scholar] [CrossRef]
- Dursun, A.; Ekinci, M.; Dönmez, M.F. Effects of foliar application of plant growth promoting bacterium on chemical contents, yield and growth of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.). Pak. J. Bot. 2010, 42, 3349–3356. [Google Scholar]
- Ordookhani, K.; Moezi, A.; Khavazi, K.; Rejali, F. Effect of plant growth promoting rhizobacteria and mycorrhiza on tomato fruit quality. Acta Hort. 2013, 989, 91–96. [Google Scholar] [CrossRef]
- González, R.G.; Espinosa, P.B.; Cano, R.P.; Moreno, R.A.; Leos, E.L.; Sánchez, G.H.; Sáens, M.J. Influencia de rizobacterias en la producción y calidad nutracéutica de tomate bajo condiciones de invernadero. Rev. Mex. Cienc. Agrícolas 2018, 9, 367–379. [Google Scholar]
- Fukami, J.; de la Osa, C.; Ollero, F.J.; Megías, M.; Hungria, M. Co-inoculación de maíz con Azospirillum brasilense y Rhizobium tropici como estrategia para mitigar el estrés de salinidad. Biol. Func. Plantas 2018, 45, 328. [Google Scholar] [CrossRef]
- Ruiz, L.G.A.; Qüesta, A.G.; Rodríguez, S.D.C. Efecto de luz UV-C sobre las propiedades antioxidantes y calidad sensorial de repollo minimamente procesado. Rev. Iberoam. Tecnol. Postcosecha 2010, 11, 101–118. [Google Scholar]
- Díaz, F.A.; Ortiz, C.F.E.; Espinosa, E.M. Mycorrhizal symbiosis and growth of sorghum plants irrigated with saline water. Rev. Chapingo Ser. Zonas Áridas 2016, 15, 55–64. [Google Scholar]
- Pırlak, L.; Köse, M. Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. J. Plant Nutr. 2009, 32, 1173–1184. [Google Scholar] [CrossRef]
- Adriano, A.M.D.L.; Jarquín, G.R.; Hernández, R.C.; Salvador, F.M.; Monreal, V.C.T. Biofertilización de café orgánico en etapa de vivero en Chiapas, México. Rev. Mex. Cienc. Agrícolas 2011, 2, 417–431. [Google Scholar]
- Waliszewski, K.N.; Blasco, G. Propiedades nutraceúticas del licopeno. Salud Públ. México 2010, 53, 254–265. [Google Scholar] [CrossRef] [Green Version]
Treatments | Description |
---|---|
T1 = Ab | Azospirillum brasilense |
T2 = Control | Control without Azospirillum brasilense |
T3 = Ab + M40 | Azospirillum brasilense + Solarized manure (40 t ha−1) |
T4 = M40 | Solarized manure (40 t ha−1) |
T5 = Ab + M80 | Azospirillum brasilense + Solarized manure (80 t ha−1) |
T6 = M80 | Solarized manure (80 t ha−1) |
T7 = Ab + M120 | Azospirillum brasilense + Solarized manure (120 t ha−1) |
T8 = M120 | Solarized manure (120 t ha−1) |
T9 = Ab + M160 | Azospirillum brasilense + Solarized manure (160 t ha−1) con |
T10 = M160 | Solarized manure (160 t ha−1) |
T11 = Ab + CHF | Azospirillum brasilense + Chemical fertilization |
T12 = CHF | Chemical fertilization |
Stage Phenologic | T °C | H.r. (%) | Rfa (me.m−2 s−1) | Ima h |
---|---|---|---|---|
Seedling/transplanting (June) | 38 ± 2 °C | <39% HR | 550.33 | 13.20 |
Preflowering (July) | 38 ± 3 °C | <42% HR | 555.22 | 13.30 |
Flowering and fructification (August–September) | 35 ± 3 °C | <50% HR | 510.32 | 11.50 |
Harvest (November) | 30 ± 4 °C | <46% HR | 477.43 | 10.40 |
Factor | Emergency Seedling | Monthly Height Dynamics | ||||||
---|---|---|---|---|---|---|---|---|
Day 1 | Day 2 | 2 | 3 | 4 | 5 | 6 | VR | |
% | m | mL | ||||||
solarized manure | ||||||||
0 | 0.71 ± 0.09 a | 1.40 ± 0.19 a | 2.00 ± 0.05 a | 2.43 ± 0.21 b | 2.82 ± 0.07 a | 56.66 ± 12.5 a | ||
40 | 0.98 ± 0.06 a | 1.72 ± 0.06 a | 2.27 ± 0.22 a | 2.99 ± 0.21 a | 3.38 ± 0.38 a | 97.50 ± 40.0 a | ||
80 | 0.93 ± 0.13 a | 1.66 ± 0.07 a | 2.25 ± 0.25 a | 2.69 ± 0.29 a | 2.88 ± 0.38 a | 71.33 ± 23.0 a | ||
120 | 0.73 ± 0.09 a | 1.63 ± 0.04 a | 2.08 ± 0.03 a | 2.39 ± 0.15 b | 2.61 ± 0.29 a | 47.66 ± 40.0 a | ||
160 | 0.68 ± 0.13 a | 1.30 ± 0.34 a | 1.61 ± 0.29 a | 1.91 ± 0.24 c | 2.33 ± 0.33 a | 35.83 ± 18.5 a | ||
CHF | 0.87 ± 0.07 a | 1.68 ± 0.09 a | 2.05 ± 0.07 a | 2.75 ± 0.74 a | 3.20 ± 0.40 a | 83.83 ± 15.0 a | ||
Inoculation | ||||||||
Ab | 80.00 ± 4 a | 100.00 ± 0 a | 0.89 ± 0.18 a | 1.69 ± 0.10 a | 2.10 ± 0.36 a | 2.65 ± 0.53 a | 3.00 ± 0.50 a | 76.61 ± 38.5 a |
Without Ab | 23.66 ± 3 b | 70.66 ± 7 b | 0.74 ± 0.19 a | 1.44 ± 0.42 a | 1.98 ± 0.66 a | 2.40 ± 0.69 a | 2.74 ± 0.53 a | 54.33 ± 24.5 a |
Ab × SM | ||||||||
ns | ns | ns | * | ns | ns |
Factor | Protein | Lipid | Chlorophyll | ||||||
---|---|---|---|---|---|---|---|---|---|
NO3 | Root | Stem | Leaf | Root | Stem | Leaf | a | b | |
% | µg.g Dry Weight | mg.g. Fresh Leaf | |||||||
Solarized manure | |||||||||
0 | 4.05 ± 0.93 a | 362.91 ± 50.06 a | 947.90 ± 59.4 a | 766.53 ± 202 a | 0.355 ± 0.246 a | 0.317 ± 0.17 b | 1.821 ± 0.79 a | 1.638 ± 0.145 a | 0.773 ± 0.055 b |
40 | 4.36 ± 0.29 a | 454.68 ± 66.80 a | 1119.65 ± 198 a | 890.48 ± 118 a | 0.538 ± 0.120 a | 0.496 ± 0.07 a | 2.386 ± 0.39 a | 1.818 ± 0.165 a | 0.890 ± 0.040 a |
80 | 4.32 ± 0.27 a | 424.81 ± 64.35 a | 1120.30 ± 172 a | 876.67 ± 174 a | 0.526 ± 0.120 a | 0.483 ± 0.05 a | 2.315 ± 0.38 a | 1.730 ± 0.120 a | 0.850 ± 0.020 a |
120 | 4.39 ± 0.26 a | 420.53 ± 26.45 a | 1025.31 ± 113 a | 814.50 ± 103 a | 0.465 ± 0.100 a | 0.458 ± 0.04 a | 2.153 ± 0.19 a | 1.676 ± 0.115 a | 0.841 ± 0.020 a |
160 | 3.93 ± 0.55 a | 374.40 ± 63.15 a | 964.93 ± 47.8 a | 613.53 ± 250 a | 0.311 ± 0.170 b | 0.246 ± 0.21 b | 1.123 ± 0.89 b | 1.621 ± 0.135 a | 0.793 ± 0.030 b |
FQ | 4.59 ± 0.91 a | 394.40 ± 72.90 a | 1099.41 ± 116 a | 913.01 ± 50 a | 0.595 ± 0.100 a | 0.479 ± 0.04 a | 2.473 ± 0.36 a | 1.698 ± 0.090 a | 0.835 ± 0.030 a |
Inoculation | |||||||||
Ab | 4.53 ± 0.47 a | 461.31 ± 53.71 a | 1158.43 ± 155 a | 949.86 ± 70.7 a | 0.568 ± 0.060 a | 0.478 ± 0.036 a | 2.383 ± 0.312 a | 1.813 ± 0.164 a | 0.851 ± 0.051 a |
Without Ab | 4.02 ± 0.35 a | 349.27 ± 41.63 b | 934.06 ± 47.5 b | 674.71 ± 250.7 a | 0.362 ± 0.230 a | 0.348 ± 0.214 a | 1.707 ± 0.610 a | 1.580 ± 0.397 a | 0.809 ± 0.008 b |
Ab × SM | |||||||||
ns | * | * | ns | * | * | * | ns | * |
Factor | DP | DE | SS | FF | FP | Y |
---|---|---|---|---|---|---|
mm | mm | Brix | N | No | kg.m2 | |
solarized manure | ||||||
0 | 72.95 ± 2 a | 50.51 ± 3 a | 5.56 ± 0.66 d | 10.40 ± 1.01 a | 28 ± 1 a | 9.83 ± 0.77 b |
40 | 83.90 ± 3 a | 59.08 ± 7 a | 5.05 ± 0.25 e | 10.32 ± 1.13 a | 34 ± 4 a | 12.00 ± 1.99 a |
80 | 78.79 ± 2 a | 52.43 ± 4 a | 5.07 ± 0.22 e | 12.26 ± 1.03 a | 31 ± 4 a | 12.20 ± 1.20 a |
120 | 75.10 ± 3 a | 46.27 ± 17 a | 6.99 ± 0.07 b | 10.51 ± 1.03 a | 20 ± 1 a | 9.38 ± 1.62 b |
160 | 70.50 ± 3 a | 51.88 ± 1 a | 8.10 ± 0.04 a | 8.80 ± 1.00 a | 17 ± 1 b | 8.16 ± 1.74 c |
CHF | 83.15 ± 4 a | 51.65 ± 6 a | 6.55 ± 0.66 c | 11.10 ± 1.87 a | 39 ± 1 a | 12.45 ± 1.45 a |
Inoculation | ||||||
Ab | 78.17 ± 8.6 a | 55.04 ± 1.80 a | 6.42 ± 1.6 a | 10.57 ± 1.7 a | 30 ± 10 a | 11.27 ± 1.6 a |
Without Ab | 76.65 ± 4.8 a | 48.90 ± 5.9 a | 6.02 ± 1.5 b | 10.56 ± 1.7 a | 27 ± 7 a | 10.07 ± 1.9 a |
Ab × SM | ||||||
ns | ns | * | ns | * | * |
Factor | Vitamin C | Lycopene | Phenols | Flavonoids |
---|---|---|---|---|
Mg 100 g−1 PF | mg Kg−1 PF | mg AGE/100 g PF | mg QE/100 g PF | |
Solarized manure | ||||
0 | 8.80 ± 0.0 b | 2.73 ± 0.8 a | 96.150 ± 4 b | 31.36 ± 9 b |
40 | 8.80 ± 0.0 b | 3.03 ± 0.8 a | 101.60 ± 5 b | 32.00 ± 4 b |
80 | 12.02 ± 0.5 a | 2.87 ± 0.8 a | 118.77 ± 29 a | 45.71 ±18 a |
120 | 4.40 ± 0.0 d | 2.73 ± 0.8 a | 121.27 ± 80 a | 50.81 ± 24 a |
160 | 4.40 ± 0.0 d | 3.03 ± 0.8 a | 139.60 ± 24 a | 73.45 ± 10 a |
CHF | 5.28 ± 0.0 c | 2.10 ± 0.4 b | 106.84 ± 6 b | 15.43 ± 7 b |
Inoculation | ||||
Ab | 7.33 ± 5.0 a | 3.15 ± 0.4 a | 115.23 ± 34 a | 35.40 ± 39 a |
Without Ab | 7.23 ± 3.6 b | 2.34 ± 0.1 b | 115.94 ± 25 a | 47.52 ± 34 a |
Ab × SM | ||||
ns | * | * | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade-Sifuentes, A.; Fortis-Hernández, M.; Preciado-Rangel, P.; Orozco-Vidal, J.A.; Yescas-Coronado, P.; Rueda-Puente, E.O. Azospirillum brasilense and Solarized Manure on the Production and Phytochemical Quality of Tomato Fruits (Solanum lycopersicum L.). Agronomy 2020, 10, 1956. https://doi.org/10.3390/agronomy10121956
Andrade-Sifuentes A, Fortis-Hernández M, Preciado-Rangel P, Orozco-Vidal JA, Yescas-Coronado P, Rueda-Puente EO. Azospirillum brasilense and Solarized Manure on the Production and Phytochemical Quality of Tomato Fruits (Solanum lycopersicum L.). Agronomy. 2020; 10(12):1956. https://doi.org/10.3390/agronomy10121956
Chicago/Turabian StyleAndrade-Sifuentes, Alfonso, Manuel Fortis-Hernández, Pablo Preciado-Rangel, Jorge Arnaldo Orozco-Vidal, Pablo Yescas-Coronado, and Edgar Omar Rueda-Puente. 2020. "Azospirillum brasilense and Solarized Manure on the Production and Phytochemical Quality of Tomato Fruits (Solanum lycopersicum L.)" Agronomy 10, no. 12: 1956. https://doi.org/10.3390/agronomy10121956
APA StyleAndrade-Sifuentes, A., Fortis-Hernández, M., Preciado-Rangel, P., Orozco-Vidal, J. A., Yescas-Coronado, P., & Rueda-Puente, E. O. (2020). Azospirillum brasilense and Solarized Manure on the Production and Phytochemical Quality of Tomato Fruits (Solanum lycopersicum L.). Agronomy, 10(12), 1956. https://doi.org/10.3390/agronomy10121956