Analysing the Structure of the Global Wheat Trade Network: An ERGM Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Network and Node-Related Statistics
2.2.1. Statistics Measures at Node Level
2.2.2. Statistics Measures at Network Level
2.3. Exponential Random Graph Models (EGRMs)
3. Results
3.1. The Topology of the WTN
3.2. Exponential Random Graph Modelling of Global Wheat Trade Flows Network
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, P.; Yadava, R.K.; Gollen, B.; Kumar, S.; Kant Verma, R.; Yadav, S. Nutritional Contents and Medicinal Properties of Wheat: A Review. Life Sci. Med. Res. 2011, 2011, 1–10. [Google Scholar]
- OECD/FAO. FAOSTAT. Online Statistical Database: Production. 2020. Available online: http://faostat3.fao.org/download/Q/QC/E (accessed on 31 January 2020).
- OECD/FAO. Agricultural Outlook 2018–2027, OECD Publishing, Paris/Food and Agriculture Organization of the United Nations, Rome. 2018. Available online: https://doi.org/10.1787/agr_outlook-2018-en (accessed on 31 January 2020).
- OECD/FAO. Novel Coronavirus (Covid-2019). 2019. Available online: http://www.fao.org/2019-ncov/analysis-detail/en/c/1268299/ (accessed on 31 January 2020).
- Puma, M.J.; Bose, S.; Chon, S.Y.; Cook, B.I. Assessing the evolving fragility of the global food system. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef]
- D’Amour, C.B.; Wenz, L.; Kalkuhl, M.; Steckel, J.C.; Creutzig, F. Teleconnected food supply shocks. Environ. Res. Lett. 2016, 11, 035007. [Google Scholar] [CrossRef]
- Jones, A.; Phillips, A. Historic Food Production Shocks: Quantifying the Extremes. Sustainability 2016, 8, 427. [Google Scholar] [CrossRef] [Green Version]
- Marchand, P.; Carr, J.A.; Dell’Angelo, J.; Fader, M.; Gephart, J.A.; Kummu, M.; Magliocca, N.R.; Porkka, M.; Puma, M.J.; Ratajczak, Z.; et al. Reserves and trade jointly determine exposure to food supply shocks. Environ. Res. Lett. 2016, 11, 95009. [Google Scholar] [CrossRef] [Green Version]
- Jägermeyr, J.; Robock, A.; Elliott, J.; Müller, C.; Xia, L.; Khabarov, N.; Folberth, C.; Schmid, E.; Liu, W.; Zabel, F.; et al. A regional nuclear conflict would compromise global food security. Proc. Natl. Acad. Sci. USA 2020, 117, 7071–7081. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Moya, E.; Adenso-Díaz, B.; Lozano, S. Analysis and vulnerability of the international wheat trade network. Food Secur. 2020, 1–16. [Google Scholar] [CrossRef]
- Ercsey-Ravasz, M.; Toroczkai, Z.; Lakner, Z.; Baranyi, J. Complexity of the International Agro-Food Trade Network and Its Impact on Food Safety. PLoS ONE 2012, 7, e37810. [Google Scholar] [CrossRef]
- Sartori, M.; Schiavo, S. Connected we stand: A network perspective on trade and global food security. Food Policy 2015, 57, 114–127. [Google Scholar] [CrossRef] [Green Version]
- Gephart, J.A.; Pace, M.L. Structure and evolution of the global seafood trade network. Environ. Res. Lett. 2015, 10, 125014. [Google Scholar] [CrossRef] [Green Version]
- Paarlberg, P.L.; Abbott, P.C. Oligopolistic Behavior by Public Agencies in International Trade: The World Wheat Market. Am. J. Agric. Econ. 1986, 68, 528–542. [Google Scholar] [CrossRef]
- Koo, W.W.; Karemera, D. Determinants of World Wheat Trade Flows and Policy Analysis. Can. J. Agric. Econ. 1991, 39, 439–455. [Google Scholar] [CrossRef]
- Konar, M.; Dalin, C.; Suweis, S.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Water for food: The global virtual water trade network. Water Resour. Res. 2011, 47, 05520. [Google Scholar] [CrossRef] [Green Version]
- D’Odorico, P.; Carr, J.A.; Laio, F.; Ridolfi, L. Spatial organization and drivers of the virtual water trade: A community-structure analysis. Environ. Res. Lett. 2012, 7, 034007. [Google Scholar] [CrossRef] [Green Version]
- Wang, C. A Social Network Analysis of International Wheat Trade. In Proceedings of the 3rd International Conference on Information Management, Innovation Management and Industrial Engineering, Kunming, China, 26–28 November 2010; Volume 1, pp. 413–416. [Google Scholar]
- Fair, K.R.; Bauch, C.T.; Anand, M. Dynamics of the Global Wheat Trade Network and Resilience to Shocks. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.; Yin, Q.; Lane, K.J.; Yan, Z.; Shi, T.; Liu, Y.; Bell, M.L. Competition and transmission evolution of global food trade: A case study of wheat. Physica A 2018, 509, 998–1008. [Google Scholar] [CrossRef]
- Robins, G.; Snijders, T.; Wang, P.; Handcock, M.; Pattison, P. Recent developments in exponential random graph (p*) models for social networks. Soc. Netw. 2007, 29, 192–215. [Google Scholar] [CrossRef] [Green Version]
- Koskinen, J.; Lomi, A. The Local Structure of Globalization. J. Stat. Phys. 2013, 151, 523–548. [Google Scholar] [CrossRef]
- Petrucci, A.; Rocco, E. Statistical Characterization of the Virtual Water Trade Network. In Analysis and Modeling of Complex Data in Behavioral and Social Sciences. Studies in Classification, Data Analysis, and Knowledge Organization; Vicari, D., Okada, A., Ragozini, G., Weihs, C., Eds.; Springer: Cham, Switzerland, 2014; pp. 211–219. [Google Scholar]
- Relun, A.; Grosbois, V.; Alexandrov, T.; Sánchez-Vizcaíno, J.M.; Waret-Szkuta, A.; Molia, S.; Etter, E.M.C.; Martínez-López, B. Prediction of Pig Trade Movements in Different European Production Systems Using Exponential Random Graph Models. Front. Veter Sci. 2017, 4, 27. [Google Scholar] [CrossRef] [Green Version]
- Norbutas, L. Offline constraints in online drug marketplaces: An exploratory analysis of a cryptomarket trade network. Int. J. Drug Policy 2018, 56, 92–100. [Google Scholar] [CrossRef]
- Smith, M.; Gorgoni, S.; Cronin, B. International production and trade in a high-tech industry: A multilevel network analysis. Soc. Netw. 2019, 59, 50–60. [Google Scholar] [CrossRef]
- Kanrak, M.; Nguyen, H.O.; Du, Y. Maritime Transport Network Analysis: A Critical review of Analytical Methods and Applications. J. Int. Logist. Trade 2019, 17, 113–122. [Google Scholar] [CrossRef]
- Thurner, P.W.; Schmid, C.S.; Cranmer, S.; Kauermann, G. Network Interdependencies and the Evolution of the International Arms Trade. J. Confl. Resolut. 2018, 63, 1736–1764. [Google Scholar] [CrossRef]
- Wu, G.; Feng, L.; Peres, M.; Dan, J. Do self-organization and relational embeddedness influence free trade agreements network formation? Evidence from an exponential random graph model. J. Int. Trade Econ. Dev. 2020, 29, 995–1017. [Google Scholar] [CrossRef]
- Wasserman, S.; Pattison, P.E. Logit Models and Logistic Regression for Social Networks: An Introduction to Markov Graphs and p*. Electron. J. Stat. 1996, 63, 401–425. [Google Scholar] [CrossRef]
- Brashears, M.E. Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications. Contemp. Sociol. A J. Rev. 2014, 43, 552–553. [Google Scholar] [CrossRef]
- Strauss, D.; Ikeda, M. Pseudolikelihood Estimation for Social Networks. J. Am. Stat. Assoc. 1990, 85, 204–212. [Google Scholar] [CrossRef]
- Geyer, C.J.; Thompson, E.A. Constrained Monte Carlo Maximum Likelihood for Dependent Data. J. Royal Stat. Soc. 1992, 54, 657–699. [Google Scholar] [CrossRef]
- Snijders, T.A.B. Markov chain Monte Carlo estimation of exponential random graph models. J. Soc. Struct. 2002, 3, 1–40. [Google Scholar]
- Hunter, D.R.; Handcock, M.S. Inference in Curved Exponential Family Models for Networks. J. Comput. Graph. Stat. 2006, 15, 565–583. [Google Scholar] [CrossRef]
- De Benedictis, L.; Nenci, S.; Vicarelli, C. Network Analysis of World Trade Using the BACI-CEPII Dataset. Glob. Econ. J. 2014, 14, 287–343. [Google Scholar] [CrossRef] [Green Version]
- Fagiolo, G.; Mastrorillo, M. Does Human Migration Affect International Trade? A Complex-Network Perspective. PLoS ONE 2014, 9, e97331. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, K.; Rodgers, G. A microscopic study of the fitness-dependent topology of the world trade network. Phys. A Stat. Mech. Its Appl. 2015, 419, 64–74. [Google Scholar] [CrossRef]
- Cepeda, F.; Gamboa, F.; León, C.; Rincon, H. The Evolution of World Trade from 1995 to 2014: A Network Approach. SSRN Electron. J. 2017, 28, 452–485. [Google Scholar] [CrossRef] [Green Version]
- Borgatti, S.P.; Everett, M.G.; Freeman, L.C. Ucinet for Windows: Software for Social Network Analysis; Analytic Technologies: Harvard, MA, USA, 2002. [Google Scholar]
- Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-Law Distributions in Empirical Data. SIAM Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef] [Green Version]
- Albert, R.; Jeong, H.; Barabási, A.L. Attack and error tolerance of complex networks. Nature 2000, 406, 378–382. [Google Scholar] [CrossRef] [Green Version]
- Handcock, M.; Hunter, D.; Butts, C.; Goodreau, S.; Krivitsky, P.; Morris, M. ergm: Fit, Simulate and Diagnose Exponential-Family Models for Networks the Statnet Project. Rpackage Version 3.8.0. Available online: https://CRAN.R-project.org/package=ergm (accessed on 11 March 2020).
- Rhodes, C. Reciprocity in trade: The utility of a bargaining strategy. Int. Organ. 1989, 43, 273–299. [Google Scholar] [CrossRef]
- Shutters, S.T.; Muneepeerakul, R. Agricultural Trade Networks and Patterns of Economic Development. PLoS ONE 2012, 7, e39756. [Google Scholar] [CrossRef]
- Chaney, T. The Network Structure of International Trade. Am. Econ. Rev. 2014, 104, 3600–3634. [Google Scholar] [CrossRef] [Green Version]
- Chaney, T. The Gravity Equation in International Trade: An Explanation. J. Political Econ. 2013, 126, 150–177. [Google Scholar] [CrossRef] [Green Version]
- Garlaschelli, D.; Loffredo, M.I. Fitness-Dependent Topological Properties of the World Trade Web. Phys. Rev. Lett. 2004, 93, 188701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garlaschelli, D.; Loffredo, M.I. Structure and evolution of the world trade network. Phys. A Stat. Mech. Its Appl. 2005, 355, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Weinzettel, J.; Hertwich, E.G.; Peters, G.P.; Steen-Olsen, K.; Galli, A. Affluence drives the global displacement of land use. Glob. Environ. Chang. 2013, 23, 433–438. [Google Scholar] [CrossRef] [Green Version]
- González-Esteban, Á.L. Patterns of world wheat trade, 1945–2010: The long hangover from the second food regime. J. Agrar. Chang. 2017, 18, 87–111. [Google Scholar] [CrossRef] [Green Version]
- Harris, J.K. An Introduction to Exponential Random Graph Modeling; Sage: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Anderson, J.E.; Yotov, Y.V. Terms of trade and global efficiency effects of free trade agreements, 1990–2002. J. Int. Econ. 2016, 99, 279–298. [Google Scholar] [CrossRef] [Green Version]
Country | Average Annual of Exports (Tonnes) | Country | Average Annual of Imports (Tonnes) | Country | Average Annual of Production (Tonnes) |
---|---|---|---|---|---|
US | 26,208,349 (15.50%) | Egypt | 10,302,612 (6.17%) | China | 12,492,211 (17.51%) |
Russian Federation | 21,943,252 (12.97%) | Indonesia | 7,459,224 (4.47%) | India | 9,096,270 (12.75%) |
Canada | 20,399,502 (12.06%) | Algeria | 7,153,240 (4.29%) | Russia Federation | 6,022,793 (8.45%) |
France | 18,713,389 (11.06%) | Italy | 7,038,934 (4.22%) | US | 5,671,135 (7.95%) |
Australia | 17,590,152 (10.40%) | Brazil | 6,202,215 (3.72%) | France | 3,745,670 (5.25%) |
Ukraine | 11,332,862 (6.70%) | Japan | 5,665,702 (3.40%) | Canada | 2,913,554 (4.09%) |
Germany | 8,505,329 (5.03%) | Spain | 5,363,981 (3.21%) | Pakistan | 2,486,908 (3.49%) |
Argentina | 7,267,218 (4.30%) | Netherlands | 4,683,566 (2.81%) | Australia | 2,475,048 (3.47%) |
Kazakhstan | 4,641,570 (2.74%) | Turkey | 4,310,652 (2.58%) | Germany | 2,427,295 (3.40%) |
Romania | 4,296,731 (2.54%) | Philippines | 3,624,535 (2.17%) | Ukraine | 2,257,099 (3.16%) |
WTN (2009–2013) | WTN (2014–2018) | |
---|---|---|
Num. of nodes | 205 | 206 |
Num. of ties | 2880 | 3114 |
Density | 0.069 | 0.073 |
Diameter | 6 | 7 |
Average geodesic distance | 2.6 | 2.4 |
Average degree | 28.09 | 30.23 |
In/Out-degree centralization | 0.192/0.601 | 0.209/0.638 |
Average node strength | 1,987,868 | 2,018,854 |
Num. of mutual/Num. of asymm/Num.of null dyads | 494/1892/18,524 | 595/1923/18,597 |
Arc/Dyad reciprocity | 0.341/0.206 | 0.381/0.235 |
Global transitivity | 0.384 | 0.386 |
Degree Assortativity | −0.189 | −0.231 |
Exponent (α) | Cut-off (xmin) | Parameters’ Uncertainty | |||||
---|---|---|---|---|---|---|---|
Std α | Std xmin | Std Tail | Std KS | p-Value | |||
Total degree | 3.34/3.81 | 52/72 | 0.06/0.04 | 2.60/2.31 | 29.97/25.04 | 0.07/0.04 | 0.61/0.76 |
In-degree | 5.15/4.71 | 29/27 | 1.21/2.53 | 5.05/4.63 | 21.91/19.65 | 0.09/0.06 | 0.60/0.56 |
Out-degree | 3.16/2.80 | 39/35 | 0.07/0.04 | 2.61/2.87 | 29.97/31.25 | 0.09/0.04 | 0.01/0.02 |
Total strength | 1.41/1.74 | 99,002/787,911 | 0.03/0.04 | 6564.3/7413.1 | 6.52/5.64 | 0.01/0.02 | 0.56/0.42 |
In-strength | 1.48/1.62 | 99,374/199,333 | 0.04/0.01 | 4,026.1/5289.3 | 6.63/7.21 | 0.01/0.03 | 0.99/0.84 |
Out-strength | 1.36/1.21 | 93,260/412.4 | 0.05/ | 7992.1/9845.6 | 6.30/5.25 | 0.01/0.02 | 0.99/0.10 |
Country | WTN (2008–2013) | Country | WTN (2014–2018) |
---|---|---|---|
Zambia | 9455.35 | Switzerland | 9101.35 |
U.K. | 9230.15 | France | 6377.26 |
U.S. | 7083.67 | U.K. | 6153.92 |
Mexico | 5863.23 | Serbia | 5042.09 |
Turkey | 5839.08 | Zambia | 4970.08 |
Switzerland | 5732.90 | Belgium | 4777.87 |
Greece | 5301.15 | Taiwan | 4605.39 |
Luxembourg | 5240.98 | Spain | 4395.35 |
Denmark | 5045.32 | China | 4065.25 |
U.A.E. | 4616.40 | Slovenia | 4050.36 |
Norway | 4336.05 | Kazakhstan | 4004.39 |
France | 4261.75 | Italy | 3857.03 |
India | 3964.15 | New Zealand | 3842.50 |
Bahrain | 3943.67 | Turkey | 3582.12 |
New Zealand | 3607.68 | U.A.E. | 3410.58 |
Germany | 3188.68 | Singapore | 3319.07 |
Belgium | 2714.72 | U.S. | 3304.45 |
Finland | 2501.10 | Canada | 3233.08 |
Brazil | 2424.18 | Mexico | 2986.15 |
Chile | 2373.75 | Germany | 2808.13 |
Variable | Configuration | Statistic | Definition (Source) [Measure Unit] | |
---|---|---|---|---|
Network structure effects | Edges | A baseline propensity for a country to form a link with another country. | ||
Mutual | The network nodes contribute to form interactions. | |||
# of active import countries: 11 | Countries with 11 import partners. | |||
# of active import countries: 12 | Countries with 12 import partners. | |||
# of active import countries: 13 | Countries with 13 import partners. | |||
# of active import countries: 14 | Countries with 14 import partners. | |||
# of active import countries: 15 | Countries with 15 import partners. | |||
# of active export countries: 2 | Countries with two export partners. | |||
# of active export countries: 3 | Countries with three export partners. | |||
# of active export countries: 4 | Countries with four export partners. | |||
# of active export countries: 5 | Countries with five export partners. | |||
Node attribute effects | Homophily (Same region indicator) | Number of links in which the exporter and importer belongs to the same region, , counted separately for each possible region, otherwise. Regions: North America; South America; Europa; Africa; Asia; Oceania. if importer and exporter | ||
Gross Domestic Product (Importer country) | Gross Domestic Product of importer country, purchasing power parity terms (constant 2017 billion international dollars). | |||
Exporter’s land surface | The amount of land in the exporter country that is potentially cultivable (in thousand hectares). | |||
US or Canada source country | Number of links involving US or Canada as exporter country, , otherwise. | |||
US or Canada destination country | Number of links involving US or Canada as importer country, , otherwise. | |||
Origin region: S. America | If the source of exports comes from a country in the South America region, , otherwise (reference group: North America). | |||
Origin region: Europe | If the source of exports comes from a country in the Europe region, , otherwise. | |||
Origin region: Africa | If the source of exports comes from a country in the Africa region, , otherwise. | |||
Origin region: Asia | If the source of exports comes from a country in the Asia region, , otherwise. | |||
Origin region: Oceania | If the source of exports comes from a country in the Oceania region, , otherwise. | |||
Destination region: S. America | If the exports destination is a country in the South America region, , otherwise. (Reference group: North America) | |||
Destination region: Europe | If the exports destination is a country in the Europe region, , otherwise. | |||
Destination region: Africa | If the exports destination is a country in the Africa region, , otherwise. | |||
Destination region: Asia | If the exports destination is a country in the Asia region, , otherwise. | |||
Destination region: Oceania | If the exports destination is a country in the Oceania region, , otherwise. |
Parameter | ERGM Term | WTN (2009–2013) | WTN (2014–2018) | ||
---|---|---|---|---|---|
Basic Model | Proposed Model | Basic Model | Proposed Model | ||
Network structure effects | Edges | −2.962 *** (0.023) | −3.335 *** (0.005) | −2.897 *** (0.025) | −3.187 *** (0.005) |
Mutual | 2.481 *** (0.065) | 2.149 *** (0.005) | 2.419 *** (0.063) | 2.238 *** (0.005) | |
# of active import countries: 11 | - | −1.970 *** (0.010) | - | - | |
# of active import countries: 12 | - | −1.409 *** (0.011) | - | - | |
# of active import countries: 13 | - | −2.633 *** (0.013) | - | −0.874 *** (0.007) | |
# of active import countries: 14 | - | −1.799 *** (0.010) | - | −0.615 *** (0.007) | |
# of active import countries: 15 | - | - | - | −1.416 *** (0.009) | |
# of active export countries: 2 | - | - | - | 5.428 *** (0.025) | |
# of active export countries: 3 | - | 0.310 *** (0.011) | - | 3.341 *** (0.023) | |
# of active export countries: 4 | - | 0.081 *** (0.011) | - | 2.362 *** (0.021) | |
# of active export countries: 5 | - | 0.038 *** (0.008) | - | 0.320 *** (0.016) | |
Nodal attribute effects | Homophily (Same region indicator) | - | 0.144 *** (0.003) | - | 0.197 *** (0.003) |
Gross Domestic Product (Importer country) | - | 3.611 × 10−5 *** (7.532 × 10−6) | - | 2.740 × 10−5 *** (6.777 × 10−6) | |
Exporter’s land surface | - | 2.497 × 10−5 *** (5.747 × 10−7) | - | 2.193 × 10−5 *** (5.634 × 10−7) | |
USA or Canada source country | - | 1.178 *** (0.016) | - | 1.482 *** (0.016) | |
USA or Canada destination country | 0.013 *** (0.015) | - | 0.099 *** (0.015) | ||
Source reg_S. America | - | −0.4755 *** (0.006) | - | −0.378 *** (0.004) | |
Source reg._Europe | - | 0.0664 *** (0.004) | - | 0.593 *** (0.004) | |
Source reg._Africa | - | −0.613 *** (0.005) | - | −0.241 *** (0.004) | |
Source region_Asia | - | −0.4309 *** (0.004) | - | −0.304 *** (0.005) | |
Source reg._Oceania | - | −0.262 *** (0.007) | - | −0.137 *** (0.007) | |
Destination reg._S. America | - | −0.408 *** (0.007) | - | −0.341 *** (0.007) | |
Destination reg._Europe | - | 0.364 *** (0.005) | - | 0.352 *** (0.005) | |
Destination reg_Africa | - | 0.108 *** (0.004) | - | 0.107 *** (0.005) | |
Destination reg._Asia | - | 0.039 *** (0.005) | - | 0.091 *** (0.005) | |
Destination reg_Oceania | - | −0.383 *** (0.008) | - | −0.475 *** (0.008) | |
Model diagnostics | L (θM) | −10,463.4 | −8581.40 | −10,253 | −8773.5 |
AIC | 20,862 | 20,173 | 20,498 | 17,600 | |
BIC | 20,879 | 20,311 | 20,515 | 17,806 | |
Goodness of fit | 0.01 | 0.18 | 0.06 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Moya, E.; Lozano, S.; Adenso-Díaz, B. Analysing the Structure of the Global Wheat Trade Network: An ERGM Approach. Agronomy 2020, 10, 1967. https://doi.org/10.3390/agronomy10121967
Gutiérrez-Moya E, Lozano S, Adenso-Díaz B. Analysing the Structure of the Global Wheat Trade Network: An ERGM Approach. Agronomy. 2020; 10(12):1967. https://doi.org/10.3390/agronomy10121967
Chicago/Turabian StyleGutiérrez-Moya, Ester, Sebastián Lozano, and Belarmino Adenso-Díaz. 2020. "Analysing the Structure of the Global Wheat Trade Network: An ERGM Approach" Agronomy 10, no. 12: 1967. https://doi.org/10.3390/agronomy10121967
APA StyleGutiérrez-Moya, E., Lozano, S., & Adenso-Díaz, B. (2020). Analysing the Structure of the Global Wheat Trade Network: An ERGM Approach. Agronomy, 10(12), 1967. https://doi.org/10.3390/agronomy10121967