Forecrop Effects on Abundance and Diversity of Soil Microorganisms during the Growth of the Subsequent Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Treatments
2.2. Weather Conditions
2.3. Soil Sampling
2.4. DNA Isolation and Analysis
2.4.1. Ammonia Oxidizing Archaea (AOA) Population
2.4.2. Total Archaeal, Bacterial, and Fungal Community
2.4.3. The Structure of the Fungal and Bacterial Population
2.5. Biochemical Analysis of Soil
2.6. Statistical Analysis
3. Results
3.1. Forecrops and Sampling Time Result in Changes in Genetic Diversity of Ammonia-Oxidizing Archaea (AOA) Community
3.1.1. Differences in the AOA Community Structure (DGGE Method) Were Observed for Forecrop Treatment and Sampling Time
3.1.2. Relative Abundance of Total Archaeal, Bacterial and Fungal Community Was Modified by Forecrops
3.2. Forecrops Affected Fungal and Bacterial Community Composition and Abundance
3.2.1. Faba Bean as Forecrop Promotes Higher Abundance of Potentially Beneficial Fungi than Wheat
3.2.2. Changes in Fungal Trophic Mode and Guilds as Affected by Forecrops
3.2.3. Forecrops Shift Bacterial Community in Soil
3.3. Soil Enzymes Response to Forecrops Differs Depending on Enzyme
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dalias, P. Grain legume effects on soil nitrogen mineralization potential and wheat productivity in a Mediterranean environment. Arch. Agron. Soil Sci. 2015, 61, 461–473. [Google Scholar] [CrossRef]
- Köpke, U.; Thomas Nemecek, T. Ecological services of faba bean. Field Crop. Res. 2010, 115, 217–233. [Google Scholar] [CrossRef]
- Yusuf, A.A.; Abaidoo, R.C.; Iwuafor, E.N.O.; Olufajo, O.O.; Sanginga, N. Rotation effects of grain legumes and fallow on maize yield, microbial biomass and chemical properties of an Alfisol in the Nigerian savanna. Agric. Ecosyst. Environ. 2009, 129, 325–331. [Google Scholar] [CrossRef]
- Siczek, A.; Kalembasa, S.; Kalembasa, D.; Becher, M.; Symanowicz, B. Influence of Nod factors on the quantity and distribution in faba bean of symbiotically fixed nitrogen as determined by the 15N isotope dilution method. Crop. Sci. 2020, 60, 2720–2731. [Google Scholar] [CrossRef]
- Muleta, D. Legume Response to Arbuscular Mycorrhizal Fungi Inoculation in Sustainable Agriculture. In Microbes for Legume Improvement; Zaidi, A., Khan, M., Musarrat, J., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Ellouze, W.; Hamel, C.; Vujanovic, V.; Gan, Y.; Bouzid, S.; St-Arnaud, M. Chickpea genotypes shape the soil microbiome and affect the establishment of the subsequent durum wheat crop in the semiarid North American Great Plains. Soil Biol. Biochem. 2013, 63, 129–141. [Google Scholar] [CrossRef]
- Pereira, S.; Mucha, Â.; Gonçalves, B.; Bacelar, E.; Látr, A.; Ferreira, H.; Oliveira, I.; Rosa, E.; Marques, G. Improvement of some growth and yield parameters of faba bean (Vicia faba) by inoculation with Rhizobium laguerreae and arbuscular mycorrhizal fungi. Crop. Pasture Sci. 2019, 70, 595–605. [Google Scholar] [CrossRef]
- Qiao, X.; Bei, S.; Li, C.; Dong, Y.; Li, H.; Christie, P.; Zhang, F.; Zhang, J. Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat. Sci. Rep. 2015, 5, 8122. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Goh, M. Management practices of antecedent leguminous and non-leguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance. Eur. J. Agron. 2002, 16, 295–308. [Google Scholar] [CrossRef]
- Preissel, S.; Reckling, M.; Schläfke, N.; Zander, P. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review. Field Crop. Res. 2015, 175, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Scalise, A.; Tortorella, D.; Pristeri, A.; Petrovičová, B.; Gelsomino, A.; Lindström, K.; Monti, M. Legume-barley intercropping stimulates soil N supply and crop yield in the succeeding durum wheat in a rotation under rainfed conditions. Soil Biol. Biochem. 2015, 89, 150–161. [Google Scholar] [CrossRef]
- Song, Y.N.; Zhang, F.S.; Marschner, P.; Fan, F.L.; Gao, H.M.; Bao, X.G.; Sun, J.H.; Li, L. Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biol. Fert. Soils 2007, 43, 565–574. [Google Scholar] [CrossRef]
- Biederbeck, V.O.; Zentner, R.P.; Campbell, C.A. Soil microbial populations and activities as influenced by legume green fallow in a semiarid climate. Soil Biol. Biochem. 2005, 37, 1775–1784. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Rice, W.A.; Clayton, G.W. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol. Biochem. 1998, 30, 1733–1741. [Google Scholar] [CrossRef]
- Granzow, S.; Kaiser, K.; Wemheuer, B.; Pfeiffer, B.; Daniel, R.; Vidal, S.; Wemheuer, F. The effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment. Front. Microbiol. 2017, 8, 902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Liang, Y.; Li, C.; Wang, F.; Sui, Y.; Suvannang, N.; Zhou, J.; Sun, B. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol. Biochem. 2016, 95, 250–261. [Google Scholar] [CrossRef] [Green Version]
- Alvey, S.; Yang, C.-H.; Buerkert, A.; Crowley, D.E. Cereal/legume rotation effects on rhizosphere bacterial community structure in west african soils. Biol. Fertil. Soils 2003, 37, 73–82. [Google Scholar] [CrossRef]
- Xuan, D.T.; Guong, V.G.; Rosling, A.; Alström, S.; Chai, B.; Högberg, N. Different crop rotation systems as drivers of change in soil bacterial community structure and yield of rice, Oryza Sativa. Biol. Fertil. Soils 2012, 48, 217–225. [Google Scholar] [CrossRef]
- Nevins, C.J.; Nakatsu, C.; Armstrong, S. Characterization of microbial community response to cover crop residue decomposition. Soil Biol. Biochem. 2018, 127, 39–49. [Google Scholar] [CrossRef]
- Pascault, N.; Ranjard, L.; Kaisermann, A.; Bachar, D.; Christen, R.; Terrat, S.; Mathieu, O.; Lévêque, J.; Mougel, C.; Henault, C.; et al. Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems 2013, 16, 810–822. [Google Scholar] [CrossRef]
- Kjeldahl, J.G. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern (new method for the determination of nitrogen in organic substances). Z. Anal. Chem. 1883, 22, 366–383. [Google Scholar] [CrossRef] [Green Version]
- Gryta, A.; Frąc, M.; Oszust, K. Community shift in structure and functions across soil profile in response to organic waste and mineral fertilization strategies. Appl. Soil Ecol. 2020, 143, 55–60. [Google Scholar] [CrossRef]
- Siczek, A.; Frąc, M.; Gryta, A.; Kalembasa, S.; Kalembasa, D. Variation in soil microbial population and enzyme activities under faba bean as affected by pentachlorophenol. Appl. Soil Ecol. 2019, 150, 103466. [Google Scholar] [CrossRef]
- Gryta, A.; Frąc, M. Methodological Aspects of Multiplex Terminal Restriction Fragment Length Polymorphism-Technique to Describe the Genetic Diversity of Soil Bacteria, Archaea and Fungi. Sensors 2020, 20, 3292. [Google Scholar] [CrossRef]
- Junier, P.; Junier, T.; Witzel, K.P. TRiFLe, a Program for in silico terminal restriction fragment length polymorphism analysis with user-defined sequence sets. Appl. Environ. Microbiol. 2008, 74, 6452–6456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikhailov, I.S.; Zakharova, Y.R.; Galachyants, Y.P.; Usoltseva, M.V.; Petrova, D.P.; Sakirko, M.V.; Likhoshway, Y.V.; Grachev, A.M.A. Similarity of structure of taxonomic bacterial communities in the photic layer of lake Baikal’s three basins differing in spring phytoplankton composition and abundance. Dokl. Biochem. Biophys. 2015, 465, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, P.A.; Bálint, M.; Greshake, B.; Bandowa, C.; Römbke, J.; Schmitt, I. Illumina metabarcoding of a soil fungal community. Soil Biol. Biochem. 2013, 65, 128–132. [Google Scholar] [CrossRef]
- Vilgalys Mycology Lab. Conserved Primer Sequences for PCR Amplification and Sequencing from Nuclear Ribosomal RNA. 1992. Available online: https://sites.duke.edu/vilgalyslab/rdna_primers_for_fungi (accessed on 13 July 2020).
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Thalmann, A. Zur Methodik der Bestimmung der Dehydrogenase—Aktivität im Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtsh 1968, 21, 249–258. [Google Scholar]
- Alef, K. Dehydrogenase activity. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK, 1995; pp. 228–231. [Google Scholar]
- Alef, K.; Nannipieri, P. Protease activity. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK, 1995; pp. 31–315. [Google Scholar]
- Zantua, M.I.; Bremner, J.M. Stability of urease in soils. Soil Biol. Biochem. 1977, 9, 135–140. [Google Scholar] [CrossRef]
- Schinner, F.; Von Mersi, W. Xylanase-, CM-Cellulase- and Invertase Activity in Soil: An Improved Method. Soil Biol. Biochem. 1990, 22, 511–515. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Navarro-Noya, Y.E.; Gómez-Acata, S.; Montoya-Ciriaco, N.; Rojas-Valdez, A.; Suárez-Arriaga, M.C.; Valenzuela-Encinas, C.; Jiménez-Bueno, N.; Verhulst, N.; Govaerts, B.; Dendooven, L. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol. Biochem. 2013, 65, 86–95. [Google Scholar] [CrossRef]
- Hue, A.G.; Voldeng, H.D.; Savard, M.E.; Fedak, G.; Tian, X.; Hsiang, T. Biological control of fusarium head blight of wheat with Clonostachys rosea strain ACM941. Can. J. Plant. Pathol. 2009, 31, 169–179. [Google Scholar] [CrossRef]
- Luongo, L.; Galli, M.; Corazza, L.; Meekes, E.; De Haas, L.; Van Der Plas, C.L.; Köhl, J. Potential of fungal antagonists for biocontrol of Fusarium sp. in wheat and maize through competition in crop debris. Biocontrol Sci. Technol. 2005, 15, 229–242. [Google Scholar] [CrossRef]
- Duba, A.; Goriewa-Duba, K.; Wachowska, U. A Review of the Interactions between Wheat and Wheat Pathogens: Zymoseptoria tritici, Fusarium spp. and Parastagonospora nodorum. Int. J. Mol. Sci. 2018, 19, 1138. [Google Scholar] [CrossRef] [Green Version]
- de Lamo, F.J.; Takken, F.L.W. Biocontrol by Fusarium oxysporum using endophyte- mediated resistance. Front. Plant. Sci. 2020, 11, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappas, M.L.; Liapoura, M.; Papantoniou, D.; Avramidou, M.; Kavroulakis, N.; Weinhold, A.; Broufas, G.D.; Papadopoulou, K.K. The Beneficial Endophytic Fungus Fusarium solani Strain K Alters Tomato Responses against Spider Mites to the Benefit of the Plant. Front. Plant. Sci. 2018, 9, 1603. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wu, X.; Li, G.; Qin, P. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol. Fertil. Soils 2011, 47, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Beale, R.E.; Pitt, D. The Antifungal Properties of Minimedusa-polyspora. Mycol. Res. 1995, 99, 337–342. [Google Scholar] [CrossRef]
- Gallardo, G.L.; Butler, M.; Gallo, M.L.; Rodríguez, M.A.; Eberlin, M.N.; Cabrera, G.M. Antimicrobial metabolites produced by an intertidal Acremonium furcatum. Phytochemistry 2006, 67, 2403–2410. [Google Scholar] [CrossRef] [Green Version]
- Altaf, M.M.; Imran, M.; Abulreesh, H.H.; Khan, M.S.A.; Ahmad, I. Diversity and Applications of Penicillium spp. in Plant-Growth Promotion. In New and Future Developments in Microbial Biotechnology and Bioengineering; Gupta, V.K., Rodriguez-Couto, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 261–276. [Google Scholar]
- Mącik, M.; Gryta, A.; Frąc, M. Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Adv. Agron. 2020, 162. [Google Scholar] [CrossRef]
- Mahdhi, M.; Tounekti, T.; Khemira, H. Occurrence of arbuscular mycorrhizal fungi and nodules in the roots of twelve legume species in South-Western Saudi Arabia. Acta Sci. Pol. Hortorum Cultus 2018, 17, 53–60. [Google Scholar] [CrossRef]
- Mahmoudi, N.; Cruz, C.; Mahdhi, M.; Mars, M.; Caeiro, M.F. Arbuscular mycorrhizal fungi in soil, roots and rhizosphere of Medicago truncatula: Diversity and heterogeneity under semi-arid conditions. PeerJ 2019, 7, e6401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoudi, N.; Dias, T.; Mahdhi, M.; Cruz, C.; Mars, M.; Caeiro, M.F. Does Arbuscular Mycorrhiza Determine Soil Microbial Functionality in Nutrient-Limited Mediterranean Arid Ecosystems? Diversity 2020, 12, 234. [Google Scholar] [CrossRef]
- Gorlach-Lira, K.; Stefaniak, O. Antagonistic activity of bacteria isolated from crops cultivated in a rotation system and a monoculture against Pythium debaryanum and Fusarium oxysporum. Folia Microbiol. 2009, 54, 447–450. [Google Scholar] [CrossRef]
- Amaresan, N.; Kumar, K.; Naik, J.H.; Bapatla, K.G.; Mishra, R.K. Streptomyces in Plant Growth Promotion: Mechanisms and Role. In New and Future Developments in Microbial Biotechnology and Bioengineering; Singh, B.P., Gupta, V.K., Passari, A.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 125–135. Available online: https://doi.org/10.1016/b978-0-444-63994-3.00008-4 (accessed on 3 November 2020).
- Daims, H.; Wagner, M. Nitrospira. Trends Microbiol. 2018, 26. [Google Scholar] [CrossRef]
- Fierer, N.; Mark, A.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Ujvári, G.; Korsodi, A.K.; Megyes, M.; Mucsi, M.; Szili-Kovács, T.; Szabó, A.; Szalai, Z.; Jakab, G.; Márialigeti, K. Comparison of Soil Bacterial Communities from Juvenile Maize Plants of a Long-Term Monoculture and a Natural Grassland. Agronomy 2020, 10, 341. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Nie, C.; Liu, Y.; Du, W.; He, P. Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland. Sci. Total Environ. 2019, 654, 264–274. [Google Scholar] [CrossRef]
- Uksa, M.; Schloter, M.; Endesfelder, D.; Kublik, S.; Engel, M.; Kautz, T.; Köpke, U.; Fischer, D. Prokaryotesin Subsoil—Evidence for a Strong Spatial Separation of Different Phyla by Analysing Co-occurrence Networks. Front. Microbiol. 2015, 6, 1269. [Google Scholar] [CrossRef] [Green Version]
- Petersson, A.; Thomsen, M.H.; Hauggaard-Nielsen, H.; Thomsen, A.-B. Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioenergy 2007, 31, 812–819. [Google Scholar] [CrossRef] [Green Version]
- Thapa, S.; Mishra, J.; Arora, N.; Priya Mishra, P.; Li, H.; O’Hair, J.; Bhatti, S.; Zhou, S. Microbial cellulolytic enzymes: Diversity and biotechnology with reference to lignocellulosic biomass degradation. Rev. Environ. Sci. Biotechnol. 2020, 19, 621–648. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Lambers, H.; Bolland, M.D.; Veneklaas, E.J. Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant. Soil 2005, 271, 175–187. [Google Scholar] [CrossRef]
- Valente, I.M.; Maia, M.R.G.; Malushi, N.; Oliveira, H.M.; Lumturi Papa, L.; Rodrigues, J.A.; Fonseca, A.J.M.; Cabrita, A.R.J. Profiling of phenolic compounds and antioxidant properties of European varieties and cultivars of Vicia faba L. pods. Phytochemistry 2018, 152, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Cesco, S.; Mimmo, T.; Tonon, G.; Tomasi, N.; Pinton, R.; Terzano, R.; Neumann, G.; Weisskopf, L.; Renella, G.; Landi, L.; et al. Plant-borne flavonoids released into the rhizosphere: Impact on soil bio-activities related to plant nutrition. A review. Biol. Fertil. Soils 2012, 48, 123–149. [Google Scholar] [CrossRef]
- Siczek, A.; Frąc, M.; Wielbo, J.; Kidaj, D. Benefits of flavonoids and straw mulch application on soil microbial activity in pea rhizosphere. Int. J. Environ. Sci. Technol. 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.-X.; Haudenshield, J.S.; Bowen, C.R.; Hartman, G.L. Metagenome-Wide Association Study and Machine Learning Prediction of Bulk Soil Microbiome and Crop Productivity. Front. Microbiol. 2017, 8, 519. [Google Scholar] [CrossRef]
- Yang, H.; Ma, J.; Rong, Z.; Zeng, D.; Wang, Y.; Hu, S.; Ye, W.; Zheng, X. Wheat Straw Return Influences Nitrogen-Cycling and Pathogen Associated Soil Microbiota in a Wheat–Soybean Rotation System. Front. Microbiol. 2019, 10, 1811. [Google Scholar] [CrossRef] [Green Version]
Forecrop | Yield (g m−2) | C/N | ||
---|---|---|---|---|
Biomass | N | C | ||
Faba bean | 404 (5.9) a | 1.88 (0.03) b | 168.6 (2.6) a | 37.5 (0.8) a |
Wheat | 459 (47.7) a | 1.08 (0.18) a | 192.8 (18.5) a | 76.0 (10.4) b |
Enzyme | Substrate | Reference |
---|---|---|
Dehydrogenase | 2,3,5-triphenyltetrazolium chloride (TTC) | Thalmann [30], modified by Alef [31] |
β -glucosidase | 4-Nitrophenyl β-D-glucopyranoside (PNG) | Alef and Nannipieri [32] |
Urease | urea | Zantua and Bremner [33] |
Cellulase | carboxymethylcellulose (CMC) sodium salt | Schinner and von Mersi [34] |
Acid phosphomonoesterase | p-nitrophenyl phosphate (PNP) | Tabatabai and Bremner [35] |
Sampling Term | Treatment | ||
---|---|---|---|
Faba Bean | Wheat | Reference Soil | |
T1 | 89 | 137 | 56 |
T2 | 150 | 142 | 111 |
T3 | 114 | 110 | 68 |
Term | The Total Richness for All Treatments | The Number of Species in Group | The Number of Species Common for All Treatments | % of Species Common for All Treatments | The Number of Species Specific for Treatment | ||||
---|---|---|---|---|---|---|---|---|---|
F | W | R | F | W | R | ||||
Fungi | |||||||||
T1 | 467 | 257 | 261 | 283 | 178 | 69 | 73 | 59 | 33 |
T2 | 431 | 226 | 249 | 276 | 170 | 75 | 43 | 65 | 45 |
T3 | 396 | 219 | 213 | 242 | 158 | 72 | 62 | 51 | 29 |
Bacteria | |||||||||
T1 | 44 | 39 | 42 | 34 | 28 | 72 | 0 | 1 | 0 |
T2 | 44 | 42 | 39 | 33 | 30 | 71 | 2 | 1 | 1 |
T3 | 44 | 37 | 42 | 29 | 23 | 62 | 0 | 2 | 1 |
Enzyme | Term | Forecrop | p Values | ||||
---|---|---|---|---|---|---|---|
Faba Bean | Wheat | Reference | Term (T) | Forecrop (F) | T × F | ||
Dehydrogenase (ug TPF g−1 d−1) | T1 | 26.5 bB | 31.5 aA | 18.3 cA | 0.000 | 0.000 | 0.000 |
T2 | 35.4 aA | 28.3 bA | 21.1 cA | ||||
T3 | 21.0 aC | 18.4 aB | 8.2 bB | ||||
β-Glucosidase (mg PNP kg−1 h−1) | T1 | 206 bB | 231 aA | 174 cA | 0.000 | 0.000 | 0.000 |
T2 | 228 aB | 195 bB | 158 cA | ||||
T3 | 252 aA | 233 aA | 170 bA | ||||
Urease (mg N-NH4 kg−1 h−1) | T1 | 2.6 aB | 2.6 aB | 1.9 bA | 0.000 | 0.000 | 0.004 |
T2 | 3.0 aA | 3.3 aA | 2.2 bA | ||||
T3 | 2.5 aB | 2.1 bC | 1.9 bA | ||||
Cellulase (µg glucose g−1 d−1) | T1 | 41.1 cB | 123.0 aA | 71.4 bA | 0.000 | 0.000 | 0.000 |
T2 | 54.8 bAB | 77.5 aB | 55.2 bB | ||||
T3 | 68.2 bA | 88.2 aB | 31.8 cC | ||||
Acid phosphomonoesterase (mg PNP kg−1 h−1) | T1 | 27.1 bB | 34.0 aB | 34.3 aB | 0.000 | 0.000 | 0.000 |
T2 | 33.8 bA | 38.2 aA | 39.7 aA | ||||
T3 | 29.0 abB | 31.3 aC | 28.4 bC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siczek, A.; Frąc, M.; Gryta, A. Forecrop Effects on Abundance and Diversity of Soil Microorganisms during the Growth of the Subsequent Crop. Agronomy 2020, 10, 1971. https://doi.org/10.3390/agronomy10121971
Siczek A, Frąc M, Gryta A. Forecrop Effects on Abundance and Diversity of Soil Microorganisms during the Growth of the Subsequent Crop. Agronomy. 2020; 10(12):1971. https://doi.org/10.3390/agronomy10121971
Chicago/Turabian StyleSiczek, Anna, Magdalena Frąc, and Agata Gryta. 2020. "Forecrop Effects on Abundance and Diversity of Soil Microorganisms during the Growth of the Subsequent Crop" Agronomy 10, no. 12: 1971. https://doi.org/10.3390/agronomy10121971
APA StyleSiczek, A., Frąc, M., & Gryta, A. (2020). Forecrop Effects on Abundance and Diversity of Soil Microorganisms during the Growth of the Subsequent Crop. Agronomy, 10(12), 1971. https://doi.org/10.3390/agronomy10121971