Effect of a Micronutrient Fertilizer and Fungicide on the Germination of Perennial Ryegrass Seeds (Lolium perenne L.) in Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field
2.2. Weather Conditions
2.3. Germination Capacity Determination
- m—the number of germinated seeds on a given day,
- d—the number of days from sowing to the removal of the seeds from the dish.
- m—the number of germinated seeds on a given day,
- d—the number of days from sowing to the removal of the seeds from the dish.
- m—the number of germinated seeds on a given day,
- d—the number of days from sowing to the removal of the seeds from the dish.
2.4. Statistical Data Analysis
3. Results
4. Discussion
5. Conclusions
- The fungicide in combination with micronutrient fertilizer had a positive effect on the germination of perennial ryegrass seeds. For the combined application of their full doses (A2 × B2, 1 L∙ha−1 each), 95.3% of the seeds germinated, which was 2% more than for the control;
- Maguire’s index, with its high value for the combined full doses of the first and second factors (A2 × B2), indicated the ability of the seeds to germinate quickly;
- The germination time increased for full combined doses of the fertilizer and fungicide (A2 × B2);
- The application of micronutrients improved the germination capacity relative to the control;
- Half a dose of the fungicide resulted in a 1.5% increase in the germination capacity relative to the control, but a dose of 1 L∙ha−1 reduced this value by 0.3%.
Author Contributions
Funding
Conflicts of Interest
References
- Cunningham, P.J.; Blumenthal, M.J.; Anderson, M.W.; Prakash, K.S.; Leonforte, A. Perennial ryegrass improvement in Australia. N. Z. J. Agric. Res. 1994, 37, 295–310. [Google Scholar] [CrossRef]
- Peeters, A. Wild and sown grasses. In Profiles of a Temperate Species Selection: Ecology, Biodiversity and Use, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2004. [Google Scholar]
- Humphreys, M.W.; Feurstein, U.; Vandewalle, M.; Baert, J.R. Fodder Crops and Amenity Grasses. Handbook of Plant Breeding 5; Boller, B., Ed.; Springer Science Business Media, LLC: Cham, Switzerland, 2010; pp. 211–260. [Google Scholar]
- Katova, A. Study of Morphological Traits, Biological Properties and Agricultural Value of Plant Germplasm of Perennial Ryegrass (L. perenne L.) with a View to Breeding. Ph.D. Thesis, Agricultural Academy, Sofia, Bulgaria, 2005. [Google Scholar]
- Katova, A. Study of growth and development of perennial Variability of morphological characters of collection accessions of perennial ryegrass... 1023 ryegrass in pure stand and in mixtures with alfalfa. J. Mt. Agric. Balk. 2016, 19, 111–135. [Google Scholar]
- Hannaway, D.; Fransen, S.; Cropper, J.; Teel, M.; Chaney, M.; Griggs, T.; Halse, R.; Hart, J.; Cheeke, P.; Hansen, D.; et al. Perennial Ryegrass (Lolium perenne L.); Pacific NorthWest Extension Publications Oregon State University: Corvallis, OR, USA, 1999; pp. 1–21. [Google Scholar]
- Sampoux, J.P.; Baudouin, P.; Bayle, B.; Beguier, V.; Bourdon, P.; Chosson, J.F.; Brujin, K.D.; Deneufbourg, F.; Galbrun, C.; Ghesquiere, M.; et al. Breeding perennial ryegrass (Lolium perenne L.) for turf usage: An assessment of genetic improvements in cultivars released in Europe, 1974–2004. Grass Forage Sci. 2013, 68, 33–48. [Google Scholar] [CrossRef]
- Dimitrova, T.; Katova, A. Selectivity of Some Herbicides to Perennial ryegrass (Lolium perenne L.), Grown for Seed Production. Pestic. Phytomed. 2011, 26, 129–134. [Google Scholar] [CrossRef]
- Kozłowski, S. Trawy–Właściwości, Występowanie i Wykorzystanie; Powszechne Wydawnictwo Rolnicze i Leśne: Poznan, Poland, 2012. [Google Scholar]
- Martyniak, J. Poziom krajowego nasiennictwa traw pastewnych a stan biologicznych użytków zielonych w Polsce. Woda-Środowisko-Obsz. Wiej. 2009, 1, 21–38. [Google Scholar]
- Stypiński, P. Trawy w życiu człowieka. Łąkarstwo w Polsce (Grassl. Sci. Pol.) 2016, 19, 245–261. [Google Scholar]
- Boelt, B.; Studer, B. Breeding for grass seed yield. In Fodder Crops and Amenity Grasses; Boller, B., Posselt, U.K., Veronesi, F., Eds.; Springer: New York, NY, USA, 2010; pp. 161–174. [Google Scholar]
- Grygierzec, B. Effect of nitrogen fertilization on seed production of Lolium perenne L. turfgrass cultivars. Ecol. Chem. Eng. 2011, 18, 1675–1682. [Google Scholar]
- Goliński, P. Możliwości zwiększenia wydajności plantacji nasiennych Lolium perenne. Łąkarstwo w Polsce 2002, 5, 65–74. [Google Scholar]
- Szczepanek, M. Stability of perennial ryegrass (Lolium perenne L.) plants cultivated for seeds at varied levels of nitrogen fertilization. EJPAU 2006, 9, 56. [Google Scholar]
- Young, W.C., III; Youngberg, H.W.; Chilcote, D.O. Spring nitrogen speed and timing influence on seed yield components of perennial ryegrass. Agron. J. 1996, 88, 947–951. [Google Scholar] [CrossRef]
- Datnoff, L.E.; Elmer, W.H.; Huber, D.M. Mineral Nutrition and Plant Disease; The American Phytopathological Society: St. Paul, MN, USA, 2007. [Google Scholar]
- Dimkpa, C.; Bindraban, P. Fortification of micronutrients for efficient agronomic production: A review. In Agronomy for Sustainable Development; Springer/EDP Sciences/INRA: Cham, Switzerland, 2016; Volume 36, pp. 1–27. [Google Scholar]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier: Oxford, UK, 2012. [Google Scholar]
- Kerse, G.W.; Ballard, D.L. Cyproconazole–A new DMI fungicide. In Proceedings of the 42nd New Zealand Weed and Pest Control Conference, Taranki Country Lodge, New Zealand, 8–10 August 1989; pp. 114–118. [Google Scholar]
- Rolston, M.P.; McCloy, B.L.; Harvey, I.C.; Chynoweth, R.W. Ryegrass (Lolium perenne) seed yield response to fungicides: A summary of 12 years of field research. N. Z. Plant Prot. 2009, 62, 343–348. [Google Scholar] [CrossRef]
- Jiang, Y.; Su, D. Models of turfgrass seed germination related to water content. PLoS ONE 2018, 13, e0204983. [Google Scholar] [CrossRef] [PubMed]
- Roberto, G.G.; Coan, A.I.; Habermann, G. Water content and GA3-induced embryonic cell expansion explain Euterpeedulis seed germination, rather than seed reserve mobilisation. Seed Sci. Technol. 2011, 39, 559–571. [Google Scholar] [CrossRef]
- Donohue, K.; Dorn, L.; Griffith, C.; Kim, E.; Aguilera, A.; Polisetty, C.R.; Schmitt, J. The evolutionary ecology of seed germination of Arabidopsis thaliana: Variable natural selection on germination timing. Evolution 2005, 59, 758–770. [Google Scholar] [CrossRef] [PubMed]
- Gorecki, M.J.; Long, R.L.; Flematti, G.R.; Stevens, J.C. Parental environment changes the dormancy state and karrikinolide response of Brassica tournefortii seeds. Ann. Bot. 2012, 109, 1369–1378. [Google Scholar] [CrossRef] [Green Version]
- Qaderi, M.M.; Cavers, P.B.; Bernards, M.A. Pre- and post-dispersal factors regulate germination patterns and structural characteristics of Scotch thistle (Onopordum acanthium) cypselas. New Phytol. 2003, 159, 263–278. [Google Scholar] [CrossRef]
- Donohue, K. Completing the cycle: Maternal effects as the missing link in plant life histories. Philos. Trans. R. Soc. Biol. Sci. 2009, 364, 1059–1074. [Google Scholar] [CrossRef] [Green Version]
- Luzuriaga, A.L.; Escudero, A.; Perez-Garcia, F. Environmental maternal effects on seed morphology and germination in Sinapis arvensis (Cruciferae). Weed Res. 2006, 46, 163–174. [Google Scholar] [CrossRef]
- El-Keblawy, A.; Al-Rawai, A. Effects of seed maturation time and dry storage on light and temperature requirements during germination in invasive prosopis juliflora. Flora 2006, 201, 135–143. [Google Scholar] [CrossRef]
- Cieśla, A.; Kraszewski, W.; Skowron, M.; Syrek, P. Wpływ działania pola magnetycznego na kiełkowanie nasion. Przegląd Elektrochem. 2015, 91, 125–128. [Google Scholar]
- Orzeszko-Rywka, A.; Rochalska, M.; Chamczyńska, M. Ocena przydatności olejków roślinnych do zaprawiania nasion wybranych roślin uprawnych. J. Res. Appl. Agric. Eng. 2010, 55, 36–41. [Google Scholar]
- Dhanamanjuri, W.; Thoudam, R.; Dutta, B.K. Effect of some pesticides (Fungicides) on the germination and growth of seeds/seedlings of some crop plants, (i.e., Cicer arietinum and Zea mays). Middle East J. Sci. Res. 2013, 17, 627–632. [Google Scholar]
- Sharma, K.K.; Singh, U.S.; Sharma, P.; Kumar, A.; Sharma, L. Seed treatments for sustainable agriculture-a review. J. Appl. Nat. Sci. 2015, 7, 521–539. [Google Scholar] [CrossRef]
- Solorzano, C.D.; Malvick, D.K. Effects of fungicide seed treatments on germination, population, and yield of maize grown from seed infected with fungal pathogens. Field Crops Res. 2011, 122, 173–178. [Google Scholar] [CrossRef]
- Tietjen, K. Contribution of plant responses to efficacy of fungicides–A perspective. In Modern Fungicides and Antifungal Compounds; Deising, H.B., Fraaije, B., Mehl, A., Oerke, E.C., Sierotzki, H., Stammler, G., Eds.; Deutsche Phytomedizinische Gesellschaft: Braunschweig, Germany, 2017; Volume VIII, pp. 33–50. [Google Scholar]
- Czembor, E. Wartość rolnicza europejskich odmian życicy trwałej (Lolium perenne L.) w warunkach Polski. Biul. IHAR 2007, 245, 223–247. [Google Scholar]
- Skinder, Z.; Gałczyński, M. Wpływ dolistnego nawożenia mikroelementami na plonowanie życicy trwałej. Zesz. Nauk. AR Krakowie Ses. Nauk. 1988, 54, 457–459. [Google Scholar]
- Mondal, S.; Bose, B. Impact of micronutrient seed priming on germination, growth, development, nutritional status and yield aspects of plants. J. Plant Nutr. 2019, 42, 2577–2599. [Google Scholar] [CrossRef]
- Spiak, Z. Mikroelementy w rolnictwie. Zesz. Probl. Postępów Nauk Rol. 2000, 471, 29–34. [Google Scholar]
- Borawska-Jarmułowicz, B.; Mastalerczuk, G.; Gozdowski, D.; Maluszynska, E.; Szydłowska, A. The sensitivity of Lolium perenne and Poa pspeednsis to salinity and drought during the seed germination and under different photoperiod conditions. Zemdirb. Agric. 2017, 104, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Hua, X.; Peng, X.; Dong, B.; Yan, X. Germination Responses of Ryegrass (Annual vs. Perennial) Seed to the Interactive Effects of Temperature and Salt-Alkali Stress. Front. Plant Sci. 2018, 9, 1458. [Google Scholar] [CrossRef]
- Kaliniewicz, Z.; Jadwisieńczak, K.; Jadwisieńczak, B.; Potkaj, Ł. Correlations between germination capacity and selected physical properties of perennial ryegrass cv. Maja seeds. Tech. Sci. Univ. Warm. Mazury Olszt. 2016, 19, 5–16. [Google Scholar]
Substance | Time of Application | Growth Stage | Rate |
---|---|---|---|
Micronutrient | 1st decade of April | Full tillering—2nd node | Single rate: 1 kg·ha−1 |
Fungicide | 1st decade of April | Full tillering—2nd node | Single rate: 1 L·ha−1 |
Month | Rainfall [mm] | Mean Temperature [°C] | ||||||
---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2016–2018 | 2016 | 2017 | 2018 | 2016–2018 | |
January | 56.2 | 13.5 | 20.6 | 30.1 | −1.1 | −3.2 | 2.9 | −0.5 |
February | 27.7 | 27.5 | 2.8 | 19.3 | 3.9 | 1.2 | −2.4 | 2.7 |
March | 56.2 | 35.0 | 26.5 | 39.2 | 4.3 | 6.9 | 1.2 | 4.1 |
April | 27.7 | 63.8 | 24.6 | 38.7 | 8.8 | 8.3 | 13.9 | 10.3 |
May | 26.4 | 40.2 | 49.4 | 38.7 | 15.3 | 14.6 | 17.1 | 15.7 |
June | 59.6 | 65.2 | 51.1 | 58.6 | 19.0 | 19.1 | 19.5 | 19.2 |
July | 105.0 | 142.6 | 72.9 | 106.8 | 19.9 | 19.6 | 20.8 | 20.1 |
August | 22.6 | 64.1 | 11.4 | 32.7 | 18.5 | 19.9 | 21.7 | 20.0 |
September | 39.1 | 66.1 | 51.2 | 52.1 | 16.5 | 13.5 | 16.1 | 15.4 |
October | 87.5 | 71.4 | 46.1 | 68.3 | 8.5 | 11.1 | 10.4 | 10.0 |
November | 44.0 | 34.8 | 12.5 | 30.4 | 3.7 | 5.7 | 5.3 | 4.9 |
December | 37.2 | 27.1 | 41.7 | 35.3 | 1.6 | 3.0 | 2.6 | 2.4 |
Total (April–September) | Mean (April–September) | |||||||
280.4 | 442.0 | 260.6 | 327.7 | 16.3 | 15.8 | 18.2 | 16.8 | |
Total | Mean | |||||||
589.2 | 651.3 | 410.8 | 724.3 | 9.9 | 10.0 | 10.8 | 10.2 |
Treatment | Factor A [g] | Mean | |||
---|---|---|---|---|---|
Control (A0) | 0.5 kg of Microelement Fertilizer (A1) | 1 kg of Microelement Fertilizer (A2) | |||
Factor B [g] | Control (B0) | 3.65 1 | 3.60 1 | 3.68 1 | 3.64 |
0.5 L of fungicide (B1) 1 | 3.65 1 | 3.53 1 | 3.68 1 | 3.62 | |
1 L of fungicide (B2) 1 | 3.58 1 | 3.65 1 | 3.65 1 | 3.63 | |
Mean | 3.63 | 3.59 | 3.67 | 3.63 |
Treatment | Factor A | Mean | |||
---|---|---|---|---|---|
Control (A0) | 0.5 kg of Microelement Fertilizer (A1) | 1 kg of Microelement Fertilizer (A2) | |||
Factor B (after 1 day) | Control (B0) | 0.0 1 | 0.0 1 | 0.0 1 | 0.0 |
0.5 L of fungicide (B1) | 0.0 1 | 0.0 1 | 0.0 1 | 0.0 | |
1 L of fungicide (B2) | 0.0 1 | 0.0 1 | 0.0 1 | 0.0 | |
Mean | 0.0 | 0.0 | 0.0 | 0.0 | |
Factor B (after 5 days) | Control (B0) | 87.3 1,2 | 79.5 1 | 85.0 1 | 83.9 |
0.5 L of fungicide (B1) | 80.3 1 | 81.3 1,2 | 83.0 1,2 | 81.5 | |
1 L of fungicide (B2) | 76.8 1,2 | 78.5 1 | 86.5 1,2 | 80.6 | |
Mean | 81.5 | 79.8 | 84,8 | 82.0 | |
Factor B (after 10 days) | Control (B0) | 93.3 1 | 93.5 1 | 94.0 1 | 93.6 |
0.5 L of fungicide (B1) | 94.8 1 | 95.0 1 | 94.8 1 | 94.8 | |
1 L of fungicide (B2) | 93.0 1 | 94.5 1 | 95.3 1 | 94.3 | |
Mean | 93.7 | 94.3 | 94.7 | 94.2 | |
Factor B (after 14 days) | Control (B0) | 93.3 1 | 93.5 1 | 94.0 1 | 93.6 |
0.5 L of fungicide | 94.8 1 | 95.0 1 | 94.8 1 | 94.8 | |
1 L of fungicide | 93.0 1 | 94.5 1 | 95.3 1 | 94.3 | |
Mean | 93.7 | 94.3 | 94.7 | 94.2 |
Treatment | Factor A | Mean | |||
---|---|---|---|---|---|
Control (A0) | 0.5 kg of Microelement Fertilizer (A1) | 1 kg of Microelement Fertilizer (A2) | |||
Factor B | Control (B0) | 280.8 1 | 278.3 1 | 275.3 1 | 280.3 |
0.5 L of fungicide (B1) | 281.7 1 | 283.1 1 | 280.3 1 | 282.8 | |
1 L of fungicide (B2) | 275.2 1 | 283.6 1 | 286.2 1 | 280.6 | |
Mean | 279.2 | 280.6 | 283.8 | 281.2 |
Treatment | Factor A | Mean | |||
---|---|---|---|---|---|
Control (A0) | 0.5 kg of Micronutrient Fertilizer (A1) | 1 kg of Micronutrient Fertilizer (A2) | |||
Factor B | Control (B0) | 58.8 1 | 55.2 1 | 57.8 1 | 57.3 |
0.5 L of fungicide (B1) | 56.1 1 | 56.9 1 | 58.1 1 | 57.0 | |
1 L of fungicide (B2) | 54.4 1 | 55.3 1 | 59.5 1 | 56.4 | |
Mean | 56.4 | 55.8 | 58.4 | 56.9 |
Treatment | Factor A | Mean | |||
---|---|---|---|---|---|
Control (A0) | 0.5 kg of Micronutrient Fertilizer (A1) | 1 kg of Micronutrient Fertilizer (A2) | |||
Factor B | Control (B0) | 0.166 1 | 0.171 1 | 0.168 1 | 0.168 |
0.5 L of fungicide (B1) | 0.170 1 | 0.170 1 | 0.168 1 | 0.169 | |
1 L of fungicide (B2) | 0.172 1 | 0.172 1 | 0.167 1 | 0.170 | |
Mean | 0.169 | 0.171 | 0.167 | 0.169 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakusek, M.; Brennensthul, M.; Markowska, J.; Wolski, K.; Sobol, Ł. Effect of a Micronutrient Fertilizer and Fungicide on the Germination of Perennial Ryegrass Seeds (Lolium perenne L.) in Field Conditions. Agronomy 2020, 10, 1978. https://doi.org/10.3390/agronomy10121978
Jakusek M, Brennensthul M, Markowska J, Wolski K, Sobol Ł. Effect of a Micronutrient Fertilizer and Fungicide on the Germination of Perennial Ryegrass Seeds (Lolium perenne L.) in Field Conditions. Agronomy. 2020; 10(12):1978. https://doi.org/10.3390/agronomy10121978
Chicago/Turabian StyleJakusek, Mateusz, Marek Brennensthul, Joanna Markowska, Karol Wolski, and Łukasz Sobol. 2020. "Effect of a Micronutrient Fertilizer and Fungicide on the Germination of Perennial Ryegrass Seeds (Lolium perenne L.) in Field Conditions" Agronomy 10, no. 12: 1978. https://doi.org/10.3390/agronomy10121978
APA StyleJakusek, M., Brennensthul, M., Markowska, J., Wolski, K., & Sobol, Ł. (2020). Effect of a Micronutrient Fertilizer and Fungicide on the Germination of Perennial Ryegrass Seeds (Lolium perenne L.) in Field Conditions. Agronomy, 10(12), 1978. https://doi.org/10.3390/agronomy10121978