Solar Drying of Greenhouse Crop Residues for Energy Valorization: Modeling and Determination of Optimal Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse Crop Residues
2.2. Moisture Context
2.3. Solar-Drying Trials
2.4. Equilibrium Moisture
3. Results and Discussion
3.1. Drying Tests
3.2. Modeling the Drying Process
3.3. Drying Simulations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Usmani, Z.; Sharma, M.; Karpichev, Y.; Pandey, A.; Kuhad, R.C.; Bhat, R.; Punia, R.; Aghbashlo, M.; Tabatabaei, M.; Gupta, V.K. Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context. Renew. Sustain. Energy Rev. 2020, 131, 109965. [Google Scholar] [CrossRef]
- Estadística IN de E. Cuenta de los residuos/estadísticas sobre la producción de residuos. Año. 2017. Available online: https://www.ategrus.org/docuteca/informe/ine-cuentas-medioambientales-cuenta-de-los-residuos-ano-2017/ (accessed on 22 November 2020).
- Consejeria de Agricultura P y DR. Cartografía de Invernaderos En Almería, Granada y Málaga. Sevilla. 2017. Available online: https://www.juntadeandalucia.es/export/drupaljda/Cartografia%20_inv_AL_GR_MA_SEE.pdf (accessed on 22 November 2020).
- Fundación Cajamar. Residuos Vegetales Procedentes de Los Invernaderos de Almería; Fundación Cajamar: Almería, Spain, 2016. [Google Scholar]
- Reinoso Moreno, J.V.; Pinna-Hernández, G.; Fernández, M.F.; Sánchez-Molina, J.A.; Díaz, F.R.; Hernández, J.L.; Fernández, F.A. Optimal processing of greenhouse crop residues to use as energy and CO2 sources. Ind. Crop. Prod. 2019, 137, 662–671. [Google Scholar] [CrossRef]
- Nagle, M.; Habasimbi, K.; Mahayothee, B.; Haewsungcharern, M.; Janjai, S.; Müller, J. Fruit processing residues as an alternative fuel for drying in Northern Thailand. Fuel 2011, 90, 818–823. [Google Scholar] [CrossRef]
- Zinla, D.; Gbaha, P.; Koffi, P.M.E.; Koua, B.K. Characterization of rice, coffee and cocoa crops residues as fuel of thermal power plant in Côte d’Ivoire. Fuel 2021. [Google Scholar] [CrossRef]
- Fernandez, A.; Ortiz, L.R.; Asensio, D.; Rodriguez, R.; Mazza, G. Kinetic analysis and thermodynamics properties of air/steam gasification of agricultural waste. J. Environ. Chem. Eng. 2020, 8, 103829. [Google Scholar] [CrossRef]
- Pinna-Hernández, M.G. Solar-biomass hybridization in thermoelectric plant. Unpublished work. 2017. [Google Scholar]
- Fudholi, A.; Sopian, K.; Ruslan, M.H.; Alghoul, M.A.; Sulaiman, M.Y. Review of solar dryers for agricultural and marine products. Renew. Sustain. Energy Rev. 2010, 14, 1–30. [Google Scholar] [CrossRef]
- El-Sebaii, A.A.; Shalaby, S.M. Solar drying of agricultural products: A review. Renew. Sustain. Energy Rev. 2012, 16, 37–43. [Google Scholar] [CrossRef]
- Perea-Moreno, A.J.; Juaidi, A.; Manzano-Agugliaro, F. Solar greenhouse dryer system for wood chips improvement as biofuel. J. Clean. Prod. 2016, 135, 1233–1241. [Google Scholar] [CrossRef]
- Consejería de Agricultura P y DR. Líneas de Actuación de Las Consejerías de Agrícultura, Pesca y Desarrollo Rural y de Medio Ambiente y Ordenación Del Territorio En Materia de Gestión de Restos Vegetales En La Hortícultura de Andalucía. Sevilla. 2016. Available online: https://www.juntadeandalucia.es/export/drupaljda/Lineas_actuacion_materia_gestion_restos_vegetales_horticultura_Andalucia.pdf (accessed on 22 November 2020).
- Melero, J.A.; Iglesias, J.; Sánchez, A.G. Utilización de biomasa como materia prima de refinerías convencionales de petróleo: El caso de los bio-aceites. Ind. Química 2014, 12, 32–44. [Google Scholar]
- Pinna-Hernández, M.G.; Martínez-Soler, I.; Villanueva, M.J.D.; Fernández, F.G.A.; López, J.L.C. Selection of biomass supply for a gasification process in a solar thermal hybrid plant for the production of electricity. Ind. Crop. Prod. 2019, 137, 339–346. [Google Scholar] [CrossRef]
- Asociación Española de la Normalización (AENOR). UNE-EN 14774-1; AENOR: Madrid, Spain, 2010. [Google Scholar]
- Maroulis, Z.B.; Tsami, E.; Marinos-Kouris, D.; Saravacos, G.D. Application of the GAB model to the moisture sorption isotherms for dried fruits. J. Food Eng. 1988, 7, 63–78. [Google Scholar] [CrossRef]
- Krokida, M.K.; Karathanos, V.T.; Maroulis, Z.B.; Marinos-Kouris, D. Drying kinetics of some vegetables. J. Food Eng. 2003, 59, 391–403. [Google Scholar] [CrossRef]
- Agencia Estatal de Meteorología. Base de Datos Climatológicos. Available online: http://www.aemet.es/es/ (accessed on 22 November 2020).
Crop Residue | Crop Arrangement | Temperature (°C) | Relative Moisture (%) | Equilibrium Moisture (kgwater/kgdrysolids) |
---|---|---|---|---|
Tomato | Hung | 105.0 | 0 | 0.01 |
23.5 | 52 | 0.06 | ||
−4.0 | 95 | 0.19 | ||
Stacked | 105.0 | 0 | 0.01 | |
23.5 | 52 | 0.09 | ||
−4.0 | 95 | 0.19 | ||
Pepper | Hung | 105.0 | 0 | 0.00 |
23.5 | 52 | 0.07 | ||
−4.0 | 95 | 0.16 | ||
Stacked | 105.0 | 0 | 0.00 | |
23.5 | 52 | 0.08 | ||
−4.0 | 95 | 0.18 |
Crop | b1 | b2 | b3 |
---|---|---|---|
Tomato | 0.007 | 21.857 | 2.960 |
Pepper | 0.014 | 17.336 | 2.320 |
k, day−1 (Tomato) | k, day−1 (Pepper) | |
---|---|---|
Hung | 0.129 | 0.158 |
Stacked 1.00 m | 0.093 | 0.086 |
Stacked 0.66 m | 0.095 | 0.114 |
Stacked 0.33 m | 0.101 | 0.122 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinna-Hernández, M.G.; Fernández, F.G.A.; Segura, J.G.L.; López, J.L.C. Solar Drying of Greenhouse Crop Residues for Energy Valorization: Modeling and Determination of Optimal Conditions. Agronomy 2020, 10, 2001. https://doi.org/10.3390/agronomy10122001
Pinna-Hernández MG, Fernández FGA, Segura JGL, López JLC. Solar Drying of Greenhouse Crop Residues for Energy Valorization: Modeling and Determination of Optimal Conditions. Agronomy. 2020; 10(12):2001. https://doi.org/10.3390/agronomy10122001
Chicago/Turabian StylePinna-Hernández, Maria Guadalupe, Francisco Gabriel Acien Fernández, José Gabriel López Segura, and José Luis Casas López. 2020. "Solar Drying of Greenhouse Crop Residues for Energy Valorization: Modeling and Determination of Optimal Conditions" Agronomy 10, no. 12: 2001. https://doi.org/10.3390/agronomy10122001
APA StylePinna-Hernández, M. G., Fernández, F. G. A., Segura, J. G. L., & López, J. L. C. (2020). Solar Drying of Greenhouse Crop Residues for Energy Valorization: Modeling and Determination of Optimal Conditions. Agronomy, 10(12), 2001. https://doi.org/10.3390/agronomy10122001