Parameters of Drainage Waters Collected during Soilless Tomato Cultivation in Mineral and Organic Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse Experimental Design
2.2. Drainage Water Sampling and Analyses
2.3. Microbiological Analyses of Drainage Waters
2.4. Statistical Analysis
3. Results and Discussion
3.1. Quantity of Drainage Waters Produced during Tomato Cultivation in Various Substrates
3.2. Physical and Chemical Parameters of Drainage Waters
3.3. Microbial Analyses of Drainage Waters
3.4. Tomato Yield
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vallance, J.; Déniel, F.; Le Floch, G.; Guérin-Durbana, L.; Blancard, D.; Rey, P. Pathogenic and beneficial microorganism in soilless cultures. Agron. Sustain. Dev. 2011, 31, 191–203. [Google Scholar] [CrossRef]
- Gruda, N. Do soilless culture have an influence on product quality of vegetables? J. Appl. Bot. Food Qual. 2009, 82, 141–147. [Google Scholar]
- Gruda, N. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. Available online: https://www.mdpi.com/2073-4395/9/6/298 (accessed on 26 October 2020). [CrossRef] [Green Version]
- Blok, C.; Urrestarazu, M. Substrate Growing Developments in Europe 2010–2027. Available online: www.horticom.com (accessed on 12 June 2009).
- Kern, J.; Tammeorg, P.; Shanskiy, M.; Sakrabani, R.; Knicker, H.; Kammann, C.; Tuhkanen, E.M.; Smidt, G.; Prasad, M.; Tiilikkala, K.; et al. Synergistic use of peat and charred material in growing media–an option to reduce the pressure on peatlands? J. Environ. Eng. Landsc. Manag. 2017, 25, 160–174. [Google Scholar] [CrossRef]
- Dyśko, J.; Kowalczyk, W. Changes of macro and micronutrients concentration in root medium and drainage water during tomato cultivation in rockwool. Veget. Crops Res. Bull. 2005, 62, 97–111. [Google Scholar]
- Munoz, P.; Antón, A.; Paranjpe, A.V.; Ariño, J.I.; Montero, J.I. High decrease in nitrate leaching by lower input without reducing greenhouse yield. Agron. Sustain. Dev. 2008, 28, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.B.; Gallardo, M.; Rodrìguez, J.S.; Sánchez-Molina, J.A.; Mágan, J.J. Effect of N uptake concentration on nitrate leaching from tomato grown in free draining soilless culture under Mediterranean conditions. Sci. Hortic. 2013, 150, 387–398. [Google Scholar] [CrossRef]
- Kowalczyk, W.; Dyśko, J.; Felczyńska, A. Trends of the content of selected mineral elements in waters for fertigation of vegetable grown under covers. Infrastruct. Ecol. Rural Areas 2013, 2, 167–175. [Google Scholar]
- Ehert, D.L.; Alsanius, B.; Wohanka, W.; Menzies, J.; Utkhede, R. Disinfection of recirculating nutrient solution in greenhouse horticulture. Agronomie 2001, 21, 323–339. [Google Scholar]
- Runia, W.T.H. A Review of possibilities for disinfection of recirculation water from soilless cultures. Acta Hortic. 1995, 382, 221–229. [Google Scholar] [CrossRef]
- Van Os, E.A. Engineering and environmental aspects of soilless growing systems. Acta Hortic. 1995, 396, 25–32. [Google Scholar] [CrossRef]
- Van Os, E.A. Closed soilless growing systems: A sustainable solution for Dutch greenhouse horticulture. Water Sci. Technol. 1999, 39, 105–112. [Google Scholar] [CrossRef]
- Dyśko, J.; Kaniszewski, S.; Kowalczyk, W. Wpływ fertygacji zalewowej na wzrost i rozwój rozsady pomidora szklarniowego uprawianego w podłożu organicznym. Infrastrukt. Ekol. Teren. Wiej. 2011, 5, 157–167. (In Polish) [Google Scholar]
- Stanghellini, C.; Kempkes, F.; Pardossi, A.; Incrocci, L. Closed water loop in greenhouses: Effect of water quality and value of produce. Acta Hortic. 2005, 691, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Breś, W.; Ruprik, B. Growing of greenhouse cherry tomato in coconut fibre with differentiated nitrogen and potassium fertilization. Part II. Changes in Chemical composition of nutrient solution in root environment. Acta Agrophys. 2006, 7, 539–543. [Google Scholar]
- Kleiber, T. Pollution of natural environment in intensive cultures under greenhouses. Arch. Environ. Protect. 2012, 38, 45–53. [Google Scholar] [CrossRef]
- Benoit, F.; Ceustermans, N. Growing cucumbers on ecologically sound substrates. Acta Hortic. 1995, 396, 55–66. [Google Scholar] [CrossRef]
- Malorgio, F.; Scacco, M.; Tognoni, F.; Pardossiet, A. Effect of nutrient concentration and water regime on cut rose production grown in hydroponic system. Acta Hortic. 2001, 559, 313–318. [Google Scholar] [CrossRef]
- Dyśko, J. Problemy w bezglebowej uprawie pomidora w zamkniętym układzie nawożenia z recyrkulacją pożywki. In Proceedings of the Congress of Greenhouse Agrotechnology, Warsaw, Poland, 1–2 December 2007; pp. 52–57. (In Polish). [Google Scholar]
- Tu, J.C.; Papadopoulos, A.P.; Hao, X.; Zheng, J. The relationship of Pythium root rot and rhizosphere microorganisms in a closed circulating and open system in rockwool culture of tomato. Acta Hortic. 1999, 481, 577–583. [Google Scholar] [CrossRef]
- Postma, J.; Willemsen-de Klein, M.J.; Van Elsas, J.D. Effect of the indigenous microflora on the development of root and crown rot caused by Pythium aphanidermatum in cucumber grown in rockwool. Phytopathology 2000, 90, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Runia, W.T.; Van Os, E.A.; Bollen, G.J. Disinfection of drain water from soilless cultures by heat treatment. Neth. J. Agr. Sci. 1998, 36, 231–238. [Google Scholar]
- Dyśko, J.; Kaniszewski, S. Use of textile and organic waste as a substrates for soilless cultivation of greenhouse tomato. In Proceedings of the Book Proceedings Nutrihort: Nutrient management Innovative Techniques and Nutrient Legislation in Intensive Horticulture for Improved Water Quality, Belgium, Ghent, 16–18 September 2013; pp. 253–257. [Google Scholar]
- Dyśko, J.; Kaniszewski, S.; Kowalczyk, W. Lignite as a new medium in soilless cultivation of tomato. J. Elementol. 2015, 20, 559–569. [Google Scholar] [CrossRef]
- Nowosielski, O. Rules for Fertilizer Recommendations in Gardening; PWRiL: Warsaw, Poland, 1988; p. 310. (In Polish) [Google Scholar]
- Martin, J.P. Use of acid, rose bengal, and streptomycin in the plate method for estimating soil fungi. Soil Sci. 1950, 69, 215–232. [Google Scholar] [CrossRef]
- Dhingra, O.D.; Sinclair, J.B. Basic Plant Pathology Methods; CRC Press, Inc.: Boca Raton, FL, USA; Lewis Publisher: London, UK, 1995; p. 369. [Google Scholar]
- Breś, W. Estimation of nutrient losses from open fertigation systems to soil during horticultural plant cultivation. Pol. J. Environ. Stud. 2009, 18, 341–345. [Google Scholar]
- Komosa, A. Podłoża inertne–Postęp czy inercja? Zesz. Prob. Postęp. Nauk Roln. 2002, 485, 147–167. (In Polish) [Google Scholar]
- Putra, A.; Yuliando, H. Soilless culture system to support water use efficiency and product quality: A review. Agric. Agric. Sci. Proc. 2015, 3, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Adams, P. Nutritional control in hydroponics. In Hydroponic Production of Vegetables and Ornamentals; Savas, D., Passam, H.C., Eds.; Embryo Publications: Athens, Greece, 2002; pp. 211–261. [Google Scholar]
- Sonneveld, C. Composition of nutrient solutions. In Hydroponic Production of Vegetables and Ornamentals; Savvas, D., Passam, H.C., Eds.; Embryo Publications: Athens, Greece, 2002; pp. 179–210. [Google Scholar]
- Moya, C.; Oyanedel, E.; Verdugo, G.; Fernendes Flores, M.; Urrestrazu, M.; Álvaro, J.E. Increased electrical conductivity in nutrient solution management enhances dietary and organoleptic qualities in soilless culture tomato. HortSciece 2017, 52, 868–872. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.R.; Cho, J.Y. Reuse of hydroponic waste solution. Environ. Sci. Pollut. Res. 2014, 21, 9569–9577. [Google Scholar] [CrossRef]
- Heisler, J.; Gilbert, P.M.; Burkholder, J.M.; Anderson, D.M.; Cochlan, W.; Dennison, W.C.; Dortch, Q.; Gobler, C.J.; Heil, C.A.; Humphries, E.; et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.J.; Brecher, R.W.; Copes, R.; Hrudey, S.E.; Payment, P. Turbidity and Microbial Risk in Drinking Water. Prepared for the Minister of Health Province of British Columbia. 2008. Available online: https://www.researchgate.net/publication/228605563 (accessed on 26 October 2020).
- Tan, C.W.; Thishalini, A.; Goh, E.G. Studies on turbidity in relation to suspended solid, velocity, temperature, pH, conductivity, colour and time. ARPN J. Engin. Appl. Sci. 2017, 12, 5626–5635. [Google Scholar]
- Azis, A.; Yusuf, H.; Faisala, Z.; Suradi, M. Water turbidity impact on discharge decrease of groundwater recharge in recharge reservoir. Procedia Eng. 2015, 125, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Koohakan, P.; Ikeda, H.; Jeanaksorn, T.; Tojo, M.; Kusakari, S.; Okada, K.; Sato, S. Evaluation of the indigenous microorganisms in soilless culture: Occurrence and quantitative characteristics in different growing systems. Sci. Hortic. 2004, 101, 179–188. [Google Scholar] [CrossRef]
- Bashir, O.; Khan, K.; Hakeem, K.R.; Mir, N.A.; Rather, G.H.; Mohiuddin, R. Soil microbe diversity and root exudates as important aspects of rhizosphere ecosystem. In Plant, Soil and Microbes; Hakeem, K.R., Akhtar, M.S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 337–357. [Google Scholar]
- Sasse, J.; Martinoia, E.; Northen, T. Feed your friends: Do plant exudates shape the root microbiome? Trends Plant Sci. 2018, 23, 25–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calmin, G.; Denler, G.; Belbahri, L.; Wigger, A.; Lefort, F. Molecular identification of microbial communities in the recycled nutrient solution of a tomato glasshouse soil-less culture. Open Hortic. J. 2008, 1, 7–14. [Google Scholar] [CrossRef]
- Vallance, J.; Le Floch, G.; Déniel, F.; Barbier, G.; Lévesque, C.A.; Rey, P. Pythium oligandrum biocontrol in the rhizosphere: Influence on fungal and oomycete population dynamics. Appl. Environ. Microbiol. 2009, 75, 4790–4800. [Google Scholar] [CrossRef] [Green Version]
- Grunert, O.; Hernandez-Sanabria, E.; Vilchez-Vargas, R.; Jauregui, R.; Pieper, D.H.; Perneel, M.; Van Labeke, M.C.; Reheul, D.; Boon, N. Mineral and organic growing media have distinct community structure, stability and functionality in soilless culture systems. Sci. Rep. 2015, 6, 18843. Available online: https://www.nature.com/articles/srep18837 (accessed on 26 October 2020). [CrossRef] [Green Version]
- Ghazanfar, M.U.; Raza, M.; Raza, W.; Qamar, M.I. Trichoderma as potential biocontrol agent, its exploitation in agriculture: A review. Plant Protect. 2018, 2, 109–135. [Google Scholar]
- Guzmán-Guzmán, P.; Porras-Troncoso, M.G.; Olmedo-Monfil, V.; Herrera-Estrella, A. Trichoderma species: Versatile plant symbionts. Phytopathology 2019, 109, 6–16. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.N.; Urrahman, U.; Khan, W.; Uddin, N.; Muhammad, M. Effect of Trichoderma harzianum on tomato plant growth and its antagonistic activity against Pythium ultimum and Phytophthora capsici. Egypt. J Biol. Pest Control 2018, 28. Available online: https://link.springer.com/article/10.1186/s41938-018-0032-5 (accessed on 26 October 2020). [CrossRef]
- Herrera-Téllez, V.; Cruz-Olmedo, A.K.; Plasencia, J.; Gavilanes-Ruiz, M.; Arce-Cervantes, O.; Hernández-León, S.; Saucedo-Garcia, M. The protective effect of Trichoderma asperellum on tomato plants against Fusarium oxysporum and Botrytis cinerea diseases involves inhibition of reactive oxygen species production. Int. J. Mol. Sci. 2019, 20. Available online: https://www.mdpi.com/1422-0067/20/8/2007/htm (accessed on 26 October 2020).
- David, B.V.; Chandrasehar, G.; Selvam, P.N. Pseudomonas fluorescens: A plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. In Crop Improvement through Microbial Biotechnology; Prasad, R., Gill, S.S., Tuteja, N., Eds.; International Institute of Biotechnology and Toxicology (IIBAT): Padappai, India, 2018; pp. 221–243. [Google Scholar] [CrossRef]
- Sahu, B.; Singh, J.; Shankar, G.; Pradhan, A. Pseudomonas fluorescens PGPR bacteria as well as biocontrol agent: A review. Int. J. Chem. Stud. 2018, 6, 1–7. [Google Scholar]
- Sivasakthi, S.; Usharani, G.; Saranraj, P. Biocontrol potentiality of plant growth promoting bacteria (PGPR)–Pseudomonas fluorescens and Bacillus subtilis: A review. Afr. J. Agri. Res. 2018, 9, 1265–1277. [Google Scholar]
- Botelho, G.R.; Mendonça-Hagler, L.C. Fluorescent pseudomonads associated with the rhizosphere of crops–An overview. Braz. J. Microbiol. 2006, 37, 401–416. [Google Scholar] [CrossRef] [Green Version]
- Qessaoui, R.; Bouharroud, R.; Furze, J.N.; El Aalaoui, M.; Akroud, H.; Amarraque, A.; Van Vaerenbergh, J.; Tahzima, R.; Mayad, E.H.; Chebli, B. Applications of new rhizobacteria Pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Sci. Rep. 2019. Available online: https://www.nature.com/articles/s41598-019-49216-8 (accessed on 26 October 2020).
- Déniel, F.; Rey, P.; Chérif, M.; Guillou, A.; Tirilly, Y. Indigenous bacteria with antagonistic and plant-growth-promoting activities improve slow-filtration efficiency in soilless cultivation. Can. J. Microbiol. 2004, 50, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Odonkor, S.T.; Ampofo, J.K. Escherichia coli as an indicator of bacteriological quality of water: An overview. Microbiol. Res. 2013, 4, 5–11. [Google Scholar] [CrossRef]
- Dankwa, A.S. Safety Assessment of Hydroponic Closed System. Master’s Thesis, The University of Maine, Orono, ME, USA, 2019. Available online: https://www.researchgate.net/publication/333718486_Safety_Assessment_of_Hydroponic_Closed_System (accessed on 26 October 2020).
- Monteiro Filho, A.F.; Azevedo, C.; Azevedo, M.R.D.Q.A.; Fernandes, J.D.; Barbosa Corrêa, E.; Santos, S.A.D. Microbiological and parasitological contamination of hydroponic grown curly lettuce under different optimized nutrient solutions. Austr. J. Crop Sci. 2018, 12, 400–406. [Google Scholar] [CrossRef]
- Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Available online: https://eur-lex.europa.eu/legal-content (accessed on 26 October 2020).
- Blumenthal, U.J.; Mara, D.D.; Peasey, A.; Ruiz-Palacios, G.; Stott, R. Guidelines for the microbiological quality of treated wastewater used in agriculture: Recommendations for revising WHO guidelines. Bull. World Health Organ. 2000, 78, 1104–1116. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2560847/ (accessed on 26 October 2020).
- Uyttendaele, M.; Jaykus, L.A.; Amoah, P.; Chiodini, A.; Cunliffe, D.; Jacxsens, L.; Holvoet, K.; Korsten, L.; Lau, M.; McClure, P.; et al. Microbial hazards in irrigation water: Standards, norms, and testing to manage use of water in fresh produce primary production. Compr. Rev. Food Sci. Food Saf. 2015, 14, 336–356. [Google Scholar] [CrossRef]
- Lopez, J.; Vásquez, F.; Ramos, F. Effect of substrate culture on growth, yield and fruit quality of the greenhouse tomato. Acta Hortic. 2004, 659, 417–424. [Google Scholar] [CrossRef]
- Kraska, T.; Kleinschmidt, B.; Weinand, J.; Pude, R. Cascading use of Miscanthus as growing substrate in soilless cultivation of vegetables (tomatoes, cucumbers) and subsequent direct combustion. Sci. Hortic. 2018, 235, 205–213. [Google Scholar] [CrossRef]
- Kilic, P.; Erdal, I.; Aktas, H. Effect of different substrates on yield and fruit quality of tomato grown in soilless culture. Infrastruct. Ecol. Rural Areas 2018, II/1, 249–262. [Google Scholar]
Substrate | pH | EC | Bulk Density kg m−3 | Water Capacity at pF 1.0% v/v | Air Capacity at pF 1.0% v/v |
---|---|---|---|---|---|
Rockwool | 7.5 | 0.15 | 62.5 | 66.1 | 31.5 |
Carbomat | 5.3 | 0.92 | 320.4 | 42.8 | 43.6 |
Biopot | 6.7 | 0.46 | 130.6 | 55.8 | 36.5 |
Coir Substrate | 6.4 | 0.94 | 108.4 | 68.6 | 24.6 |
Substrates | Consumption of Nutrient Solution (dm3/m2) | Drainage Water (dm3/m2) | Drainage Water (%) |
---|---|---|---|
Biopot | 1321 | 484 b | 36.6 b |
Rockwool | 1321 | 475 b | 36.0 b |
Coir Substrate | 1321 | 481 b | 36.4 b |
Carbomat | 1321 | 553 a | 41.8 a |
Substrates | N-NO3 | N-NH4 | P | K | Ca | Mg |
---|---|---|---|---|---|---|
Rockwool | 347 ± 22.6 a | 11.8 ± 4.9 a | 68.7 ± 11.2 a | 546 ± 43.6 a | 439 ± 33.8 a | 205 ± 17.4 a |
Carbomat | 312 ± 19.3 a | 10.7 ± 4.6 a | 61.8 ± 14.5 a | 461 ± 45.4 a | 390 ± 28.6 a | 148 ± 12.3 b |
Biopot | 191 ± 25.4 b | 15.8 ± 6.7 a | 17.9 ± 9.8 b | 535 ± 81.8 a | 375 ± 26.0 a | 176 ± 11.6 ab |
Coir Substrate | 331 ± 18.7 a | 11.5 ± 4.8 a | 79.0 ± 8.8 a | 658 ± 68.5 a | 396 ± 38.1 a | 174 ± 13.9 ab |
Substrates | Fe | Mn | Zn | Cu | B | Cl |
---|---|---|---|---|---|---|
Rockwool | 3.58 ± 0.48 a | 0.74 ± 0.14 a | 2.18 ± 0.40 a | 0.51 ± 0.04 a | 1.18 ± 0.10 a | 71.6± 13.6 b |
Carbomat | 2.68 ± 0.49 a | 1.29 ± 0.16 a | 1.42 ± 0.33 a | 0.17 ± 0.05 b | 1.61 ± 0.55 a | 61.5± 10.5 b |
Biopot | 4.55 ± 1.32 a | 1.41 ± 0.51 a | 1.51 ± 0.20 a | 0.29 ± 0.09 b | 1.31 ± 0.27 a | 308.3± 91.8a |
coir substrate | 1.86 ± 0.51 a | 0.93 ± 0.18 a | 2.05 ± 0.31 a | 0.35 ± 0.05 ab | 1.09 ± 0.13 a | 162.5± 68.8b |
Substrates | Mesophilic Bacteria (log10 cfu mL−1) | ||
---|---|---|---|
May | July | September | |
Drainage Water | |||
Rockwool | 5.81 ± 0.14 bc | 5.26 ± 0.31 b | 5.98 ± 0.14 ab |
Carbomat | 5.30 ± 0.16 c | 5.13 ± 0.17 b | 4.72 ± 0.22 c |
Coir Substrate | 5.70 ± 0.16 bc | 5.19 ± 0.08 b | 5.24 ± 0.15 bc |
Biopot | 6.15 ± 0.26 a | 5.57 ± 0.24 b | 5.94 ± 0.14 ab |
Root Zone | |||
Rockwool | 6.37 ± 0.23 ab | 5.71 ± 0.13 b | 5.61 ± 0.13 abc |
Carbomat | 5.99 ± 0.36 bc | 5.71 ± 0.15 b | 5.62 ± 0.17 abc |
Coir Substrate | 6.36 ± 0.14 a | 5.63 ± 0.18 b | 5.53 ± 0.16 abc |
Biopot | 6.86 ± 0.14 a | 6.56 ± 0.21 a | 6.61 ± 0.21 a |
Substrates | Filamentous fungi (log10 cfu mL−1) | ||
---|---|---|---|
May | July | September | |
Drainage Water | |||
Rockwool | 2.02 ± 0.22 d | 3.02 ± 0.26 a | 2.22 ± 0.64 c |
Carbomat | 3.21 ± 0.20 c | 2.25 ± 0.57 b | 2.16 ± 0.55 c |
Coir Substrate | 4.06 ± 0.31 bc | 2.79 ± 0.36 a | 2.32 ± 0.58 bc |
Biopot | 3.94 ± 0.30 bc | 3.27 ± 0.20 ab | 2.76 ± 0.38 abc |
Root Zone | |||
Rockwool | 3.86 ± 0.22 bc | 2.28 ± 0.58 b | 2.88 ± 0.56 abc |
Carbomat | 4.07 ± 0.20 bc | 3.89 ± 0.22 a | 4.04 ±0.58 a |
Coir Substrate | 5.10 ± 0.16 a | 3.94 ± 0.33 a | 4.18 ± 0.31 a |
Biopot | 4.77 ± 0.19 ab | 3.58 ± 0.46 a | 3.79 ± 0.51 ab |
Substrates | Trichoderma spp. (log10 cfu mL−1) | ||
---|---|---|---|
May | July | September | |
Drainage Water | |||
Rockwool | 0.37 ± 0.37 b | 0.00 ± 0.00 b | 0.28 ± 0.27 b |
Carbomat | 1.91 ± 0.62 a | 2.17 ± 0.55 a | 2.68 ± 0.34 ab |
Coir Substrate | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.28 ± 0.28 b |
Biopot | 1.04 ± 0.53 a | 2.18 ± 0.57 a | 0.93 ± 0.46 b |
Foot Zone | |||
Rockwool | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.40 ± 0.40 b |
Carbomat | 2.79 ± 0.58 a | 3.59 ± 0.20 a | 4.29 ± 0.07 a |
Coir Substrate | 0.80 ± 0.53 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
Biopot | 1.46 ± 0.74 a | 2.24 ± 0.71 a | 2.87 ± 0.72 ab |
Substrates | Fluorescent Pseudomonads (log10 cfu mL−1) | ||
---|---|---|---|
May | July | September | |
Drainage Water | |||
Rockwool | 3.71 ± 0.40 ab | 1.50 ± 0.40 a | 1.15 ± 0.31 a |
Carbomat | 2.85 ± 0.11 abc | 0.81 ± 0.40 a | 1.00 ± 0.40 a |
Coir Substrate | 3.14 ± 0.19 abc | 1.89 ± 0.38 a | 1.61 ± 0.38 a |
Biopot | 1.75 ± 0.59 bc | 2.24 ± 0.32 a | 1.91 ± 0.49 a |
Root Zone | |||
Rockwool | 2.98 ± 0.45 abc | 1.49 ± 0.39 a | 2.18 ± 0.34 a |
Carbomat | 1.63 ± 0.82 c | 2.09 ± 0.44 a | 1.63 ± 0.47 a |
Coir Substrate | 4.07 ± 0.20 a | 1.99 ± 0.42 a | 2.12 ± 0.44 a |
Biopot | 2.80 ± 0.58 abc | 1.85 ± 0.51 a | 2.46 ± 0.37 a |
Substrates | Coliforms (log10 cfu mL−1) | ||
---|---|---|---|
May | July | September | |
Drainage Water | |||
Rockwool | 1.36 ± 0.26 a | 1.61 ± 0.19 a | 1.38 ± 0.15 a |
Carbomat | 1.80 ± 0.19 a | 1.54 ± 0.19 a | 1.24 ± 0.29 a |
Coir Substrate | 1.30 ± 0.17 a | 0.96 ± 0.21 ab | 1.56 ± 0.21 a |
Biopot | 1.13 ± 0.35 a | 0.92 ± 0.31 ab | 1.47 ± 0.38 a |
Root Zone | |||
Rockwool | 1.96 ± 0.41 a | 1.48 ± 0.33 ab | 1.27 ± 0.38 a |
Carbomat | 2.00 ± 0.30 a | 0.86 ± 0.34 ab | 1.56 ± 0.32 a |
Coir Substrate | 1.55 ± 0.43 a | 0.46 ± 0.17 b | 0.95 ± 0.17 a |
Biopot | 1.84 ± 0.49 a | 1.63 ± 0.24 a | 1.87 ± 0.37 a |
Substrates | Yield | ||
---|---|---|---|
Early | Marketable | Total | |
Rockwool | 12.1 ± 0.73 a | 51.5 ± 2.90 a | 52.4 ± 2.90 a |
Carbomat | 12.8 ± 1.13 a | 52.1 ± 3.24 a | 53.0 ± 3.22 a |
Biopot | 11.4 ± 1.19 a | 45.4 ± 4.21 a | 46.6 ± 3.93 a |
Coir Substrate | 12.3 ± 0.93 a | 48.1 ± 2.83 a | 48.9 ± 2.93 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyśko, J.; Szczech, M.; Kaniszewski, S.; Kowalczyk, W. Parameters of Drainage Waters Collected during Soilless Tomato Cultivation in Mineral and Organic Substrates. Agronomy 2020, 10, 2009. https://doi.org/10.3390/agronomy10122009
Dyśko J, Szczech M, Kaniszewski S, Kowalczyk W. Parameters of Drainage Waters Collected during Soilless Tomato Cultivation in Mineral and Organic Substrates. Agronomy. 2020; 10(12):2009. https://doi.org/10.3390/agronomy10122009
Chicago/Turabian StyleDyśko, Jacek, Magdalena Szczech, Stanisław Kaniszewski, and Waldemar Kowalczyk. 2020. "Parameters of Drainage Waters Collected during Soilless Tomato Cultivation in Mineral and Organic Substrates" Agronomy 10, no. 12: 2009. https://doi.org/10.3390/agronomy10122009
APA StyleDyśko, J., Szczech, M., Kaniszewski, S., & Kowalczyk, W. (2020). Parameters of Drainage Waters Collected during Soilless Tomato Cultivation in Mineral and Organic Substrates. Agronomy, 10(12), 2009. https://doi.org/10.3390/agronomy10122009