Andean Lupin Phenology and Agronomic Performance under Different Planting Dates in a Mediterranean Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design
2.3. Plant Measurements
2.4. Determination of Seed Nutrient Content
2.5. Statistical Analysis
3. Results
3.1. Phenology of Andean Lupin Accessions
3.1.1. Ability of Plants to Enter Phenological Stages
3.1.2. Plant Flowering and Pod Maturity
3.2. Agro-Morphological Traits
3.2.1. Plant Morphological Traits
3.2.2. Pod Traits
3.2.3. Seed Traits and Yield
3.3. Seed Nutrient Content
3.4. Investigation of Correlations among Traits
3.5. Principal Components and Classification of Andean Lupin Accessions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gladstones, J.S. Lupins as crop plants. Field Crop. Abstracts. 1970, 23, 123–148. [Google Scholar]
- Mikić, A.; Ćupina, B.; Slobodan, K.; Karagić, Đ. Importance of annual forage legumes in supplying plant proteins. Ratar. Povrt. 2006, 42, 91–103. [Google Scholar]
- Kohajdová, Z.; Karovičová, J.; Schmidt, Š. Lupin Composition and Possible Use in Bakery–A Review. Czech J. Food Sci. 2011, 29, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Lambers, H.; Clements, J.C.; Nelson, M.N. How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of Lupines (Lupinus, Fabaceae). Am. J. Bot. 2013, 100, 263–288. [Google Scholar] [CrossRef] [PubMed]
- Prusinski, J. White lupin (Lupinus albus L.)–Nutritional and Health Values in Human Nutrition—A Review. Czech J. Food Sci. 2017, 35, 95–105. [Google Scholar]
- Uzun, B.; Arslan, C.; Karhan, M.; Toker, C. Fat and fatty acids of white lupin (Lupinus albus L.) in comparison to sesame (Sesamum indicum L.). Food Chem. 2007, 102, 45–49. [Google Scholar] [CrossRef]
- Lucas, M.; Stoddard, F.L.; Annicchiarico, P.; Frías, J.; Martinez-Villaluenga, C.; Sussmann, D.; Duranti, M.; Seger, A.; Zander, P.M.; Pueyo, J.J. The future of lupin as a protein crop in Europe. Front. Plant Sci. 2015, 6, 705. [Google Scholar] [CrossRef]
- Eastwood, R.J.; Hughes, C.E. Origins of domestication of Lupinus mutabilis in the Andes. In Lupins for Health and Wealth, Proceedings of the 12th International Lupin Conference, Fremantle, Western, Australia, 14–18 September 2008; Palta, J.A., Berger, J.B., Eds.; International Lupin Association: Canterbury, New Zealand, 2008. [Google Scholar]
- Eastwood, R.J.; Drummond, C.S.; Schifino-Wittmann, M.T.; Hughes, C.E. Diversity and evolutionary history of Lupins insights from new phylogenies. In Lupins for Health and Wealth, Proceedings of the 12th International Lupin Conference, Fremantle, Western, Australia, 14–18 September 2008; Palta, J.A., Berger, J.B., Eds.; International Lupin Association: Canterbury, New Zealand, 2008. [Google Scholar]
- Abraham, E.M.; Ganopoulos, I.; Madesis, P.; Mavromatis, A.; Mylona, P.; Nianiou-Obeidat, I.; Parissi, Z.; Polidoros, A.; Tani, E.; Vlachostergios, D. The Use of Lupin as a Source of Protein in Animal Feeding: Genomic Tools and Breeding Approaches. Int. J. Mol. Sci. 2019, 20, 851. [Google Scholar] [CrossRef] [Green Version]
- Kurlovich, B.S. Lupins (Geography, Classification, Genetic Resources and Breeding); OY International North Express: St. Peterburg, Russia; Pellosniemi, Finland, 2002; p. 468. [Google Scholar]
- Atchison, G.W.; Nevado, B.; Eastwood, R.J.; Contreras-Ortiz, N.; Reynel, C.; Madriñán, S.; Filatov, D.A.; Hughes, C.E. Lost crops of the Incas: Origins of domestication of the Andean pulse crop tarwi, Lupinus mutabilis. Am. J. Bot. 2016, 103, 1592–1606. [Google Scholar] [CrossRef]
- Caligari, P.D.S.; Römer, P.; Rahim, M.A.; Huyghe, C.; Neves-Martins, J.; Sawicka-Sienkiewicz, E.J. The potential of Lupinus mutabilis as a crop. In Linking Research and Marketing Opportunities for Pulses in the 21st Century; Knight, R., Ed.; Springer: Dordrecht, The Netherlands, 2000; Volume 34, pp. 569–573. [Google Scholar]
- Jacobsen, S.-E.; Mujica, A. Geographical distribution of the Andean lupin (Lupinus mutabilis Sweet). Plant Genet. Res. Newslett. 2008, 155, 1–8. [Google Scholar]
- Gulisano, A.; Alves, S.; Neves Martins, J.; Trindade, L. Genetics and Breeding of Lupinus mutabilis: An Emerging Protein Crop. Front. Plant Sci. 2019, 10, 1385. [Google Scholar] [CrossRef] [PubMed]
- Neves Martins, J.M.; Talhinhas, P.; de Sousa, R.B. Yield and seed chemical composition of Lupinus mutabilis in Portugal. Rev. Ciências Agrárias 2016, 39, 518–525. [Google Scholar] [CrossRef] [Green Version]
- Staples, K.D.; Hamama, A.A.; Knight-Mason, R.; Bhardwaj, H.L. Alkaloids in White Lupin and Their Effects on Symbiotic N Fixation. J. Agr Sci. 2017, 9, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Römer, P.; Jahn-Deesbach, W. Eight years of experiences in breeding Lupinus mutabilis under middle European conditions. In Agrimed Research Programme-Lupinus Mutabilis: Its Adaptation And Production Under European Pedoclimatic Conditions; Commission of the European Communities: Brussels, Belgium, 1992; pp. 79–85, EUR 14102 EN: Luxembourg. [Google Scholar]
- Galek, R.; Sawicka-Sienkiewicz, E.; Zalewski, D.; Stawiński, S.; Spychala, K. Searching for Low Alkaloid Forms in the Andean Lupin (Lupinus mutabilis) Collection. Czech J. Genet. Plant Breed. 2017, 53, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Von Baer, E. Domestication of Andean Lupin (L. mutabilis). In Lupin Crops—An Opportunity for Today, a Promise for the Future, Proceedings of the 13th International Lupin Conference, Poznań, Poland, 6–10 June 2011; Naganowska, B., Kachlicki, P., Wolko, B., Eds.; International Lupin Association: Canterbury, New Zealand, 2011. [Google Scholar]
- Adomas, B.; Galek, R.; Gas-Seremeka, M.; Helios, W.; Hurej, M.; Kotecki, A.; Kozak, M.; Malarz, W.; Okorski, A.; Piotrowicz-Cieślak, A.I.; et al. Adaptation of the Andean Lupin (Lupinus mutabilis Sweet) to Natural Conditions of South-Western Poland; Kotecki, A., Ed.; Monography CXCV; Wroclaw University of Environmental and Life Sciences: Wrocław, Poland, 2015; p. 121. [Google Scholar]
- Bebeli, P.J.; Lazaridi, E.; Chatzigeorgiou, T.; Suso, M.-J.; Hein, W.; Alexopoulos, A.A.; Canha, G.; van Haren, R.J.; Jóhannsson, M.H.; Mateos, C.; et al. State and Progress of Andean Lupin Cultivation in Europe: A Review. Agronomy 2020, 10, 1038. [Google Scholar] [CrossRef]
- Sawicka-Sienkiewicz, E.; Galek, R.; Zalewski, D.; Augiewicz, J. Porównanie mieszańców międzygatunkowych Lupinus albus (sensu lato) x Lupinus mutabilis pod względem wybranych cech ilościowych. Biul. Inst. Hod. Aklim. Roślin 2006, 240–241, 253–259. [Google Scholar]
- Clements, J.; Galek, R.; Kozak, B.; Michalczyk, D.J.; Piotrowicz-Cieślak, A.I.; Sawicka-Sienkiewicz, E.; Stawiński, S.; Zalewski, D. Diversity of Selected Lupinus angustifolius L. Genotypes at the Phenotypic and DNA Level with Respect to Microscopic Seed Coat Structure and Thickness. PLoS ONE 2014, 9, e102874. [Google Scholar] [CrossRef]
- Galek, R.; Kozak, B.; Biela, A.; Zalewski, D.; Sawicka-Sienkiewicz, E.; Spychała, K.; Stawiński, S. Seed Coat Thickness Differentiation and Genetic polymorphism for Lupinus mutabilis Sweet breeding. Turk. J. Field Crop. 2016, 21, 305–312. [Google Scholar]
- Hardy, A.; Huyghe, C.; Rahirne, M.A.; Roemer, P.; Neves-Martins, J.M.; Sawieka-Sienkiewiez, E.; Caligarie, P.D.S. Effects of genotype and environment on architecture and flowering time of indeterminate Andean lupins (Lupinus mutabilis Sweet). Aust. J. Agric. Res. 1998, 49, 1241–1251. [Google Scholar] [CrossRef]
- Horn, P.E.; Hill, G.D.; Porter, N.G. Yield and Nutrient Composition of Seventeen Lupinus Mutabilis Lines; Proceedings Agronomy Society of New Zealand 8; Lincoln College: Lincoln, UK, 1978. [Google Scholar]
- Römer, P. A determinated mutant of L. mutabilis as a possible source of early maturity. In Advances in Lupin Research, Proceedings of the 7th International Lupin conference, Evora, Portugal, 18–23 April 1993; ISA Press: Lisbon, Portugal, 1994; pp. 18–23. [Google Scholar]
- Sawicka-Sienkiewicz, E. The induced mutations in Andean lupine (Lupinus mutabilis Sweet). Monogr. Rozpr. 1993, 3, 1–112. [Google Scholar]
- Sawicka-Sienkiewicz, E.J.; Augiewicz, J. Genetic studies of Andean lupin (Lupinus mutabilis Sweet). In Wild and Cultivated Lupins from the Tropics to the Poles, Proceedings of the 10th International Lupin Conference, Laugarvatn, Iceland, 19–24 June 2002; van Santen, E., Hill, H.D., Eds.; International Lupin Association: Canterbury, New Zealand, 2002; p. 136. [Google Scholar]
- Pszczółkowska, A.; Okorski, A.; Kotecki, A.; Gas, M.; Kullik, T.; Reczek, A. Incidence of seed-borne fungi on Lupinus mutabilis depending on a plant morphotype, sowing date and plant density. J. Elem. 2016, 21, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Gas, M. Wpływ Wybranych Czynników Agrotechnicznych na Rozwój i Plonowanie Łubinu Andyjskiego (Lupinus mutabilis Sweet) [The Influence of Selected Agronomic Factors on the Development and Yielding of Andean Lupine (Lupinus Rnutabilis Sweet)]. Ph.D. Thesis, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland, 2014. [Google Scholar]
- López-Bellido, L.; Fuentes, M. Growth, yield and yield components of lupin cultivars. Agron. J. 1990, 82, 1050–1056. [Google Scholar] [CrossRef]
- Vaz Patto, M.C.; Talhinhas, P.; Martins, J.N. Studies on genetic variability and architecture of Lupinus mutabilis Sweet populations. In Towards the 21st Century, Proceedings of the 8th International Lupin Conference, Asilomar, CA, USA, 11–16 May 1996; Hill, G., Ed.; International Lupin Association: Canterbury, New Zealand, 1996; pp. 378–383. [Google Scholar]
- Guilengue, N.; Alves, S.; Talhinhas, P.; Neves-Martins, J. Genetic and genomic diversity in a tarwi (Lupinus mutabilis Sweet) germplasm collection and adaptability to Mediterranean climate conditions. Agronomy 2020, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Yassoglou, N.; Tsadilas, C.; Kosmas, C. The Soils of Greece; Hartemink, A.E., Ed.; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Statgraphics Centurion XVII 2016, Version 17.2.0.0; StatPoint, Inc.: Herndon, DC, USA, 2016.
- StatSoft 2007, Statistica Package Release 8; StatSoft, Inc.: Tulsa, OK, USA, 2007.
- SAS Institute Inc. 2008, JMP/Sales Department; SAS Institute Inc.: Cary, CA, USA, 2008. [Google Scholar]
- Microsoft Corporation. 2019. Available online: https://office.microsoft.com/excel (accessed on 21 October 2020).
- Adhikari, K.; Buirchell, B.; Sweetingham, M. Effect of vernalization on various Lupin species at different time intervals. In Lupins for Health and Wealth, Proceedings of the 12th International Lupin Conference, Fremantle, Western Australia, 14–18 September 2008; Palta, J.A., Berger, J.B., Eds.; International Lupin Association: Canterbury, New Zealand, 2008. [Google Scholar]
- Walker, J.; Hertel, K.; Parker, P.; Edwards, Y. Lupin Growth and Development. In ProCrop. Ser.; Edwards, J., Walker, J., McIntosh, G., Eds.; State of New South Wales through NSW Department of Industry and Investment (Industry & Investment NSW): New South Wales, Australia, 2011; p. 81. [Google Scholar]
- White, P.; French, B.; McLarty, A. Grains Research and Development Corporation. Producing Lupins, Bulletin 4720, 2nd ed.; Department of Agriculture and Food: Perth, Australia, 2008; pp. 31–32. [Google Scholar]
- Lizarazo, C.; Stoddard, F.; Mäkelä, P.; Santanen, A. Genetic variability in the physiological responses of Andean lupin to drought stress. Suom. Maatal. Seuran Tied. 2010, 31, 1–5. [Google Scholar] [CrossRef]
- Adhikari, K.N.; Buirchell, B.J.; Sweetingham, M.W. Length of vernalization period affects flowering time in three lupin species. Plant Breed. 2012, 131, 631–636. [Google Scholar] [CrossRef]
- Sita, K.; Sehgal, A.; Hanumantha Rao, B.; Nair, R.M.; Vara Prasad, P.V.; Kumar, S.; Gaur, P.M.; Farooq, M.; Siddique, K.H.M.; Varshney, R.K.; et al. Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance. Front. Plant Sci. 2017, 8, 1658. [Google Scholar] [CrossRef] [Green Version]
- López-Bellido, L.; Fuentes, M.; Lhamby, J.C.B.; Castillo, J.E. Growth and yield of white lupin (Lupinus albus) under Mediterranean conditions: Effect of sowing date. Field Crop. Res. 1994, 36, 87–94. [Google Scholar] [CrossRef]
- Keeve, R.; Loubser, H.L.; Krüger, G.H.J. Effects of Temperature and Photoperiod on Days to Flowering, Yield and Yield Components of Lupinus albus (L.) under Field Conditions. J. Agron. Crop. Sci. 2000, 184, 187–196. [Google Scholar] [CrossRef]
- Christiansen, J.L.; Jørnsgård, B. Influence of daylength and temperature on number of main stem leaves and time to flowering in lupin. Ann. Appl. Biol. 2002, 140, 29–35. [Google Scholar] [CrossRef]
- Zalewski, D.; Galek, R.; Kozak, B.; Sawicka-Sienkiewicz, E. Pheno-Morphological and Agronomic diversity in a collection of wild and domesticated species of the genus Lupinus. Turk. J. Field Crop. 2015, 20, 43–48. [Google Scholar]
- Talhinhas, P.; Vaz Patto, M.C.; Martins, J.N.; Römer, P.; Huyghe, C.; Rahim, M.; Caligari, P. Evaluation of Lupinus mutabilis Sweet cultivars under Mediterranean conditions. In Towards the 21st century, Proceedings of the 8th International Lupin Conference, Asilomar, CA, USA, 11–16 May 1996; Hill, G., Ed.; International Lupin Association: Canterbury, New Zealand, 1996; pp. 87–93. [Google Scholar]
- Hardy, A.; Huyghe, C.; Papineau, J. Dry matter accumulation and partitioning, and seed yield in indeterminate Andean lupin (Lupinus mutabilis Sweet). Aust. J. Agric. Res. 1997, 48, 91–102. [Google Scholar] [CrossRef]
- Falconi, C.E. Lupinus mutabilis in Ecuador with special emphasis on anthracnose resistance. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2012. [Google Scholar]
- Tang, C.; Robson, A.D.; Longnecker, N.E.; Buirchell, B.J. The Growth of Lupinus Species on Alkaline Soils. Aust. J. Agric. Res. 1995, 46, 255–268. [Google Scholar] [CrossRef]
- Tang, C.; Adams, H.; Longnecker, N.E.; Robson, A.D. A method to identify lupin species tolerant of alkaline soils. Aust. J. Exp. Agric. 1996, 36, 595–601. [Google Scholar] [CrossRef]
- Kerley, S.J.; Huyghe, C. Comparison of acid and alkaline soil and liquid culture growth systems for studies of shoot and root characteristics of white lupin (Lupinus albus L.) genotypes. Plant Soil 2001, 236, 275–286. [Google Scholar] [CrossRef]
- Podleśny, J. Przydatność siewu punktowego w uprawie wybranych gatunków roślin strączkowych. Inżynieria Rol. 2006, 13, 385–392. [Google Scholar]
- Agrimed Research Programme. Lupinus mutabilis: It’s adaptation and production under European pedoclimatic conditions. In Proceedings of a Workshop, Cascais, Portugal, 26–27 April 1992; Commission of the European Communities, Ed.; Office for Official Publications of the European Communities: Brussels, Belgium, 1992. [Google Scholar]
- Huyghe, C. Genetics and genetic modifications of plant architecture in grain legumes: A review. Agronomie 1998, 18, 383–411. [Google Scholar] [CrossRef]
- Romer, P. New attempts to select early maturing Lupinus mutabilis for middle Europe. In Proceedings of the 2nd European Conference on Grain Legumes, Copenhagen, Denmark, 9–13 July 1995. [Google Scholar]
- Iannucci, A.; Terribile, M.R.; Martiniello, P. Effects of temperature and photoperiod on flowering time of forage legumes in a Mediterranean environment. Field Crop. Res. 2008, 106, 156–162. [Google Scholar] [CrossRef]
- Roberts, E.H.; Summerfield, R.J. Measurement and prediction of flowering in annual crops. In Manipulation of Flowering; Atherton, J.G., Ed.; Ž. Butterworth: London, UK, 1987; pp. 17–50. [Google Scholar]
- Sandaña, P.A.; Harcha, C.I.; Calderini, D.F. Sensitivity of yield and grain nitrogen concentration of wheat, lupin and pea to source reduction during grain filling. A comparative survey under high yielding conditions. Field Crop. Res. 2009, 114, 233–243. [Google Scholar] [CrossRef]
- Karaguzel, O.; Baktir, I.; Cakmakci, S.; Ortacesme, V.; Aydinoglu, B.; Atika, M. Responses of native Lupinus varius (L.) to culture conditions: Effects of photoperiod and sowing time on growth and flowering characteristics. Sci. Hortic. 2005, 103, 339–349. [Google Scholar] [CrossRef]
- Gross, R. Fitomejoramiento. In El cultivo y la Utilizacion del Tarwi Lupinus Mutabilis Sweet; Organización de las Naciones Unidas para la Agricultura y la Alimentación, Ed.; Estudio FAO: Producción y proteccion vegetal; FAO: Roma, Italy, 1982; Volume 36, pp. 235–236. [Google Scholar]
- Keatinge, J.D.H.; Qi, A.; Wheeler, T.R.; Ellis, R.H.; Summerfield, R.J. Effects of temperature and photoperiod on phenology as a guide to the selection of annual legume cover and green manure crops for hillside farming systems. Field Crop. Res. 1998, 57, 139–152. [Google Scholar] [CrossRef]
- Krasulina, M.I. Vernalization of lupin. Sel. Semenovod 1937, 4, 51–54. [Google Scholar]
- Silvester-Bradley, R. The effect of sowing date in the development of Lupinus albus in the United Kingdom and its optimum plant density. In Agricultural and Nutritional Aspects of Lupines, Proceedings of the 1st International Lupine Workshop, Lima-Cuzco, Peru, 12–21 April 1980; Gross, R., Bunting, E.S., Eds.; German Agency for Technical Cooperation (GTZ): Eschborn, Germany, 1980. [Google Scholar]
- Myers, L.F.; Christian, K.R.; Kirchner, R.J. Flowering responses of 48 lines of oilseed rapes (Brassica spp.) to vernalisation and daylength. Aust. J. Agric. Res. 1982, 33, 927–936. [Google Scholar] [CrossRef]
- Palta, J.A.; Ludwig, C. Elevated CO2 during pod filling increased seed yield but not harvest index in indeterminate narrow-leafed lupin. Aust. J. Agric. Res. 2000, 51, 279–286. [Google Scholar] [CrossRef]
- Palta, J.A.; Turner, N.C.; French, R.J.; Buirchell, B.J. Physiological responses of lupin genotypes to terminal drought in a Mediterranean-type environment. Ann. Appl. Biol. 2007, 150, 269–279. [Google Scholar] [CrossRef]
- Sehgal, A.; Sita, K.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; Hanumantha Rao, B.; Nair, R.M.; Prasad, P.V.V.; Nayyar, H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Front. Plant Sci. 2018, 9, 1705. [Google Scholar] [CrossRef] [Green Version]
- Duthion, C.; Pigeaire, A. Seed lengths corresponding to the final stage in seed abortion of three grain legumes. Crop. Sci. 1991, 31, 1579–1583. [Google Scholar] [CrossRef]
- Palta, J.A.; Turner, N.C.; French, R.J. Drought tolerance of lupin genotypes in Western Australia. In 2000 Lupin Update; O’Neill, B., Ed.; Western Australia Department of Agriculture: Perth, Australia, 2000; pp. 43–45. [Google Scholar]
- Gonzalez-Dugo, V.; Durand, J.-L.; Gastal, F. Water deficit and nitrogen nutrition of crops. A review. Agron. Sustain. Dev. 2010, 30, 529–544. [Google Scholar] [CrossRef] [Green Version]
- Blum, A.; Sinmena, B.; Mayer, J.; Golan, G.; Shpiler, L. Stem reserve mobilisation supports wheat grain filling under heat stress. Aust. J. Plant Physiol. 1994, 21, 771–781. [Google Scholar] [CrossRef]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef]
- Matimati, I.; Verboom, G.; Cramer, M. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients. J. Exp. Bot. 2013, 65, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef] [Green Version]
- Stark, J.M.; Firestone, M.K. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl. Environ. Microbiol. 1995, 61, 218–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leghari, S.J.; Wahocho, A.; Laghari, G.M.; Laghari, A.H.; Bhabhan, G.M.; Talpur, K.H.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A. Role of Nitrogen for plant growth and development: A Review. ADN. Environ. Biol. 2016, 10, 209–218. [Google Scholar]
- Carvajal-Larenas, F.E.; Linnemann, A.R.; Nout, M.J.R.; Koziol, M.; van Boekel, M.A.J.S. Lupinus mutabilis: Composition, Uses, Toxicology, and Debittering. Crit. Rev. Food Sci. Nutr. 2016, 56, 1454–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leytem, A.B.; Mikkelsen, R.L. The nature of phosphorus in calcareous soils. Better Crop. 2005, 89, 11–13. [Google Scholar]
Accession/Cultivar | Planting Date Treatment | Plants without Flowers (%) | Plants without Pods (%) | ||
---|---|---|---|---|---|
2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | ||
cv. Multitalia | Early | 2.78 | 0.00 | 5.56 | 5.56 |
Late | 2.78 | 0.00 | 16.67 | 2.78 | |
cv. Polo | Early | 0.00 | 5.56 | 0.00 | 22.22 |
Late | 2.78 | 11.11 | 13.89 | 36.11 | |
LIB209 | Early | 0.00 | 0.00 | 0.00 | 2.78 |
Late | 0.00 | 8.33 | 8.33 | 13.89 | |
LIB214 | Early | 0.00 | 0.00 | 0.00 | 0.00 |
Late | 0.00 | 0.00 | 0.00 | 0.00 | |
LIB220 | Early | 0.00 | 2.78 | 0.00 | 16.67 |
Late | 8.33 | 2.78 | 13.89 | 22.22 | |
LIB221 | Early | 0.00 | 0.00 | 0.00 | 0.00 |
Late | 2.78 | 2.78 | 19.44 | 11.11 | |
LIB222 | Early | 0.00 | 2.78 | 0.00 | 13.89 |
Late | 16.67 | 0.00 | 22.22 | 13.89 | |
LIB223 | Early | 2.78 | 0.00 | 2.78 | 8.33 |
Late | 5.56 | 2.78 | 5.56 | 11.11 | |
LIB224 | Early | 0.00 | 0.00 | 0.00 | 0.00 |
Late | 0.00 | 0.00 | 2.78 | 2.78 |
Accession/Cultivar | Planting Date Treatment | Plants with Empty Pods or Pod Abscission (%) | Plants without Seeds (%) | ||
---|---|---|---|---|---|
2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | ||
cv. Multitalia | Early | 5.56 | 5.56 | 5.56 | 5.56 |
Late | 16.67 | 2.78 | 33.33 | 2.78 | |
cv. Polo | Early | 0.00 | 27.78 | 0.00 | 50.00 |
Late | 38.89 | 63.89 | 52.78 | 63.89 | |
LIB209 | Early | 0.00 | 19.44 | 0.00 | 22.22 |
Late | 13.89 | 16.67 | 19.44 | 29.44 | |
LIB214 | Early | 0.00 | 5.56 | 2.78 | 5.56 |
Late | 16.67 | 11.11 | 16.67 | 11.11 | |
LIB220 | Early | 8.33 | 25.00 | 8.33 | 25.00 |
Late | 33.33 | 22.22 | 47.22 | 44.44 | |
LIB221 | Early | 0.00 | 19.44 | 0.00 | 19.44 |
Late | 22.22 | 16.67 | 36.11 | 16.67 | |
LIB222 | Early | 2.78 | 27.78 | 2.78 | 41.67 |
Late | 50.00 | 13.89 | 61.11 | 27.78 | |
LIB223 | Early | 2.78 | 44.44 | 8.33 | 52.78 |
Late | 5.56 | 16.67 | 8.33 | 16.67 | |
LIB224 | Early | 8.33 | 13.89 | 8.33 | 13.89 |
Late | 5.56 | 2.78 | 5.56 | 2.78 |
Accession | Planting Date Treatment | DAF | DMAT | ||
---|---|---|---|---|---|
2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | ||
LIB209 | Early | 103.36 c | 126.25 e | 176.14 c | 199.52 b |
Late | 92.97 ef | 125.41 e | 133.78 ij | 165.42 i | |
LIB214 | Early | 104.92 c | 130.36 de | 185.11 b | 204.53 a |
Late | 98.17 d | 125.94 e | 145.25 g | 172.92 g | |
LIB220 | Early | 110.75 b | 138.04 bc | 168.17 d | 198.89 b |
Late | 92.01 ef | 135.26 cd | 134.93 i | 170.04 h | |
LIB221 | Early | 89.86 f | 110.36 g | 151.36 f | 186.44 e |
Late | 94.02 def | 116.41 f | 135.85 i | 160.94 j | |
LIB222 | Early | 104.61 c | 135.44 cd | 155.17 e | 193.26 d |
Late | 95.23 de | 138.08 bc | 142.80 h | 172.64 g | |
LIB223 | Early | 119.72 a | 145.64 a | 203.33 a | 195.89 c |
Late | 92.55 ef | 141.56 ab | 132.34 j | 178.94 f | |
Main Effects | |||||
Early | 105.54 | 131.01 | 173.21 a | 196.42 a | |
Late | 94.16 | 130.44 | 137.49 b | 170.15 b | |
LIB209 | 98.17 c | 125.83 c | 154.96 c | 182.47 c | |
LIB214 | 101.54 b | 128.15 c | 165.18 b | 188.72 a | |
LIB220 | 101.38 b | 136.65 b | 151.55 d | 184.47 b | |
LIB221 | 91.94 d | 113.39 d | 143.61 f | 173.69 d | |
LIB222 | 99.92 bc | 136.76 b | 148.99 e | 182.95 c | |
LIB223 | 106.14 a | 143.60 a | 167.84 a | 187.41 a | |
Significance | |||||
Planting date | n.s. | n.s. | *** | ** | |
Accession | *** | *** | *** | *** | |
Planting date x Accession | *** | *** | *** | *** |
Accession | Planting Date Treatment | SPPL | SY | ||
---|---|---|---|---|---|
2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | ||
LIB209 | Early | 26.14 bc | 19.83 abc | 770.34 b | 327.38 bc |
Late | 11.55 de | 23.64 ab | 165.19 cd | 396.34 b | |
LIB214 | Early | 39.44 a | 15.04 abcd | 1085.88 a | 318.09 bc |
Late | 13.33 de | 19.56 abc | 298.48 cd | 418.35 b | |
LIB220 | Early | 18.36 cde | 7.80 d | 468.42 c | 174.66 c |
Late | 9.40 e | 9.39 cd | 135.28 d | 161.72 c | |
LIB221 | Early | 36.94 a | 11.41 cd | 895.91 ab | 147.04 c |
Late | 15.54 de | 13.63 bcd | 233.27 cd | 280.94 bc | |
LIB222 | Early | 31.62 ab | 13.29 bcd | 475.47 c | 166.62 c |
Late | 11.30 de | 13.68 bcd | 125.70 d | 161.72 c | |
LIB223 | Early | 24.40 bcd | 25.58 a | 721.95 b | 872.91 a |
Late | 8.51 e | 16.98 abcd | 157.01 cd | 404.70 b | |
Main Effects | |||||
Early | 29.48 a | 15.49 | 736.33 a | 334.45 | |
Late | 11.60 b | 16.15 | 185.82 b | 303.96 | |
LIB209 | 18.84 bc | 21.73 a | 467.76 bc | 361.86 b | |
LIB214 | 26.39 a | 17.30 ab | 692.18 a | 368.22 b | |
LIB220 | 13.88 c | 8.60 c | 301.85 d | 168.19 c | |
LIB221 | 26.24 a | 12.52 bc | 564.59 ab | 213.99 c | |
LIB222 | 21.46 ab | 13.48 bc | 300.58 d | 164.17 c | |
LIB223 | 16.45 bc | 21.28 a | 439.48 bcd | 638.81 a | |
Significance | |||||
Planting date | * | n.s. | * | n.s. | |
Accession | *** | *** | *** | *** | |
Planting date x Accession | ** | * | *** | *** |
Trait | 2017–2018 | 2018–2019 | ||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
PH 1 | 0.848 | 0.419 | 0.156 | 0.634 | 0.735 | 0.122 |
INL 2 | 0.841 | 0.461 | −0.169 | 0.736 | 0.627 | 0.005 |
H1STBR 3 | 0.101 | 0.935 | −0.121 | 0.309 | 0.925 | −0.018 |
H1STBRFL 4 | 0.193 | 0.893 | 0.002 | 0.419 | 0.882 | −0.029 |
DAF 5 | 0.414 | 0.775 | 0.103 | 0.188 | 0.455 | −0.593 |
DMAT 6 | 0.714 | 0.627 | 0.073 | −0.142 | 0.920 | −0.011 |
PL 7 | 0.928 | 0.174 | −0.013 | 0.542 | 0.371 | 0.603 |
PW 8 | 0.399 | −0.111 | −0.171 | 0.709 | 0.222 | 0.571 |
PPPL 9 | 0.872 | 0.235 | 0.316 | 0.844 | 0.251 | −0.297 |
SPPL 10 | 0.850 | 0.104 | 0.389 | 0.917 | 0.026 | −0.194 |
SY 11 | 0.923 | 0.218 | 0.182 | 0.914 | 0.263 | 0.026 |
Crude protein | −0.023 | 0.077 | −0.832 | 0.880 | 0.170 | −0.283 |
Potassium | −0.003 | 0.486 | −0.473 | −0.265 | 0.008 | 0.903 |
Phosphorus | 0.185 | 0.057 | 0.902 | 0.772 | 0.159 | 0.129 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazaridi, E.; Papadopoulos, G.K.; Bebeli, P.J. Andean Lupin Phenology and Agronomic Performance under Different Planting Dates in a Mediterranean Climate. Agronomy 2020, 10, 2020. https://doi.org/10.3390/agronomy10122020
Lazaridi E, Papadopoulos GK, Bebeli PJ. Andean Lupin Phenology and Agronomic Performance under Different Planting Dates in a Mediterranean Climate. Agronomy. 2020; 10(12):2020. https://doi.org/10.3390/agronomy10122020
Chicago/Turabian StyleLazaridi, Efstathia, George K. Papadopoulos, and Penelope J. Bebeli. 2020. "Andean Lupin Phenology and Agronomic Performance under Different Planting Dates in a Mediterranean Climate" Agronomy 10, no. 12: 2020. https://doi.org/10.3390/agronomy10122020
APA StyleLazaridi, E., Papadopoulos, G. K., & Bebeli, P. J. (2020). Andean Lupin Phenology and Agronomic Performance under Different Planting Dates in a Mediterranean Climate. Agronomy, 10(12), 2020. https://doi.org/10.3390/agronomy10122020