Land-Use Effect on Soil Carbon and Nitrogen Stock in a Seasonally Dry Tropical Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Study Area
2.2. Soil Samples
2.3. Bulk Density
2.4. Chemical Analysis of the Soil
2.5. Statistical Analysis
3. Results and Discussion
3.1. Bulk Density
3.2. Total Organic Carbon (TOC)
3.3. Total Nitrogen (TN)
3.4. Stocks of TOC (STK.TOC) and TN (STK.TN)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Conti, G.; Harguindeguy, N.P.; Quètier, F. Large changes in carbon storage under different land-use regimes in subtropical seasonally dry forests of southern South America. Agric. Ecosyst. Environ. 2014, 197, 68–76. [Google Scholar] [CrossRef]
- Magnússon, R.Í.; Tietema, A.; Cornelissen, J.H.C.; Hefting, M.M.; Kalbitz, K. Tamm Review: Sequestration of carbon from coarse woody debris in forest soils. For. Ecol. Manag. 2016, 377, 1–15. [Google Scholar] [CrossRef]
- Silva Araujo, J.K.; de Souza Júnior, V.S.; Marques, F.A.; Voroney, P.; Sousa, R.A. Assessment of carbon storage under rainforests in Humic Hapludox along a climosequence extending from the Atlantic coast to the highlands of northeastern Brazil. Sci. Total Environ. 2016, 568, 339–349. [Google Scholar] [CrossRef]
- Aquino, D.N.; de Andrade, E.M.; de Almeida Castanho, A.D.; Pereira Júnior, L.R.; Palácio, H.A.Q. Belowground Carbon and Nitrogen on a Thinned and Un-Thinned Seasonally Dry Tropical Forest. Am. J. Plant Sci. 2017, 8, 2083–2100. [Google Scholar] [CrossRef] [Green Version]
- Asaye, Z.; Zewdie, S. Fine root dynamics and soil carbon accretion under thinned and un-thinned Cupressus lusitanica stands in, Southern Ethiopia. Plant Soil 2013, 366, 261–271. [Google Scholar] [CrossRef]
- Kassa, H.; Dondeyne, S.; Poesen, J.; Frankl, A.; Nyssen, J. Impact of deforestation on soil fertility, soil carbon and nitrogen stocks: The MARK case of the Gacheb catchment in the White Nile Basin, Ethiopia. Agriculture. Ecosyst. Environ. 2017, 247, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Saving global land resources by enhancing eco-efficiency of agroecosystems. J. Soil Water Conserv. 2018, 73, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Bárcena, T.G.; Kiaer, L.P.; VerterdaL, L.; Srefasdóttus, H.M.; Gundersen, P.; Sigerdsson, B.D. Soil carbon stock change following afforestation in northern Europe: A meta-analysis. Glob. Chang. Biol. 2014, 20, 2393–2405. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–2. [Google Scholar] [CrossRef]
- Martin, J.A.R.; Furntes-Álvaro, J.; Gonzalo, J.; Gil, C.; Ramos-Miras, J.J.; Corbí, J.M.G.; Boluda, R. Assessment of the soil organic carbon stock in Spain. Geoderma 2016, 264, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Powers, J.S.; Becknell, J.M.; Irving, J.; Pèrez-Aviles, D. Diversity and structure of regenerating tropical dry forests in Costa Rica: Geographic patterns and environmental drivers. For. Ecol. Manag. 2009, 12, 959–970. [Google Scholar] [CrossRef]
- Júnior, P.; Resende, L.; Andrade, E.M.; Palácio, H.A.D.Q.; Raimer, P.C.L.; Ribeiro Filho, J.C.; Pereira, F.J.S. Carbon stock in a tropical dry Forest um Brazil. Revista Ciência Agromica 2016, 47, 32–40. [Google Scholar]
- Sacramento, J.A.A.S.D.; Araújo, A.C.D.M.; Escobar, M.E.O.; Xavier, F.A.D.S.; Cavalcante, A.C.R.; Oliveira, T.S.D. Soil carbon and nitrogen stocks in traditional agricultura land agroforestry systems in the semiarid region of Brazil. Revista Brasileira Ciência Solo 2013, 37, 784–795. [Google Scholar] [CrossRef] [Green Version]
- Poorter, L.B.; Ongers, F.; Aide, T.M. Biomass resilience of Neotropical secondary forests. Nature 2016, 530, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Andrade, E.M.; Aquino, D.; Lopes, F.B.; Guerreiro, L.C.C. Water as capital and its uses in the Caatinga. In Caatinga; Silva, J.M.C., Leal, I.R., Tabarelli, M., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Miles, L.; Newton, A.C.; DeFries, R.S.; Ravilious, C.; May, I.; Blyth, S.; Kapos, V.; Gordon, J.E. A global overview of the conservation status of tropical dry forests. J. Biogeogr. 2006, 33, 91–505. [Google Scholar] [CrossRef]
- Pinto, J.C.; Pimentel, R.M.; Zinn, Y.L.; Chizzotti, F.H.M. Soil organic carbon stocks in a Brazilian Oxisolunder different pasture systems. Trop. Grassl.-Forrajes Trop. 2014, 2, 121–123. [Google Scholar] [CrossRef]
- Menezes, R.S.C.I.; Sampaio, E.V.S.B.; Giogo, V.; Pérez-Marin, A.M. Biogeochemical cycling in terrestrial ecosystems of the Caatinga Biome. Braz. J. Biol. 2012, 72, 643–653. [Google Scholar] [CrossRef]
- Santos, H.G.; de Oliveira, J.B.; Lumbreras, J.F.; Anjos, L.H.C.; Coelho, M.R.; Jacomine, P.K.T.; Cunha, T.J.F.; de Oliveira, V.Á. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasilia, Brazil, 2018; p. 356. [Google Scholar]
- Romero, R.E.; Ferreira, T.O. Morfologia e classificação dos solos predominantes no semiárido cearense. In Semiárido e Manejo dos Recursos Naturais—Uma Proposta de Uso Adequado do Capital Natural, 2nd ed.; Andrade, E.M., Perreira, O.J., Dantas, F.E., Eds.; UFC: Fortaleza, Brazil, 2016; pp. 45–53. [Google Scholar]
- Moro, M.F.V.; Macedo, M.B.; de Moura-Fé, M.M.; Castro, A.S.F.; da Costa, R.C. Vegetação, unidades fitoecológicas e diversidade paisagística do estado do Ceará. Rodriguésia 2015, 66, 717–743. [Google Scholar] [CrossRef]
- Black, C.A.; Evans, D.D.; White, J.L.; Esminger, L.E.; Clark, F.E. Methods of Soil Analysis, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1965; p. 770. [Google Scholar]
- Yeomans, J.C.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Ellert, B.H.; Vanden Bygaart, A.J.; Bremer, E. Measuring Change in Soil Organic Carbon Storage. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 49–62. [Google Scholar]
- Luciano, R.V.; Bertol, I.; Babosa, F.T.; Kurtz, C.; Fayad, J.A. Propriedades físicas e carbono orgânico do solo sob plantio direto comparado a mata natural, num Cambissolo Háplico. Revista Ciências Agrovetetinárias 2010, 9, 9–19. [Google Scholar]
- Aryal, D.R.; de Jong, B.H.; Ochoa-Gaona, S.; Esparza-Olguin, L.; Mendoza-Vega, J. Carbon stocks and changes in tropical secondary forests of southern Mexico. Agric. Ecosyst. Environ. 2014, 195, 220–230. [Google Scholar] [CrossRef]
- Silva, V.M.; Teixeira, A.F.R.; de Souza, J.L.; Guimarães, G.P.; Benassi, A.C.; de Sá Mendonça, E. Estoques de Carbono e Nitrogênio e Densidade do Solo em Sistemas de Adubação Orgânica de Café Conilon. Revista Brasileira Ciência Solo 2015, 39, 1436–1444. [Google Scholar] [CrossRef]
- Liu, X.; Yang, T.; Wang, Q.; Huang, F.; Li, L. Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: A meta-analysis. Sci. Total Environ. 2018, 618, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.F.B.; de Andrade, E.M.; Crisóstomo, L.A.; Rodrigues, M.M.A. Potential for nutrient contribution from litter in a seasonally dry forest. Revista Agro@mbiente On-Line 2017, 4, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, Y.; Hou, X.; Li, F.Y.; Han, W.; Yun, X. Effects of temperature and grazing on soil organic carbon storage in grasslands along the Eurasian steppe eastern transect. PLoS ONE 2017, 12, e0186980. [Google Scholar] [CrossRef] [Green Version]
- Salcedo, I.H. Fertilidade do Solo e Produção de Biomassa no Semi-Árido, 1st ed.; UFPE: Recife, Brazil, 2008; p. 291. [Google Scholar]
- De Souza Medeiros, A.; Maia SM, F.; dos Santos, T.C.; de Araújo Gomes, T.C. Soil carbon losses in conventional farming systems due to land-use change in the Brazilian semi-arid region. Agric. Ecosyst. Environ. 2020, 287. [Google Scholar] [CrossRef]
- Maia, S.M.F.; Carvalho, J.L.N.; Cerri, C.E.P.; Lal, R.; Bernoux, M.; Galdos, M.V.; Cerri, C.C. Contrasting approaches for estimating soil carbon changes in Amazon and Cerrado biomes. Soil Tillage Res. 2013, 133, 75–84. [Google Scholar] [CrossRef]
- Lal, R. Carbon sequestration. Philosophical Transactions of the Royal Society of London. Biol. Sci. 2008, 363, 815–830. [Google Scholar] [CrossRef]
- Siqueira, N.; Scopel, E.; Corbeels, M.; Cardoso, A.N.; Douzet, J.M.; Feller, C.; Piccolo, M.C.; Cerri, C.; Bernoux, M. Soil carbon stocks under no-tillage mulch-based cropping systems in the Brazilian Cerrado: An on-farm synchronic assessment. Soil Tillage Res. 2010, 110, 187–195. [Google Scholar] [CrossRef]
- Maia, S.M.F.; Otutumi, A.T.; de Sá Mendonça, E.; Neves, J.C.L.; de Oliveira, T.S. Combined effect of intercropping and minimum tillage on soil carbon sequestration and organic matter pools in the semiarid region of Brazil. Soil Res. 2019, 57, 266–275. [Google Scholar] [CrossRef]
- Moradi, M.; Imani, F.; Naji, H.R.; Moradi Behbahani, S.; Ahmadi, M.T. Variation in soil carbon stock and nutrient content in sand dunes after afforestation by Prosopis juliflora in the Khuzestan province (Iran). iForest-Biogeosci. For. 2017, 10, 585–589. [Google Scholar] [CrossRef] [Green Version]
- Galvão, K.D.S.; Cunha, T.; do Amaral, A.J.; Hernani, L.; de Oliveira Neto, M.B.; Giongo, V.; Mendes, A.M.S.; Melo, A.D.S. Estoques de Carbono e Nitrogênio em Neossolo Quartzarênico sob Cultivo de Mangueira Irrigada e Vegetação de Caatinga. In Jornada de Iniciação Científica da Embrapa Semiárido, 9; 2014, Petrolina. Anais; Embrapa Semiárido: Petrolina, Brazil, 2014; pp. 155–162. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1013401/estoques-de-carbono-e-nitrogenio-em-neossolo-quartzarenico-sob-cultivo-de-mangueira-irrigada-e-vegetacao-de-caatinga (accessed on 4 December 2019).
- Dos Santos, L.R.; Lima, A.M.N.; Cunha, J.C.; Rodrigues, M.S.; Soares, E.M.B.; dos Santos, L.P.A.; da Silva, A.V.L.; Fontes, M.P.F. Does irrigated mango cultivation alter organic carbon stocks under fragile soils in semiarid climate? Sci. Hortic. 2019, 255, 121–127. [Google Scholar] [CrossRef]
- Andrade, E.M.; Guerreiro, M.J.S.; Palácio, H.A.Q.; Antunes, D. Regional Studies Ecohydrology in a Brazilian tropical dry forest: Thinned vegetation impact on hydrological functions and ecosystem services. J. Hydrol. Reg. Study 2020, 27, 100649. [Google Scholar] [CrossRef]
Site | Land Use | Species | Usage History | Photos of the Sites |
---|---|---|---|---|
Pentecoste | Dense Caatinga (DC) | Caesalpinia pyramidalis (Tul); Thiloa glaucocapra (Mart.); Auxemma oncocalyx (Fr. All.) Baill; Manihot pseudoglaziovii (Müll.Arg) | under regeneration for 40 years protected from cattle by wire mesh fences | |
Open Caatinga (OC) | Mimosa tenuiflora (Willd); Cydonia oblonga (Mill); Mimosa caesalpiniaefolia (Benth) | under regeneration for 31 years protected from cattle by wire mesh fences. | ||
Agriculture (AG) | Phaseolus vulgaris (L.) | used for agriculture for 15 years most common crop: rainfed common bean (Phaseolus vulgaris). | ||
Pasture (PA) | Elionurus candidus (Trin.) | used as pasture for 20 years under preserved caatinga prior to pasture. | ||
Piquet Carneiro | Dense Caatinga | Caesalpinia pyramidalis (Tul), Manihot pseudoglaziovii (Müll.Arg); Mimosa tenuiflora (Willd); Mimosa caesalpiniaefolia (Benth); Cydonia oblonga (Mill) | under regeneration for 35 years stones on the surface | |
Open Caatinga | Mimosa caesalpiniaefolia (Benth); Cydonia oblonga (Mill); Mimosa tenuiflora (Willd) | under regeneration since 1998 rainfed crops (Zea mays L.) prior to regeneration | ||
Agriculture | - | agriculture for 12 years most common crop: rainfed bean (Phaseolus vulgaris) | ||
Pasture | Elionurus candidus (Trin.) | used only for animal feed since 2000 native grass: such as Elionurus candidus | ||
Quixadá | Dense Caatinga | Caesalpinia pyramidalis (Tul), Mimosa tenuiflora (Willd), Mimosa caesalpiniaefolia (Benth), Cydonia oblonga (Mill) | Caatinga with free access for animal grazing for 5 years. | |
Open Caatinga | Mimosa caesalpiniaefolia (Benth), Cydonia oblonga (Mill), Mimosa tenuiflora (Willd), Caesalpinia pyramidalis (Tul), Bauhinia forficate (Link) | under regenetation for 30 years almost completely thinned caatinga | ||
Agriculture | Zea mays (L.) | under conventional management since 2005 most common crop: rainfed maize (Zea mays, L.) | ||
Pasture | - | used as pasture for small animals since 2003 native leguminous species |
Attribute | Descriptive Parameters | Group 1 | Group 2 |
---|---|---|---|
TOC (Mg ha−1) | Number of cases | 3 | 8 |
Mean ± SD | 9.49 ± 1.87 | 4.20 ± 1.52 | |
Maximum | 11.99 | 5.59 | |
Minimum | 7.48 | 2.06 | |
CV | 0.20 | 0.36 | |
TN (Mg ha−1) | Number of cases | 3 | 8 |
Mean ± SD | 0.58 ± 0.22 | 0.25 ± 0.13 | |
Maximum | 0.82 | 0.39 | |
Minimum | 0.29 | 0.00 | |
CV | 0.37 | 0.52 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maia Andrade, E.; Valbrun, W.; Almeida, A.M.M.d.; Rosa, G.; Silva, A.G.R.d. Land-Use Effect on Soil Carbon and Nitrogen Stock in a Seasonally Dry Tropical Forest. Agronomy 2020, 10, 158. https://doi.org/10.3390/agronomy10020158
Maia Andrade E, Valbrun W, Almeida AMMd, Rosa G, Silva AGRd. Land-Use Effect on Soil Carbon and Nitrogen Stock in a Seasonally Dry Tropical Forest. Agronomy. 2020; 10(2):158. https://doi.org/10.3390/agronomy10020158
Chicago/Turabian StyleMaia Andrade, Eunice, Wilner Valbrun, Aldênia Mendes Mascena de Almeida, Gilberto Rosa, and Antonio Givanilson Rodrigues da Silva. 2020. "Land-Use Effect on Soil Carbon and Nitrogen Stock in a Seasonally Dry Tropical Forest" Agronomy 10, no. 2: 158. https://doi.org/10.3390/agronomy10020158
APA StyleMaia Andrade, E., Valbrun, W., Almeida, A. M. M. d., Rosa, G., & Silva, A. G. R. d. (2020). Land-Use Effect on Soil Carbon and Nitrogen Stock in a Seasonally Dry Tropical Forest. Agronomy, 10(2), 158. https://doi.org/10.3390/agronomy10020158