Integrating Phenological, Aerobiological and Weather Data to Study the Local and Regional Flowering Dynamics of Four Grapevine Cultivars
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leolini, L.; Moriondo, M.; Fila, G.; Costafreda-Aumedes, S.; Ferrise, R.; Bindi, M. Late spring frost impacts on future grapevine distribution in Europe. Field Crop. Res. 2018, 222, 197–208. [Google Scholar] [CrossRef]
- Parker, A.; de Cortázar-Atauri, I.G.; Chuine, I.; Barbeau, G.; Bois, B.; Boursiquot, J.M.; Cahurel, J.-Y.; Claverie, M.; Dufourcq, T.; Gény, L.; et al. Classification of varieties for their timing of flowering and veraison using a modelling approach: A case study for the grapevine species Vitis vinifera L. Agric. For. Meteorol. 2013, 180, 249–264. [Google Scholar] [CrossRef]
- Fernández-González, M.; Rodríguez-Rajo, F.J.; Jato, V.; Aira, M.J.; Ribeiro, H.; Oliveira, M.; Abreu, I. Forecasting ARIMA models for atmospheric vineyard pathogens in Galicia and Northern Portugal: Botrytis cinerea spores. Ann. Agric. Environ. Med. 2012, 19, 255–262. [Google Scholar] [PubMed]
- Fernández-González, M.; Rodríguez-Rajo, F.J.; Escuredo, O.; Aira, M.J. Influence of thermal requirement in the aerobiological and phenological behavior of two grapevine varieties. Aerobiologia 2013, 29, 523–535. [Google Scholar] [CrossRef]
- Kishino, A.Y.; Marur, I.P.H. Factores climáticos e o desenvolvimento da videira. In Viticultura Tropical: O Sistema deProducao doParana; Kishino, A.Y., de Carvalho, S.C., Roberto, S.R., Eds.; IAPAR: Londrina, Brazil, 2007; pp. 59–86. [Google Scholar]
- Duchene, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The challenge of adapting grapevine varieties to climate change. Clim. Res. 2010, 41, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Mandelli, F.; Tonietto, J.; Camargo, U.A.; Czermainski, A.B.C. Fenologia e necessidades térmicas da videira na Serra Gaúcha. In XVIII Congresso Brasileiro de Fruticultura; Agrolink: Florianópolis, Brazil, 2004. [Google Scholar]
- Piña, S.; Bautista, D. Ciclo fenológico de cultivares de vid (Vitis vinifera L.) para mesa en condiciones tropicales. Bioagro 2004, 16, 9–15. [Google Scholar]
- Kamel, A. Estudio Sobre la Sexualidad de las Uvas de Mesa en España; Instituto Nacional de Investigaciones Agronómicas: Madrid, Spain, 1959. [Google Scholar]
- Fernández-González, M.; Rodríguez-Rajo, F.J.; Aira, M.J.; Jato, V. Phenology of the Treixadura variety cultivated in the Ribeiro Denomination of Origin (Ourense-Spain) during the year 2008. Polen 2007, 17, 23–38. [Google Scholar]
- Fernández-González, M.; Rodríguez-Rajo, F.J.; Jato, V.; Escuredo, O.; Aira, M.J. Estimation of yield ‘Loureira’ variety with an aerobiological and phenological model. Grana 2011, 50, 63–72. [Google Scholar] [CrossRef]
- Cunha, M.; Abreu, I.; Pinto, P.; Castro, R. Airborne pollen samples for early-season estimates of wine production in a Mediterranean climate of northern Portugal. Am. J. Enol. Vitic. 2003, 54, 189–194. [Google Scholar]
- Cunha, M.; Ribeiro, H.; Costa, P.; Abreu, I. A comparative study of vineyard phenology and pollen metrics extracted from airborne pollen time series. Aerobiologia 2015, 31, 45–56. [Google Scholar] [CrossRef]
- Galán, C.; Vázquez, L.; García-Mozo, H.; Dominguez-Vilches, E. Forecasting olive (Olea europaea) crop yield based on pollen emission. Field Crop Res. 2004, 86, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, H.; Cunha, M.; Abreu, I. A bioclimatic model for forecasting olive yield. J. Agric. Sci. 2009, 147, 647–656. [Google Scholar] [CrossRef]
- Ribeiro, H.; Abreu, I.; Cunha, M. Olive crop-yield forecasting based on airborne pollen in a region where the olive groves acreage and crop system changed drastically. Aerobiologia 2017, 33, 473–480. [Google Scholar] [CrossRef]
- Oteros, J.; Orlandi, F.; García-Mozo, H.; Aguilera, F.; Dhiab, A.B.; Bonofiglio, T.; Abichou, M.; Ruiz-Valenzuela, L.; Trigo, M.M.; Díaz de la Guardia, C.; et al. Better prediction of Mediterranean olive production using pollen-based models. Agron. Sustain. Dev. 2014, 34, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Belmonte, J.; Canela, M.; Guàrdia, R.A. Comparison between categorical pollen data obtained by Hirst and Cour sampling methods. Aerobiologia 2000, 16, 177–185. [Google Scholar] [CrossRef]
- Kelly, H.Y.; Dufault, N.S.; Walker, D.R.; Isard, S.A.; Schneider, R.W.; Giesler, L.J.; Wright, D.L.; Marois, J.J.; Hartman, G.L. From select agent to an established pathogen: The response to Phakopsora pachyrhizi (soybean rust) in North America. Phytopathology 2015, 105, 905–916. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Grau, S.; Aira, M.J.; Elvira-Rendueles, B.; Fernández-González, M.; Fernández-González, D.; García-Sánchez, A.; Martínez-García, M.J.; Moreno, J.M.; Negral, L.; Vara, A.; et al. Assessment of the Olea pollen and its major allergen Ole e 1 concentrations in the bioearosol of two biogeographical areas. Atmos. Environ. 2016, 145, 264–271. [Google Scholar] [CrossRef]
- Galán, C.; Alcázar, P.; Oteros, J.; García-Mozo, H.; Aira, M.J.; Belmonte, J.; Díaz de la Guardia, C.; Fernández-González, D.; Gutierrez-Bustillo, M.; Moreno-Grau, S.; et al. Airborne pollen trends in the Iberian Peninsula. Sci. Total Environ. 2016, 550, 53–59. [Google Scholar] [CrossRef]
- Aira, M.J.; Almaguer Chávez, M.; Fernández-González, M.; Rodríguez-Rajo, F.J. Pollen diversity in the atmosphere of Havana, Cuba. Aerobiologia 2018, 34, 389–403. [Google Scholar] [CrossRef]
- Almaguer-Chávez, M.; Aira, M.J.; Rojas, T.I.; Fernández-González, M.; Rodríguez-Rajo, F.J. New findings of airborne fungal spores in the atmosphere of havana, cuba, using aerobiological non-viable methodology. Ann. Agric. Environ. Med. 2018, 25, 349–359. [Google Scholar] [CrossRef]
- Fernández-González, M.; Rodríguez-Rajo, F.J.; Escuredo, O.; Aira, M.J. Optimization of integrated pest management for powdery mildew (Unincula necator) control in a vineyard based on a combination of phenological, meteorological and aerobiological data. J. Agric. Sci. 2013, 151, 648–658. [Google Scholar] [CrossRef]
- West, J.S.; Kimber, R.B.E. Innovations in air sampling to detect plant pathogens. Ann. Appl. Biol. 2015, 166, 4–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco-Ward, D.; García, J.M.; Jones, G.V. Spatial climate variability and viticulture in the Miño River Valley of Spain. Vitis 2007, 46, 63–70. [Google Scholar]
- Orriols, I.; Vázquez, I.; Losada, A. Variedades gallegas. Terruños 2006, 16, 11–18. [Google Scholar]
- Hirst, J.M. An automatic volumetric spore trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- Galán, C.; Cariñanos, P.; Alcázar, P.; Dominguez-Vilches, E. Spanish Aerobiology Network (REA): Management and Quality Manual; Servicio de Publicaciones: Córdoba, Spain, 2007; pp. 39–74. [Google Scholar]
- Galán, C.; Ariatti, A.; Bonini, M.; Clot, B.; Crouzy, B.; Dahl, A.; Fernández-González, D.; Frenguelli, G.; Gehrig, R.; Isard, S.; et al. Recommended terminology for aerobiological studies. Aerobiologia 2017, 33, 293–295. [Google Scholar] [CrossRef]
- Cour, P. Nouvelles technique de détection des flux et des retombé es polliniques: Étude de la sedimentation des pollens et des spores á la surface du sol. Pollen et Spores XVI 1974, 1, 103–141. [Google Scholar]
- Ribeiro, H.; Cunha, M.; Abreu, I. Definition of the main pollen season using a logistic model. Ann. Agric. Environ. Med. 2007, 14, 159–167. [Google Scholar]
- Lorenz, D.H.; Eichorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp. vinifera). Codierung und Beschreibung nach der erweiterten BBCH-Skala. Viticult. Enol. Sci. 1994, 49, 66–70. [Google Scholar]
- Meier, U. Growth Stages of Mono and Dicotyledonous Plants. 2001. Available online: https://www.julius-kuehn.de/media/Veroeffentlichungen/bbch%20epaper%20en/page.pdf (accessed on 19 December 2019).
- Rolph, G.D. Real-time Environmental Applications and Display SYstem (READY). Environ. Modell. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Jones, G.V.; Reid, R.; Vilks, A. Climate, grapes, and wine: Structure and suitability in a variable and changing climate. In The Geography of Wine: Regions, Terroir, and Techniques; Dougherty, P.H., Ed.; Springer: Heidelberg, The Netherlands, 2012; pp. 109–133. [Google Scholar]
- Pedro Júnior, M.J.; Sentelhas, P.C. Clima e produção. In Uva: Tecnologia de Produção, Pós-Colheita, Mercado; Pommer, C.V., Ed.; Editora Cinco Continentes: Porto Alegre, Brazil, 2003; pp. 63–107. [Google Scholar]
- Kelen, M.; Dermitas, I. Pollen viability, germination capability and pollen production level of some grape varieties (Vitis vinifera L.). Acta Physiol. Plant. 2003, 25, 229–233. [Google Scholar] [CrossRef]
- Martínez-Bracero, M.; Alcázar, P.; Velasco-Jiménez, M.J.; Calderón-Ezquerro, C.; Galán, C. Phenological and aerobiological study of vineyards in the Montilla-Moriles PDO area, Cordoba, southern Spain. J. Agric. Sci. 2018, 156, 821–831. [Google Scholar] [CrossRef]
- Sato, A.J.; Jubileu, B.S.; Marinho de Asis, A.; Roberto, S.R. Phenology production and must compounds of ‘‘Cabernet Saugvignon’’ and ‘‘Tanat’’ grapevines in subtropical climate. Rev. Bras. Frutic. 2011, 33, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Sato, A.J.; Silva, B.J.; Santos, C.E.; Bertolucci, R.; Santos, R.; Carielo, M.; Guiraud, M.C.; de Batista Fonseca, I.C.; Roberto, S.R. Phenology and thermal demand of ‘‘Isabel’’ and ‘‘Rubea’’ grapevines on different rootstocks in North of Paraná. Semina Ciencias Agrárias 2008, 29, 283–292. [Google Scholar]
- Cristofolini, F.; Gottardini, E. Concentration of airborne pollen of Vitis vinifera L. and yield forecast: A case study at S. Michele all’Adige, Trento, Italy. Aerobiologia 2000, 16, 125–129. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar]
- Ribeiro, H.; Cunha, M.; Abreu, I. Airborne pollen concentration in the regions of Braga, Portugal, and its relationship with meteorological parameters. Aerobiologia 2003, 19, 21–27. [Google Scholar] [CrossRef]
- Martínez-Bracero, M.; Alcázar, P.; Velasco-Jiménez, M.J.; Galán, C. Effect of the Mediterranean crops in the ariborne pollen espectrum. Aerobiologia 2019, 35, 647–657. [Google Scholar] [CrossRef]
- Fernández-González, M.; Ribeiro, H.; Pereira, J.R.S.; Rodríguez-Rajo, F.J.; Abreu, I. Assessment of the potential real pollen related allergenic load on the atmosphere of Porto city. Sci. Total Environ. 2019, 668, 333–341. [Google Scholar] [CrossRef]
Phenological | ‘Treixadura’ | ‘Godello’ | ‘Loureira’ | ‘Albariño’ | Average | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phases | Start | End | Length | Start | End | Length | Start | End | Length | Start | End | Length | Annual Length | |
2015 | 61 | 26-May | 1-Jun | 7 | 28-May | 31-May | 3 | 31-May | 2-Jun | 4 | 21-May | 30-May | 10 | 15 |
65 | 2-Jun | 4-Jun | 3 | 1-Jun | 4-Jun | 5 | 3-Jun | 6-Jun | 3 | 31-Jun | 2-Jun | 3 | ||
69 | 5-Jun | 9-Jun | 5 | 5-Jun | 9-Jun | 5 | 7-Jun | 9-Jun | 3 | 3-Jun | 9-Jun | 7 | ||
2016 | 61 | 9-Jun | 12-Jun | 4 | 9-Jun | 10-Jun | 2 | 9-Jun | 12-Jun | 4 | 8-Jun | 10-Jun | 3 | 10 |
65 | 13-Jun | 17-Jun | 5 | 11-Jun | 12-Jun | 2 | 13-Jun | 16-Jun | 4 | 11-Jun | 12-Jun | 2 | ||
69 | 18-Jun | 21-Jun | 4 | 13-Jun | 14-Jun | 2 | 17-Jun | 21-Jun | 5 | 13-Jun | 14-Jun | 2 | ||
2017 | 61 | 14-May | 16-May | 3 | 12-May | 14-May | 3 | 21-May | 23-May | 3 | 8-May | 13-May | 6 | 12 |
65 | 17-May | 21-May | 5 | 15-May | 20-May | 6 | 24-May | 26-May | 3 | 14-May | 17-May | 4 | ||
69 | 22-May | 25-May | 4 | 21-May | 25-May | 5 | 27-May | 30-May | 4 | 18-May | 19-May | 2 | ||
2018 | 61 | 4-Jun | 8-Jun | 5 | 3-Jun | 9-Jun | 7 | 7-Jun | 12-Jun | 6 | 3-Jun | 10-Jun | 8 | 16 |
65 | 9-Jun | 12-Jun | 4 | 10-Jun | 15-Jun | 6 | 13-Jun | 16-Jun | 4 | 11-Jun | 15-Jun | 5 | ||
69 | 13-Jun | 16-Jun | 4 | 16-Jun | 19-Jun | 4 | 17-Jun | 20-Jun | 4 | 16-Jun | 20-Jun | 5 | ||
2019 | 61 | 24-May | 27-May | 4 | 24-May | 27-May | 4 | 30-May | 31-May | 2 | 24-May | 27-May | 4 | 11 |
65 | 28-May | 30-May | 3 | 28-May | 30-May | 3 | 1-Jun | 4-Jun | 4 | 28-May | 30-May | 3 | ||
69 | 31-May | 4-May | 5 | 31-May | 4-May | 5 | 5-Jun | 7-Jun | 3 | 31-May | 4-May | 5 |
Start (date) | End (date) | Lenght (days) | SPIn (pollen) | Peak (pollen/m3 or pollen/m2) | Peak Date | ||
---|---|---|---|---|---|---|---|
Hirst | 2015 | 24-May | 3-Jun | 11 | 89 | 28 | 29-May |
2016 | 4-Jun | 27-Jun | 24 | 302 | 42 | 21-Jun | |
2017 | 15-May | 29-May | 15 | 271 | 49 | 24-May | |
2018 | 9-Jun | 21-Jun | 13 | 138 | 32 | 15-Jun | |
2019 | 26-May | 6-Jun | 12 | 175 | 54 | 1-Jun | |
Cour | 2015 | 23-May | 31-May | 9 | 1.595.833 | 1.068.193 | 29-May/31-May |
2016 | 3-Jun | 14-Jun | 12 | 1.787.525 | 836.780 | 10-Jun/13-Jun | |
2017 | 11-May | 21-May | 11 | 1.260.434 | 852.687 | 17-May/19-May | |
2018 | 5-Jun | 18-Jun | 14 | 1.368.687 | 544.199 | 15-Jun/18-Jun | |
2019 | 21-May | 3-Jun | 14 | 1.797.765 | 612.109 | 24-May/27-May |
MPS | Pre-Peak | |||||||
---|---|---|---|---|---|---|---|---|
Hirst | Cour | Hirst | Cour | |||||
R2 | p | R2 | p | R2 | p | R2 | p | |
Average Temperature | 0.325 ** | 0.004 | 0.230 | 0.344 | 0.498 ** | 0.000 | 0.357 | 0.191 |
Maximum Temperature | 0.251 * | 0.030 | 0.161 | 0.509 | 0.417 ** | 0.003 | 0.304 | 0.271 |
Minimum Temperature | 0.263 * | 0.023 | 0.011 | 0.966 | 0.444 ** | 0.002 | −0.079 | 0.781 |
DewPoint | 0.177 | 0.129 | −0.107 | 0.663 | 0.313 * | 0.030 | −0.089 | 0.752 |
Relative Humidity | −0.213 | 0.067 | −0.249 | 0.304 | −0.354 * | 0.014 | −0.379 | 0.164 |
Rainfall | −0.231 * | 0.046 | −0.463 * | 0.046 | −0.333 * | 0.021 | −0.581 * | 0.023 |
Wind speed | 0.109 | 0.350 | 0.067 | 0.786 | 0.179 | 0.223 | 0.157 | 0.576 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-González, M.; Ribeiro, H.; Piña-Rey, A.; Abreu, I.; Rodríguez-Rajo, F.J. Integrating Phenological, Aerobiological and Weather Data to Study the Local and Regional Flowering Dynamics of Four Grapevine Cultivars. Agronomy 2020, 10, 185. https://doi.org/10.3390/agronomy10020185
Fernández-González M, Ribeiro H, Piña-Rey A, Abreu I, Rodríguez-Rajo FJ. Integrating Phenological, Aerobiological and Weather Data to Study the Local and Regional Flowering Dynamics of Four Grapevine Cultivars. Agronomy. 2020; 10(2):185. https://doi.org/10.3390/agronomy10020185
Chicago/Turabian StyleFernández-González, María, Helena Ribeiro, Alba Piña-Rey, Ilda Abreu, and F. Javier Rodríguez-Rajo. 2020. "Integrating Phenological, Aerobiological and Weather Data to Study the Local and Regional Flowering Dynamics of Four Grapevine Cultivars" Agronomy 10, no. 2: 185. https://doi.org/10.3390/agronomy10020185
APA StyleFernández-González, M., Ribeiro, H., Piña-Rey, A., Abreu, I., & Rodríguez-Rajo, F. J. (2020). Integrating Phenological, Aerobiological and Weather Data to Study the Local and Regional Flowering Dynamics of Four Grapevine Cultivars. Agronomy, 10(2), 185. https://doi.org/10.3390/agronomy10020185