An Ammoniated Straw Incorporation Increased Biomass Production and Water Use Efficiency in an Annual Wheat-Maize Rotation System in Semi-Arid China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sampling and Analysis Methods
2.3.1. Crop Evapotranspiration
2.3.2. Biomass Yield and Water Use Efficiency
2.3.3. Crop Yield
2.4. Statistical Analysis
3. Results
3.1. Soil Water Storage at Different Growth Stages
3.2. Biomass Yield
3.3. Biomass Water Use Efficiency (WUE) at Different Growth Stages
3.4. Crop Yield
3.5. Relationship Among Rainfall Plus Irrigation (RI), ETa, BY and TWUE
4. Discussion
4.1. Effects of Different Straw Incorporation Modes on Soil Water
4.2. Biomass Yield and Water Use Efficiency
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shao, Y.; Xie, Y.; Wang, C.; Yue, J.; Yao, Y.; Li, X.; Liu, W.; Zhu, Y.; Guo, T. Effects of different soil conservation tillage approaches on soil nutrients, water use and wheat-maize yield in rainfed dry-land regions of North China. Eur. J. Agron. 2016, 81, 37–45. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Jia, Z.; Han, Q.; Ren, X.; Li, Y. Effects of Straw Incorporation on Soil Organic Matter and Soil Water-Stable Aggregates Content in Semiarid Regions of Northwest China. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Sadras, V.; Chen, X.; Zhang, F. Water use efficiency of dryland wheat in the Loess Plateau in response to soil and crop management. Field Crops Res. 2013, 151, 9–18. [Google Scholar] [CrossRef]
- Limon-Ortega, A.; Sayre, K.D.; Francis, C.A. Wheat and maize yields in response to straw management and nitrogen under a bed planting system. Agron. J. 2000, 92, 295–302. [Google Scholar] [CrossRef]
- Bu, L.-D.; Liu, J.-L.; Zhu, L.; Luo, S.-S.; Chen, X.-P.; Li, S.-Q.; Hill, R.L.; Zhao, Y. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agric. Water Manag. 2013, 123, 71–78. [Google Scholar] [CrossRef]
- Dong, Q.G.; Yang, Y.; Zhang, T.; Zhou, L.; He, J.; Chau, H.W.; Zou, Y.; Feng, H. Impacts of ridge with plastic mulch-furrow irrigation on soil salinity, spring maize yield and water use efficiency in an arid saline area. Agric. Water Manag. 2018, 201, 268–277. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Chen, F.; Yang, S.; Chen, X. Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China. Agric. Water Manag. 2010, 97, 769–775. [Google Scholar]
- Yu, K.; Dong, Q.G.; Chen, H.X.; Feng, H.; Zhao, Y.; Si, B.C.; Li, Y.; Hopkins, D.W. Incorporation of Pre-Treated Straw Improves Soil Aggregate Stability and Increases Crop Productivity. Agron. J. 2017, 109, 2253–2265. [Google Scholar] [CrossRef]
- Wang, W.; Xie, X.; Chen, A.; Yin, C.; Chen, W. Effects of Long-Term Fertilization on Soil Carbon, Nitrogen, Phosphorus and Rice Yield. J. Plant Nutr. 2013, 36, 551–561. [Google Scholar] [CrossRef]
- Singh, G.; Jalota, S.K.; Singh, Y. Manuring and residue management effects on physical properties of a soil under the rice-wheat system in Punjab, India. Soil Tillage Res. 2007, 94, 229–238. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, P.; Li, J.; Chen, Y.; Ying, X.; Liu, S. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat-maize cropping system. Eur. J. Agron. 2009, 31, 36–42. [Google Scholar] [CrossRef]
- Plante, A.F.; Stewart, C.E.; Conant, R.T.; Paustian, K.; Six, J. Soil management effects on organic carbon in isolated fractions of a Gray Luvisol. Can. J. Soil Sci. 2006, 86, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Hao, F. Plastic film mulching stimulates brace root emergence and soil nutrient absorption of maize in an arid environment. J. Sci. Food Agric. 2019. [Google Scholar]
- Zhou, L.; He, J.; Qi, Z.; Dyck, M.; Zou, Y.; Zhang, T.; Feng, H. Effects of lateral spacing for drip irrigation and mulching on the distributions of soil water and nitrate, maize yield, and water use efficiency. Agric. Water Manag. 2018, 199, 190–200. [Google Scholar] [CrossRef]
- Zhang, S.; Lovdahl, L.; Grip, H.; Tong, Y.; Yang, X.; Wang, Q. Effects of mulching and catch cropping on soil temperature, soil moisture and wheat yield on the Loess Plateau of China. Soil Tillage Res. 2009, 102, 78–86. [Google Scholar] [CrossRef]
- Zhao, H.; Shar, A.G.; Li, S.; Chen, Y.; Shi, J.; Zhang, X.; Tian, X. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Tillage Res. 2018, 175, 178–186. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Corn Stover Removal for Expanded Uses Reduces Soil Fertility and Structural Stability. Soil Sci. Soc. Am. J. 2009, 73, 418–426. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhang, X.Y.; Pei, D.; Sun, H.Y.; Chen, S.L. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: Field experiments on the North China Plain. Ann. Appl. Biol. 2007, 150, 261–268. [Google Scholar] [CrossRef]
- Salinas-Garcia, J.R.; Baez-Gonzalez, A.D.; Tiscareno-Lopez, M.; Rosales-Robles, E. Residue removal and tillage interaction effects on soil properties under rain-fed corn production in Central Mexico. Soil Tillage Res. 2001, 59, 67–79. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Li, Y.; Zhuo, Y.; Liu, J. Effects of straw layer and flue gas desulfurization gypsum treatments on soil salinity and sodicity in relation to sunflower yield. Geoderma 2019, 352, 13–21. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Zhang, J.; Liu, W.; Dang, Z.; Cao, W.; Qiang, Q. Effects of mulch, N fertilizer, and plant density on wheat yield, wheat nitrogen uptake, and residual soil nitrate in a dryland area of China. Nutr. Cycl. Agroecosyst. 2009, 85, 109–121. [Google Scholar] [CrossRef]
- Bonfil, D.J.; Mufradi, I.; Klitman, S.; Asido, S. Wheat grain yield and soil profile water distribution in a no-till arid environment. Agron. J. 1999, 91, 368–373. [Google Scholar] [CrossRef]
- Taa, A.; Tanner, D.; Bennie, A.T.P. Effects of stubble management, tillage and cropping sequence on wheat production in the south-eastern highlands of Ethiopia. Soil Tillage Res. 2004, 76, 69–82. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Z.; Liang, L. Effect of straw incorporation on the temporal variations of water characteristics, water - use efficiency and maize biomass production in semi-arid China. Soil Tillage Res. 2015, 153, 36–41. [Google Scholar] [CrossRef]
- Spaccini, R.; Piccolo, A.; Haberhauer, G.; Stemmer, M.; Gerzabek, M.H. Decomposition of maize straw in three European soils as revealed by DRIFT spectra of soil particle fractions. Geoderma 2001, 99, 245–260. [Google Scholar] [CrossRef]
- Zhang, S.; Li, P.; Yang, X.; Wang, Z.; Chen, X. Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize. Soil Tillage Res. 2011, 112, 92–97. [Google Scholar] [CrossRef]
- Wang, J.G.; Bakken, L.R. Competition for nitrogen during decomposition of plant residues in soil: Effect of spatial placement of N-rich and N-poor plant residues. Soil Biol. Biochem. 1997, 29, 153–162. [Google Scholar]
- Zhang, P.; Wei, T.; Li, Y.; Wang, K.; Jia, Z.; Han, Q.; Ren, X. Effects of straw incorporation on the stratification of the soil organic C, total N and C:N ratio in a semiarid region of China. Soil Tillage Res. 2015, 153, 28–35. [Google Scholar] [CrossRef]
- Goto, M.; Yokoe, Y.; Takabe, K.; Nisikawa, S.; Morita, O. Effects of Gaseous Ammonia on Chemical and Structural Features of Cell-Walls in Spring Barley Straw. Anim. Feed Sci. Technol. 1993, 40, 207–221. [Google Scholar] [CrossRef]
- Wang, Y.; Spratling, B.M.; Zobell, D.R.; Wiedmeier, R.D.; McAllister, T.A. Effect of alkali pretreatment of wheat straw on the efficacy of exogenous fibrolytic enzymes. J. Anim. Sci. 2004, 82, 198–208. [Google Scholar] [CrossRef]
- Xue, J.; Ren, L. Evaluation of crop water productivity under sprinkler irrigation regime using a distributed agro-hydrological model in an irrigation district of China. Agric. Water Manag. 2016, 178, 350–365. [Google Scholar] [CrossRef]
- Fan, T.L.; Stewart, B.A.; Payne, W.A.; Yong, W.; Luo, J.J.; Gao, Y.F. Long-term fertilizer and water availability effects on cereal yield and soil chemical properties in Northwest China. Soil Sci. Soc. Am. J. 2005, 69, 842–855. [Google Scholar] [CrossRef]
- Li, S.X.; Wang, Z.H.; Li, S.Q.; Gao, Y.J.; Tian, X.H. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China. Agric. Water Manag. 2013, 116, 39–49. [Google Scholar] [CrossRef]
- Li, Z.; Lai, X.; Yang, Q.; Yang, X.; Cui, S.; Shen, Y. In search of long-term sustainable tillage and straw mulching practices for a maize-winter wheat-soybean rotation system in the Loess Plateau of China. Field Crops Res. 2018, 217, 199–210. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, B.; Xu, M.; Zhang, H.; He, X.; Zhang, L.; Gao, S. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. J. Soils Sediments 2014, 15, 260–270. [Google Scholar] [CrossRef]
- Zhao, Y.; Pang, H.; Wang, J.; Huo, L.; Li, Y. Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crops Res. 2014, 161, 16–25. [Google Scholar] [CrossRef]
- Bezborodov, G.A.; Shadmanov, D.K.; Mirhashimov, R.T.; Yuldashev, T.; Qureshi, A.S.; Noble, A.D.; Qadir, M. Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia. Agric. Ecosyst. Environ. 2010, 138, 95–102. [Google Scholar] [CrossRef]
- Hu, F.; Gan, Y.; Cui, H.; Zhao, C.; Feng, F.; Yin, W.; Chai, Q. Intercropping maize and wheat with conservation agriculture principles improves water harvesting and reduces carbon emissions in dry areas. Eur. J. Agron. 2016, 74, 9–17. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, J.; Wu, W.; Cai, D.; Lv, J.; Jiang, G.; Huang, J.; Gao, J.; Hartmann, R.; Gabriels, D. Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China. Agric. Water Manag. 2007, 87, 307–314. [Google Scholar] [CrossRef]
- Ren, D.; Wei, B.; Xu, X.; Engel, B.; Li, G.; Huang, Q.; Xiong, Y.; Huang, G. Analyzing spatiotemporal characteristics of soil salinity in arid irrigated agro-ecosystems using integrated approaches. Geoderma 2019, 356. [Google Scholar] [CrossRef]
- Ren, D.; Xu, X.; Engel, B.; Huang, Q.; Xiong, Y.; Huo, Z.; Huang, G. Hydrological complexities in irrigated agro-ecosystems with fragmented land cover types and shallow groundwater: Insights from a distributed hydrological modeling method. Agric. Water Manag. 2019, 213, 868–881. [Google Scholar] [CrossRef]
- Bai, L.; Cai, J.; Liu, Y.; Chen, H.; Zhang, B.; Huang, L. Responses of field evapotranspiration to the changes of cropping pattern and groundwater depth in large irrigation district of Yellow River basin. Agric. Water Manag. 2017, 188, 1–11. [Google Scholar] [CrossRef]
Years | Treatments | Soil Water Storage (mm) | |||||
---|---|---|---|---|---|---|---|
Sowing Stage | Jointing Stage | Ten Leaf Collar Stage | Tasseling Stage | Filling Stage | Maturity Stage | ||
2011 | CK | 141.86 a | 150.98 a | 183.64 a | 153.04 a | 192.82 a | 191.13 a |
LP | 141.86 a | 152.65 a | 184.80 a | 157.90 a | 194.18 a | 194.60 a | |
ALP | 141.86 a | 154.99 a | 182.27 a | 153.41 a | 193.37 a | 193.93 a | |
2012 | CK | 147.04 b | 149.53 a | 137.32 a | 161.02 a | 182.23 ba | 176.53 a |
LP | 154.75 a | 148.15 a | 127.50 b | 151.45 b | 179.35 b | 169.06 b | |
ALP | 150.40 ab | 154.78 a | 129.81 b | 157.30 a | 186.54 a | 174.96 a | |
2013 | CK | 180.55 a | 164.77 b | 141.97 a | 129.06 a | 120.13 a | 150.84 a |
LP | 180.15 a | 167.21 ab | 142.18 a | 129.26 a | 113.44 b | 143.39 b | |
ALP | 177.36 a | 172.86 a | 143.65 a | 130.60 a | 108.54 b | 146.57 ab |
Years | Treatments | Soil Water Storage (mm) | |||||
---|---|---|---|---|---|---|---|
Sowing Stage | Tillering Stage | Jointing Stage | Tasseling Stage | Filling Stage | Maturity Stage | ||
2011–2012 | CK | 188.72 a | 175.63 a | 135.34 a | 115.92 b | 168.90 a | 149.11 a |
LP | 188.80 a | 174.22 a | 136.16 a | 122.01 a | 164.90 a | 148.48 a | |
ALP | 187.64 a | 170.71 a | 133.48 a | 120.76 a | 170.54 a | 152.58 a | |
2012–2013 | CK | 172.99 a | 165.96 a | 192.25 a | 129.22 a | 116.37 a | 178.72 a |
LP | 175.15 a | 163.32 a | 188.13 a | 129.18 a | 118.91 a | 176.73 a | |
ALP | 175.68 a | 158.61 a | 191.15 a | 124.63 a | 115.53 a | 178.68 a | |
2013–2014 | CK | 151.32 a | 155.59 a | 150.11 a | 188.66 a | 154.18 a | 123.93 a |
LP | 154.80 a | 152.10 a | 147.54 a | 191.64 a | 153.03 a | 124.54 a | |
ALP | 153.86 a | 150.83 a | 146.16 a | 187.26 a | 155.75 a | 127.90 a |
Years | Treatments | Biomass Yield (kg ha–1) | ||||
---|---|---|---|---|---|---|
Jointing Stage | Ten Leaf Collar Stage | Tasseling Stage | Grain Filling Stage | Maturity Stage | ||
2011 | CK | 1194 b | 2633 b | 5093 b | 8280 c | 12,988 a |
LP | 1265 b | 2905 a | 5159 b | 8729 bc | 13,027 a | |
ALP | 1347 a | 2814 a | 5449 a | 9668 a | 13,121 a | |
2012 | CK | 1327 b | 3915 b | 5998 b | 12,479 b | 16,084 a |
LP | 1409 a | 4149 b | 5736 b | 12,412 b | 15,630 a | |
ALP | 1403 a | 4637 a | 6879 a | 14,773 a | 16,231 a | |
2013 | CK | 2073 a | 4747 a | 8650 a | 15,003 a | 16,988 ab |
LP | 1890 b | 3690 b | 6465 b | 12,704 b | 16,556 b | |
ALP | 1837 b | 4439 a | 8301 a | 14,677 a | 17,487 a |
Years | Treatments | Biomass Yield (kg ha−1) | ||||
---|---|---|---|---|---|---|
Tillering Stage | Jointing Stage | Tasseling Stage | Grain Filling Stage | Maturity Stage | ||
2011–2012 | CK | 428 c | 5173 b | 14,112 b | 16,594 c | 18,857 c |
LP | 455 b | 6097 a | 16,388 a | 18,609 b | 21,147 b | |
ALP | 484 a | 5999 a | 15,801 a | 19,516 a | 22,177 a | |
2012–2013 | CK | 353 a | 6397 c | 9270 b | 15,343 b | 16,638 b |
LP | 311 b | 7906 a | 10,310 a | 16,480 a | 17,408 a | |
ALP | 309 b | 7334 b | 9807 a | 16,780 a | 17,732 a | |
2013–2014 | CK | 446 b | 4432 b | 7859 b | 12,008 c | 17,368 b |
LP | 463 b | 4927 a | 9213 a | 13,006 b | 17,754 ab | |
ALP | 548 a | 5145 a | 9336 a | 14,880 a | 18,191 a |
Years | Treatments | Biomass Water Use Efficiency (kg ha−1 mm−1) | ||||
---|---|---|---|---|---|---|
Sowing-Jointing Stage | Jointing-Ten Leaf Collar Stage | Ten leafs Collar-Tasseling Stage | Tasseling-Filling Stage | Filling-Maturity Stage | ||
2011 | CK | 15.2 c | 264.3 a | 120.3 b | 119.9 c | 92.0 a |
LP | 16.4 b | 245.4 b | 122.1 b | 134.8 b | 89.1 a | |
ALP | 18.9 a | 231.6 c | 130.9 a | 156.1 a | 90.2 a | |
2012 | CK | 12.0 a | 135.4 a | 154.5 b | 72.3 c | 330.7 a |
LP | 11.9 a | 131.3 a | 146.0 b | 90.5 b | 293.4 b | |
ALP | 12.3 a | 131.9 a | 189.1 a | 103.7 a | 291.4 b | |
2013 | CK | 12.3 a | 57.8 a | 258.0 a | 288.9 c | 419.9 b |
LP | 10.8 b | 39.6 b | 195.7 b | 305.2 b | 499.4 a | |
ALP | 10.5 b | 39.9 b | 251.1 a | 320.3 a | 470.9 a |
Years | Treatments | Biomass Water Use Efficiency (kg ha−1 mm−1) | ||||
---|---|---|---|---|---|---|
Sowing-Tillering Stage | Tillering-Jointing Stage | Jointing-Tasseling Stage | Tasseling-Filling Stage | Filling-Maturity Stage | ||
2011–2012 | CK | 4.4 a | 35.3 b | 306.9 c | 281.8c | 367.8c |
LP | 4.5 a | 42.5 a | 415.9 a | 349.1b | 391.9b | |
ALP | 4.4 a | 43.6 a | 360.3 b | 387.2a | 497.8a | |
2012–2013 | CK | 11.5 a | 63.8 b | 92.1 b | 531.5b | 225.2b |
LP | 8.6 b | 74.7 a | 112.6 a | 519.5b | 223.3b | |
ALP | 7.6 c | 75.4 a | 88.3 b | 726.0a | 260.0a | |
2013–2014 | CK | 17.8 a | 36.4 b | 114.7 b | 131.8c | 231.1b |
LP | 14.2 b | 41.9 a | 135.5 a | 140.9b | 233.2b | |
ALP | 14.7 b | 44.1 a | 133.9 a | 176.0a | 244.3a |
Crop Types | Treatments | Yields (kg ha–1) | |||
---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | ||
Maize | CK | 7045 b | 9981 b | 9905 b | ― |
LP | 7178 b | 9852 b | 9695 c | ― | |
ALP | 7460 a | 10316 a | 10,331 a | ― | |
Wheat | CK | ― | 9404 b | 8438 a | 8393 b |
LP | ― | 9730 b | 8528 a | 8517 b | |
ALP | ― | 10,305 a | 8695 a | 8844 a |
Items | Wheat (Triticum aestivum L.) | Maize (Zea mays L.) | ||||||
---|---|---|---|---|---|---|---|---|
RI | ETa | BY | TWUE | RI | ETa | BY | TWUE | |
RI | 1 | 1 | ||||||
ETa | 0.919 ** | 1 | −0.941 ** | 1 | ||||
BY | 0.803 ** | 0.567 | 1 | −0.974 ** | 0.948 ** | 1 | ||
TWUE | 0.219 | −0.130 | 0.742 * | 1 | −0.940 ** | 0.866 ** | 0.980 ** | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Feng, H.; Wu, S.; Dong, Q.; Siddique, K.H.M. An Ammoniated Straw Incorporation Increased Biomass Production and Water Use Efficiency in an Annual Wheat-Maize Rotation System in Semi-Arid China. Agronomy 2020, 10, 243. https://doi.org/10.3390/agronomy10020243
Zou Y, Feng H, Wu S, Dong Q, Siddique KHM. An Ammoniated Straw Incorporation Increased Biomass Production and Water Use Efficiency in an Annual Wheat-Maize Rotation System in Semi-Arid China. Agronomy. 2020; 10(2):243. https://doi.org/10.3390/agronomy10020243
Chicago/Turabian StyleZou, Yufeng, Hao Feng, Shufang Wu, Qin’ge Dong, and Kadambot H. M. Siddique. 2020. "An Ammoniated Straw Incorporation Increased Biomass Production and Water Use Efficiency in an Annual Wheat-Maize Rotation System in Semi-Arid China" Agronomy 10, no. 2: 243. https://doi.org/10.3390/agronomy10020243
APA StyleZou, Y., Feng, H., Wu, S., Dong, Q., & Siddique, K. H. M. (2020). An Ammoniated Straw Incorporation Increased Biomass Production and Water Use Efficiency in an Annual Wheat-Maize Rotation System in Semi-Arid China. Agronomy, 10(2), 243. https://doi.org/10.3390/agronomy10020243