Response of Alfalfa (Medicago sativa L.) to Abrupt Chilling as Reflected by Changes in Freezing Tolerance and Soluble Sugars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Treatment Process
2.3. Sampling
2.4. Freezing Tolerance
2.5. Sugar Extraction and Determination
2.6. RNA Extraction and Quantitative Real-Time PCR
2.7. Data Analysis
3. Results
3.1. Freezing Tolerance
3.2. Starch and Soluble Sugars
3.2.1. Starch
3.2.2. Soluble Sugars
3.3. Gene Expression
3.3.1. Sugar Metabolism-Related Genes
3.3.2. Cold-Regulated Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
WL44HQ | WL |
ZhaoDong | ZD |
LT50 | Semi-lethal temperature |
TSS | Total soluble sugars |
β-am | β-amylase |
SPS | Sucrose phosphate synthase |
GaS | Galactinol synthase |
StaS | Stachyose synthase |
References
- Gu, L.H.; Hanson, P.J.; Post, W.M.; Kaiser, D.P.; Yang, B.; Nemani, R.; Pallardy, S.G.; Meyers, A.T. The 2007 eastern US spring freeze: Increased cold damage in a warming world? BioScience 2008, 58, 253–262. [Google Scholar] [CrossRef]
- Augspurger, C.K. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology 2013, 94, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, S.M.; Gana, J.A.; Volenec, J.J.; Teuber, L.R. Winter hardiness, root physiology, and gene expression in successive fall dormancy selections from ‘Mesilla’ and ‘CUF 101’ alfalfa. Crop Sci. 2001, 41, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
- Ensminger, I.; Busch, F.; Huner, N.P.A. Photostasis and cold acclimation: Sensing low temperature through photosynthesis. Physiol. Plant. 2006, 126, 28–44. [Google Scholar] [CrossRef]
- Castonguay, Y.; Bertrand, A.; Michaud, R.; Laberge, S. Cold-induced biochemical and molecular changes in alfalfa populations selectively improved for freezing tolerance. Crop Sci. 2011, 51, 21–32. [Google Scholar] [CrossRef]
- Trischuk, R.G.; Schilling, B.S.; Low, N.H.; Gay, G.R.; Gusta, L.V. Cold acclimation, de-acclimation and re-acclimation of spring canola, winter canola and winter wheat: The role of carbohydrates, cold-induced stress proteins and vernalization. Environ. Exp. Bot. 2014, 106, 156–163. [Google Scholar] [CrossRef]
- Cunningham, S.M.; Volenec, J.J. Seasonal carbohydrate and nitrogen metabolism in roots of contrasting alfalfa (Medicago sativa L.) cultivars. J. Plant Physiol. 1998, 153, 220–225. [Google Scholar] [CrossRef]
- Chen, J.; Han, G.; Shang, C.; Li, J.; Zhang, H.; Liu, F.; Wang, J.; Liu, H.; Zhang, Y. Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa. Front. Plant Sci. 2015, 6, 105. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yang, G.; Li, X.; Yan, Y.; Sun, J.; Gao, R.; Sun, Q.; Wang, Z. Autumn dormancy regulates the expression of cas18, vsp and corF genes during cold acclimation of lucerne (Medicago sativa L.). Crop Pasture Sci. 2016, 67, 666–678. [Google Scholar] [CrossRef]
- Brummer, E.C.; Moore, K.J.; Charles, N.C. Agronomic consequences of dormant–nondormant alfalfa mixtures. Agron. J. 2002, 94, 782–785. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.H.; Zhu, J.K. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007, 12, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Theocharis, A.; Clément, C.; Barka, E.A. Physiological and molecular changes in plants grown at low temperatures. Planta 2012, 235, 1091–1105. [Google Scholar] [CrossRef] [PubMed]
- Uemura, M.; Steponkus, P.L. Cold acclimation in plants: Relationship between the lipid composition and the cryostability of the plasma membrane. J. Plant Res. 1999, 112, 245–254. [Google Scholar] [CrossRef]
- Uemura, M.; Warren, G.; Steponkus, P.L. Freezing sensitivity in the sfr4 mutant of Arabidopsis is due to low sugar content and is manifested by loss of osmotic responsiveness. Plant Physiol. 2003, 131, 1800–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; Yu, J.; Cang, J.; Liu, L.; Mu, Y.; Wang, J.; Zhang, D. Detection of sugar accumulation and expression levels of correlative key enzymes in winter wheat (Triticum aestivum) at low temperatures. Biosci. Biotechnol. Biochem. 2011, 75, 681–687. [Google Scholar] [CrossRef]
- Jouve, L.; Hoffmann, L.; Hausman, J.F. Polyamine, carbohydrate, and proline content changes during salt stress exposure of aspen (Populus tremula L.): Involvement of oxidation and osmoregulation metabolism. Plant Biol. 2004, 6, 74–80. [Google Scholar]
- Bohnert, H.J.; Sheveleva, E. Plant stress adaptations—Making metabolism move. Curr. Opin. Plant Biol. 1998, 1, 267–274. [Google Scholar] [CrossRef]
- Bertrand, A.; Bipfubusa, M.; Claessens, A.; Rocher, S.; Castonguay, Y. Effect of photoperiod prior to cold acclimation on freezing tolerance and carbohydrate metabolism in alfalfa (Medicago sativa L.). Plant Sci. 2017, 264, 122–128. [Google Scholar] [CrossRef]
- Castonguay, Y.; Nadeau, P.; Lechasseur, P. Differential accumulation of carbohydrates in alfalfa cultivars of contrasting winter hardiness. Crop Sci. 1995, 35, 509–516. [Google Scholar] [CrossRef]
- Castonguay, Y.; Laberge, S.; Brummer, E.C.; Volencec, J.J. Alfalfa winter hardiness: A research retrospective and integrated perspective. Adv. Agron. 2006, 90, 203–265. [Google Scholar]
- Dube, M.P.; Castonguay, Y.; Cloutier, J.; Michaud, J.; Bertrand, A. Characterization of two novel cold-inducible K-3 dehydrin genes from alfalfa (Medicago sativa spp. sativa L.). Theor. Appl. Genet. 2013, 126, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, S.M.; Nadeau, P.; Castonguay, Y.; Laberge, S.; Volenec, J.J. Raffinose and stachyose accumulation, galactinol synthase expression, and winter injury of contrasting alfalfa germplasms. Crop Sci. 2003, 43, 562–570. [Google Scholar] [CrossRef]
- Janská, A.; Marˇsík, P.; Zelenková, S.; Ovesna´, J. Cold stress and acclimation what is important for metabolic adjustment? Plant Biol. 2010, 12, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Monroy, A.F.; Castonguay, Y.; Laberge, S.; Sarhan, F.; Vezina, L.P.; Dhindsa, R.S. A New Cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiol. 1993, 102, 873–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, H.; Ichimura, K.; Okada, K.; Oda, M. Freezing tolerance and soluble sugar contents affected by water stress during cold-acclimation and de-acclimation in cabbage seedlings. Sci. Hortic. 1998, 76, 161–169. [Google Scholar] [CrossRef]
- Anower, M.R.; Fennell, A.; Boe, A.; Mott, I.W.; Peel, M.D.; Wu, Y.J. Physiological and molecular characterisation of lucerne (Medicago sativa L.) germplasm with improved seedling freezing tolerance. Crop Pasture Sci. 2016, 67, 655–665. [Google Scholar] [CrossRef]
- Haissig, B.E.; Dickson, R.E. Starch measurement in plant tissue using enzymatic hydrolysis. Physiol. Plant. 1979, 47, 151–157. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2000, 25, 402–408. [Google Scholar] [CrossRef]
- Zhuo, C.; Wang, T.; Lu, S.; Zhao, Y.; Li, X.; Guo, Z. A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses. Physiol. Plant. 2013, 149, 67–78. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, M.; Tian, Q.; Zhang, W. Comparative studies on tolerance of Medicago truncatula and Medicago falcata to freezing. Planta 2011, 234, 445–457. [Google Scholar] [CrossRef]
- Castonguay, Y.; Dube, M.P.; Cloutier, J.; Bertrand, A.; Michaud, R.; Laberge, S. Molecular physiology and breeding at the crossroads of cold hardiness improvement. Physiol. Plant. 2013, 147, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Chia, T.; Thorneycroft, D.; Chapple, A.; Messerli, G.; Chen, J.; Zeeman, S.C.; Smith, S.M.; Smith, A.M. A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Plant J. 2004, 37, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, F.; Sung, D.Y.; Guy, C.L. Roles of β-amylase and starch breakdown during temperature stress. Physiol. Plant. 2010, 126, 120–128. [Google Scholar] [CrossRef]
- Sengupta, S.; Mukherjee, S.; Basak, P.; Majumder, A.L. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front. Plant Sci. 2015, 6, 656. [Google Scholar] [CrossRef] [Green Version]
- Pollock, C.J.; Lloyd, E.J. The effect of low temperature upon starch, sucrose and fructan synthesis in leaves. Ann. Bot. 1987, 60, 231–235. [Google Scholar] [CrossRef]
- Kaplan, B.; Davydov, O.; Knight, H.; Galon, Y.; Knight, M.R.; Fluhr, R.; Fromm, H. Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+ cis elements in Arabidopsis. Plant Cell 2006, 18, 2733–2748. [Google Scholar] [CrossRef] [Green Version]
- Gana, J.A.; Kalengamaliro, N.E.; Cunningham, S.M.; Volenec, J.J. Expression of β-amylase from alfalfa taproots. Plant Physiol. 1998, 118, 1495–1505. [Google Scholar] [CrossRef] [Green Version]
- Tarkowski, Ł.P.; Van den Ende, W. Cold tolerance triggered by soluble sugars: A multifaceted countermeasure. Front. Plant Sci. 2015, 6, 203. [Google Scholar] [CrossRef] [Green Version]
- Couée, I.; Sulmon, C.; Gouesbet, G.; Amrani, A.E. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J. Exp. Bot. 2006, 57, 449–459. [Google Scholar] [CrossRef]
- Peterbauer, T.; Richter, A. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci. Res. 2001, 11, 185–197. [Google Scholar]
- Moez, H.; Faïçal, B.; Chantal, E.; Yosuke, T.; Shin, T.; Khaled, M. Plant dehydrins and stress tolerance: Versatile proteins for complex mechanisms. Plant Signal. Behav. 2011, 6, 1503–1509. [Google Scholar]
Gen ID | Type | Sequence Homology | GenBank Accession NO | Primer Sequence (5′-3′) | Size |
---|---|---|---|---|---|
SPS | GOT | Sucrose phosphate synthase | AF322116.2 | CGCCTATTTGTGGGTGACTT TCGTTGCTCTCACCCTTCTT | 125 |
GaS | GOT | Galactinol synthase | AY126615.1 | CTTGTTCTGGCCATGTTGTG TCCACACCTGTGTACCTCCA | 110 |
StaS | GOT | Stachyose synthase | AY468361.1 | TGATCCAATGGGAGCTTTTT CCCAATCAGGTCGAATCATC | 95 |
β-am | GOT | β-amylase | AF026217.1 | TGGAGGAAATGTAGGGGATG TCCTAATACCGGAGCGATTG | 107 |
Cas15A | GOT | Cas15A | L12461.1 | ATTTGCCGACAAGATCAAGG CCATGTTCATGACCCTCTCC | 102 |
K3-dehydrin | GOT | K3-dehydrin | JX460852.1 | GGTGCTAGTGGTGCTGGT TGTCCTTGTCCATGTCCAGT | 113 |
Actin | Ref | Actin | JQ028730.1 | TCGAGACCTTCAATGTGCCT ACTCACACCGTCACCAGAAT | 110 |
Total Soluble Sugar | Sucrose | Raffinose | Stachyose | ||||||
---|---|---|---|---|---|---|---|---|---|
WL | ZD | WL | ZD | WL | ZD | WL | ZD | ||
LT50 | Pearson correlation | −0.893 ** | −0.832 ** | −0.888 ** | −0.826 ** | −0.922 ** | −0.853 ** | −0.919 ** | −0.791 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Tong, Z.; He, F.; Li, X. Response of Alfalfa (Medicago sativa L.) to Abrupt Chilling as Reflected by Changes in Freezing Tolerance and Soluble Sugars. Agronomy 2020, 10, 255. https://doi.org/10.3390/agronomy10020255
Xu H, Tong Z, He F, Li X. Response of Alfalfa (Medicago sativa L.) to Abrupt Chilling as Reflected by Changes in Freezing Tolerance and Soluble Sugars. Agronomy. 2020; 10(2):255. https://doi.org/10.3390/agronomy10020255
Chicago/Turabian StyleXu, Hongyu, Zongyong Tong, Feng He, and Xianglin Li. 2020. "Response of Alfalfa (Medicago sativa L.) to Abrupt Chilling as Reflected by Changes in Freezing Tolerance and Soluble Sugars" Agronomy 10, no. 2: 255. https://doi.org/10.3390/agronomy10020255
APA StyleXu, H., Tong, Z., He, F., & Li, X. (2020). Response of Alfalfa (Medicago sativa L.) to Abrupt Chilling as Reflected by Changes in Freezing Tolerance and Soluble Sugars. Agronomy, 10(2), 255. https://doi.org/10.3390/agronomy10020255