Changes in the Weed Seed Bank in Long-Term Establishment Methods Trials under Rice-Wheat Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Soil Information
2.2. Soil Sampling and Trial Establishment
2.3. Observations
2.4. Statistical Analysis
3. Results
3.1. Effect on Weed Seed Bank (WSB)
3.1.1. Crop Establishment Methods
3.1.2. Soil Depths
3.1.3. Interaction Effect of Crop Establishment Method × Soil Depth
3.1.4. Effect of Crop Establishment Methods on the Vertical Distribution of Weed Seed Bank
3.2. Effect on Weed Diversity Indices
3.2.1. Crop Establishment Methods
3.2.2. Soil Depth
4. Discussion
4.1. Crop Establishment Methods
4.2. Soil Depth
4.3. Crop Establishment Method × Soil Depth
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chauhan, B.S.; Mahajan, G.; Sardana, V.; Timsina, J.; Jat, M.L. Productivity and sustainability of the rice-wheat cropping system in the Indo-Gangetic plains of Indian subcontinent: Problem, opportunities, and strategies. Adv. Agron. 2012, 117, 315–369. [Google Scholar]
- Mohammad, A.; Sudhishri, S.; Das, T.K.; Singh, M.; Bhattacharya, R.; Dass, A.; Khanna, M.; Sharma, V.K.; Dwivedi, N.; Kumar, M. Water balance in direct-seeded rice under conservation agriculture in North-western Indo-Gangetic Plains of India. Irrig. Sci. 2018, 36, 381–393. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, J.; Feng, J.; Zhai, S.; Chen, W.; Liu, J.; Bian, X. Ditch-buried straw return: A novel tillage practice combined with tillage rotation and deep ploughing in rice-wheat rotation systems. Adv. Agron. 2019, 154, 257–290. [Google Scholar]
- Farooq, M.; Siddique, K.H.M. Conservation agriculture: Concepts, brief history, and impacts of agricultural systems. In Conservation Agriculture; Farooq, M., Siddique, K.H.M., Eds.; Springer: Cham, Switzerland, 2015; pp. 3–17. [Google Scholar]
- Matloob, A.; Khaliq, A.; Chauhan, B.S. Weeds of direct-seeded rice in Asia: Problems and opportunities. Adv. Agron. 2015, 130, 291–336. [Google Scholar]
- Gharde, Y.; Singh, P.K.; Dubey, R.P.; Gupta, P.K. Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot. 2018, 107, 12–18. [Google Scholar] [CrossRef]
- Singh, Y.; Singh, V.P.; Singh, G.; Yadav, D.S.; Sinha, R.K.P.; Johnson, D.E.; Mortimer, A.M. The implications of land preparation, crop establishment method and weed management on rice yield variation in the rice–wheat system in the Indo-Gangetic plains. Field Crops Res. 2011, 121, 64–74. [Google Scholar] [CrossRef]
- Cardina, J.; Regnier, E.; Harrison, K. Long-term tillage effects on seed banks in three Ohio soils. Weed Sci. 1991, 39, 186–194. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Awan, T.H.; Abugho, S.B.; Evengelista, G.; Yadav, S. Effect of crop establishment methods and weed control treatments on weed management, and rice yield. Field Crop Res. 2015, 172, 72–84. [Google Scholar] [CrossRef]
- Paliwal, A.; Singh, V.P.; Bhimwal, J.P.; Joshi, N.; Singh, S.P.; Pratap, T.; Guru, S.K.; Kumar, A. Rice productivity under different weed management and establishment methods. Indian J. Weed Sci. 2017, 49, 5–9. [Google Scholar] [CrossRef]
- Nandan, R.; Singh, V.; Singh, S.S.; Kumar, V.; Hazra, K.K.; Nath, C.P.; Poonia, S.P.; Malik, R.K. Comparative assessment of the relative proportion of weed morphology, diversity, and growth under new generation tillage and crop establishment techniques in rice-based cropping systems. Crop Prot. 2018, 111, 23–32. [Google Scholar] [CrossRef]
- Jat, R.K.; Singh, R.G.; Gupta, R.K.; Gill, G.; Chauhan, B.S.; Pooniya, V. Tillage, crop establishment, residue management and herbicide applications for effective weed control in direct seeded rice of eastern Indo–Gangetic Plains of South Asia. Crop Prot. 2019, 123, 12–20. [Google Scholar] [CrossRef]
- Srivastava, R.; Singh, K.P. Diversity in weed seed production and the soil seed bank: Contrasting responses between two agroecosystems. Weed Biol. Manag. 2014, 14, 21–30. [Google Scholar] [CrossRef]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crop Res. 2015, 183, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Lal, B.; Gautam, P.; Raja, R.; Tripathi, R.; Shahid, M.; Mohanty, S.; Panda, B.B.; Bhattacharyya, P.; Nayak, A.K. Weed seed bank diversity and community shift in a four-decade-old fertilization experiment in rice–rice system. Ecol. Eng. 2016, 86, 135–145. [Google Scholar] [CrossRef]
- Travlos, I.S.; Cheimona, N.; Roussis, I.; Bilalis, D.J. Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Front. Environ. Sci. 2018, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Forcella, F.; Webster, T.; Cardina, J. Protocols for weed seed banks determination in agroecosystems. In Weed Management for Developing Countries, Addendum 1; Labrada, R., Ed.; FAO: Rome, Italy, 2003; Volume 120, pp. 3–18. [Google Scholar]
- Fracchiolla, M.; Stellacci, A.M.; Cazzato, E.; Tedone, L.; Ali, S.A.; Mastro, G.D. Effects of conservative tillage and nitrogen management on weed seed bank after a seven-year durum wheat—Faba bean rotation. Plants 2018, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Walia, U.S. Weed Identification and Medicinal Use; Scientific Publishers: Jodhpur, India, 2016. [Google Scholar]
- Xu, Z.; Deng, M. Identification and Control of Common Weeds: Volume 2; Zhejiang University Press: Hangzhou, China; Springer: Singapore, Malaysia, 2017. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Berger, W.H.; Parker, F.L. Diversity of planktonic Forminifera in deep-sea sediments. Science 1970, 168, 1345–1347. [Google Scholar] [CrossRef]
- Whittaker, R.H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 1960, 30, 279–338. [Google Scholar] [CrossRef]
- Kraehmer, H. Atlas of Weed Mapping; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedure in Agriculture Research, 2nd ed.; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Plaza, E.H.; Kozak, M.; Navarrete, L.; Gonzalez-Andujar, J.L. Tillage system did not affect weed diversity in a 23-year experiment in Mediterranean dryland. Agric. Ecosyst. Environ. 2011, 140, 102–105. [Google Scholar] [CrossRef]
- Derksen, D.A.; Thomas, A.G.; Lafond, G.P.; Loeppky, H.A.; Swanton, C.J. Impact of post-emergence herbicides on weed community diversity within conservation-tillage systems. Weed Res. 1995, 35, 311–320. [Google Scholar] [CrossRef]
- Yensih, J.P.; Doll, J.D.; Buhler, D.D. Effects of tillage on vertical distribution and viability of weed seed in soil. Weed Sci. 1992, 40, 429–433. [Google Scholar] [CrossRef]
- Gallandt, E.R.; Fuerst, E.P.; Kennedy, A.C. Effect of tillage, fungicide seed treatment, and soil fumigation on seed bank dynamics of wild oat (Avena fatua). Weed Sci. 2004, 52, 597–604. [Google Scholar] [CrossRef]
- Gibson, K.D.; Fischer, A.J.; Foin, T.C.; Hill, J.E. Implications of delayed Echinochloa spp. germination and duration of competition for integrated weed management in water-seeded rice. Weed Res. 2002, 42, 351–358. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Jabran, K.; Shahid, M.; Ali, H.H.; Chauhan, B.S. Eco-biology and management of Echinochloa crus-galli. Crop Prot. 2015, 75, 151–162. [Google Scholar] [CrossRef]
- Vleeshouwers, L.M.; Bouwmeester, H.J. A simulation model for seasonal changes in dormancy and germination of weed seeds. Seed Sci. Res. 2001, 11, 77–92. [Google Scholar] [CrossRef]
- Walker, S.R.; Evenson, J.P. Biology of Commelina benghalensis L. in south-eastern Queensland.1. Growth, development and seed production. Weed Res. 1985, 25, 239–244. [Google Scholar] [CrossRef]
- Walker, S.R.; Evenson, J.P. Biology of Commelina~benghalensis L. in south-eastern Queensland.2. Seed dormancy, germination and emergence. Weed Res. 1985, 25, 245–250. [Google Scholar] [CrossRef]
- Leibman, M. Managing weeds with insects and pathogens. In Ecological Management of Agricultural Weeds; Leibman, M., Mohler, C.L., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 375–408. [Google Scholar]
- Lund, R.D.; Turpin, F.T. Carabid damage to weed seeds found in Indiana cornfields. Environ. Entomol. 1977, 6, 695–698. [Google Scholar] [CrossRef]
- Gallart, M.; Mas, M.T.; Verdú, A.M.C. Demography of Digitaria sanguinalis: Effect of the emergence time on survival, reproduction, and biomass. Weed Biol. Manag. 2010, 10, 132–140. [Google Scholar] [CrossRef]
- Punia, S.S.; Singh, S.; Yadav, A.; Yadav, D.B.; Malik, R.K. Long-term impact of crop establishment methods on weed dynamics, water use and productivity in rice-wheat cropping system. Indian J. Weed Sci. 2016, 48, 158–163. [Google Scholar] [CrossRef]
- Roberts, E.H. Dormancy: A factor affecting seed survival in the soil. In Viability of Seeds; Roberts, E.H., Ed.; Springer: Dordrecht, The Netherlands, 1972; pp. 321–359. [Google Scholar]
- Roberts, H.A.; Feast, P.M. Emergence and longevity of seeds of annual weeds in cultivated and undisturbed soil. J. Appl. Ecol. 1973, 10, 133–143. [Google Scholar] [CrossRef]
- Burnside, O.C.; Wicks, G.A.; Fenster, C.R. Longevity of shatter cane seed in soil across Nebraska. Weed Res. 1977, 17, 139–143. [Google Scholar] [CrossRef]
- Clement, D.R.; Weise, S.F.; Swanton, C.J. Integrated weed management and weed species diversity. Phytoprotection 1994, 75, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Storkey, J.; Neve, P. What good is weed diversity? Weed Res. 2018, 58, 239–243. [Google Scholar] [CrossRef]
- Dekker, J. Soil weed seed banks and weed management. J. Crop Prod. 1999, 2, 139–166. [Google Scholar] [CrossRef]
- Neve, P.; Busi, R.; Rentom, M.; Vila-Aiub, M.M. Expanding the eco-evolutionary context of herbicide resistance research. Pest Manag. Sci. 2014, 70, 1385–1393. [Google Scholar] [CrossRef]
- Harper, J.L. Population Biology of Plants; Academic Press Inc.: New York, NY, USA, 1977. [Google Scholar]
- Singh, M.; Bhullar, M.S.; Chauhan, B.S. Seed bank dynamics and emergence pattern of weeds as affected by tillage systems in dry direct seeded rice. Crop Prot. 2015, 67, 168–177. [Google Scholar] [CrossRef]
- Benvenuti, S.; Macchia, M.; Miele, S. Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Sci. 2001, 49, 528–535. [Google Scholar] [CrossRef]
Soil Properties | Soil Depth | ||
---|---|---|---|
0–10 cm | 10–20 cm | 20–30 cm | |
pH | 7.41 | 7.51 | 7.62 |
EC (dSm−1) | 0.25 | 0.23 | 0.20 |
Organic Carbon (%) | 0.42 | 0.39 | 0.35 |
Bulk density (Mg·m−3) | 1.40 | 1.42 | 1.45 |
Available N (kg·ha−1) | 199.60 | 178.70 | 157.81 |
Available P (kg·ha−1) | 18.55 | 20.10 | 21.83 |
Treatments | Abbreviation |
---|---|
Crop Establishment Methods (CE) | |
Conventional Till (CT) Puddle Transplanted Rice—CT wheat | CTPTR-CTW |
CT dry Direct Seeded Rice (DSR)—CT Wheat | CTDSR-CTW |
CT dry DSR—Zero-Till (ZT) Wheat (residue retention in rice) | CTDSR-ZTW (RRR) |
ZT DSR—ZT Wheat (residue retention in rice and wheat) | ZTDSR-ZTW (RRRW) |
Soil Depth (SD) | |
0–10 cm | |
10–20 cm | |
20–30 cm |
Botanical Name | US Code/Code | Family | Common Name |
---|---|---|---|
Ammannia baccifera L. * | AMBA | Lythraceae | Common ammannia |
Caesulia axillaris Roxb. ** | CAAX | Asteraceae | Pink node flower |
Commelina benghalensis L. | COBE2 | Commelinaceae | Day flower |
Cyperus spp. | - | Cyperaceae | Sedge |
Dactyloctenium aegyptium (L.) Willd | DAAE | Poaceae | Crow foot grass |
Digitaria sanguinalis (L.) Scop. | DISA | Poaceae | Crab grass |
Echinochloa spp. | - | Poaceae | Barnyard grass |
Eclipta alba (L.) Hassk. | ECAL | Asteraceae | Eclipta |
Euphorbia hirta L. | EUHI | Euphorbiaceae | Spurge |
Ludwigia hyssopifolia (G. Don) Exell * | LUHY | Onagraceae | Water Primrose |
Phyllanthus niruri L. | PHNI2 | Phyllanthaceae | Niruri |
Treatment | Density of Weeds (n m−2) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Grasses | Sedges | BLWs | Total | Echinochloa spp. | AMBA | COBE2 | PHNI2 | DISA | |
Crop Establishment Methods (CE) | |||||||||
CTPTR-CTW | 68.22 (4865.35) a | 45.01 (2376.10) a | 75.13 (5827.11) a | 112.82 (13068.57) a | 60.70 (3960.17) a | 41.27 (2093.23) a,b | 29.36 (905.18) a | 32.66 (1244.63) | 5.57 (113.15) b,c |
CTDSR-CTW | 49.41 (2941.84) b | 23.17 (848.61) b | 52.65 (2998.42) b | 79.38 (6788.87) b | 39.28 (2149.81) b | 25.54 (848.61) c | 6.60 (169.72) b | 20.24 (622.31) | 0.71 (0.00) c |
CTDSR-ZTW (RRR) | 51.33 (3337.86) b | 32.54 (1244.63) a,b | 58.14 (4186.47) b | 86.69 (8788.87) b | 41.51 (2149.81) b | 29.66 (1188.05) b,c | 19.70 (848.61) a | 24.93 (848.61) | 15.97 (452.59) a,b |
ZTDSR-ZTW (RRRW) | 81.98 (8146.64) a | 26.19 (961.76) b | 80.99 (9447.84) a | 121.05 (18556.23) a | 66.85 (5600.81) a | 47.40 (3451.01) a | 21.11 (792.03) a | 28.21 (1923.51) | 23.93 (1074.90) a |
SEm± | 5.26 | 4.38 | 5.26 | 5.17 | 4.85 | 5.18 | 3.89 | 4.89 | 4.25 |
CD (p = 0.05) | 15.44 | 12.84 | 15.44 | 15.16 | 14.23 | 15.20 | 11.42 | NS | 12.46 |
Soil Depth (SD) | |||||||||
0–10 cm | 88.93 (8613.97) a | 46.35 (2248.81) a | 95.96 (10480.31) a | 140.37 (21342.50) a | 74.96 (6067.55) a | 51.73 (3267.14) a | 34.68 (1357.77) a | 41.83 (2248.81) a | 20.60 (763.75) a |
10–20 cm | 53.30 (3012.56) b | 33.76 (1357.77) b | 62.06 (4030.89) b | 90.31 (8401.22) b | 44.89 (2163.95) b | 38.40 (1569.93) b | 12.75 (381.87) b | 21.75 (721.32) b | 9.68 (381.87) b |
20–30 cm | 45.97 (2842.84) b | 15.08 (466.73) c | 42.15 (2333.67) c | 69.27 (5643.19) c | 36.41 (2163.95) b | 17.77 (848.61) c | 10.15 (297.01) b | 15.95 (509.16) b | 4.35 (84.86) b |
SEm± | 4.56 | 3.79 | 4.56 | 4.48 | 4.20 | 4.49 | 3.37 | 4.23 | 3.68 |
CD (p = 0.05) | 13.37 | 11.12 | 13.37 | 13.13 | 12.32 | 13.16 | 9.89 | 12.41 | 10.79 |
CE × SD | S | NS | S | S | NS | NS | NS | NS | NS |
Crop Establishment Methods | Density of Broad Leaved Weeds (n m−2) in Different soil Depth | Density of Grasses (n m−2) in Different Soil Depth | ||||
---|---|---|---|---|---|---|
0–10 cm | 10–20 cm | 20–30 cm | 0–10 cm | 10–20 cm | 20–30 cm | |
CTPTR-CTW | 76.65 (5940.26) b,c | 77.99 (6109.98) b,c | 70.74 (5431.09) b,c | 70.01 (4921.93) b,c,d | 56.52 (3224.71) b,c,d,e,f | 78.12 (6449.42) b |
CTDSR-CTW | 63.44 (4243.04) c,d | 54.02 (3054.99) c,d,e | 40.49 (1697.22) d,e,f | 72.25 (5261.37) b,c | 45.89 (2206.38) c,d,e,f | 30.09 (1357.77) f |
CTDSR-ZTW (RRR) | 91.87 (8486.08) b | 56.87 (3394.43) c,d,e | 25.69 (678.89) f | 81.41 (6788.87) b | 42.51 (1866.94) d,e,f | 30.09 (1357.77) f |
ZTDSR-ZTW (RRRW) | 151.90 (23251.87) a | 59.37 (3564.15) c,d,e | 31.69 (1527.49) e,f | 132.06 (17481.33) a | 68.30 (4752.21) b,c,d,e | 45.59 (2206.38) d,e,f |
SEm± | 9.12 | 9.12 | ||||
CD (p = 0.05) | 26.74 | 26.74 |
Crop Establishment Methods (CE) | Density of Total Weed (n m−2) in Different Soil Depth | ||
---|---|---|---|
0–10 cm | 10–20 cm | 20–30 cm | |
CTPTR-CTW | 118.94 (14526.62) b,c | 109.32 (12050.24) b,c | 110.19 (12898.85) b,c |
CTDSR-CTW | 105.75 (11371.35) b,c,d | 75.85(5770.54) e,f,g | 56.52(3224.71) f,g |
CTDSR-ZTW (RRR) | 131.05 (17311.61) b | 80.04 (6449.42) d,e,f | 48.97 (2545.82) g |
ZTDSR-ZTW (RRRW) | 205.74 (42430.41) a | 96.01 (9334.69) c,d,e | 61.40 (3903.60) f,g |
SEm± | 8.96 | ||
CD (p = 0.05) | 26.26 |
Treatment | Weed Diversity Indices | ||||
---|---|---|---|---|---|
Shannon–Weaver (H’) | Species Evenness (J’) | Simpson Index (λ) | Species Richness (DMg) | Whittaker Statistic (βW) | |
Crop Establishment Methods (CE) | |||||
CTPTR-CTW | 1.71 a | 0.88 | 0.78 | 1.49 a | 1.65 b |
CTDSR-CTW | 1.33 b | 0.93 | 0.69 | 0.92 b | 2.82 a |
CTDSR-ZTW (RRR) | 1.59 a,b | 0.93 | 0.75 | 1.34 a | 2.36 a,b |
ZTDSR-ZTW (RRRW) | 1.53 a,b | 0.89 | 0.72 | 1.31 a | 2.37 a,b |
SEm± | 0.09 | 0.02 | 0.03 | 0.10 | 0.26 |
CD (p = 0.05) | 0.26 | NS | NS | 0.30 | 0.77 |
Soil Depth (SD) | |||||
0–10 cm | 1.91 a | 0.88 | 0.82 a | 1.85 a | 1.30 c |
10–20 cm | 1.63 b | 0.94 | 0.78 a | 1.24 b | 2.03 b |
20–30 cm | 1.08 c | 0.90 | 0.61 b | 0.71 c | 3.57 a |
SEm± | 0.08 | 0.02 | 0.02 | 0.09 | 0.23 |
CD (p = 0.05) | 0.22 | NS | 0.07 | 0.26 | 0.67 |
CE × SD | NS | NS | NS | NS | NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, P.; Singh, M.K.; Verma, K.; Prasad, S.K. Changes in the Weed Seed Bank in Long-Term Establishment Methods Trials under Rice-Wheat Cropping System. Agronomy 2020, 10, 292. https://doi.org/10.3390/agronomy10020292
Sharma P, Singh MK, Verma K, Prasad SK. Changes in the Weed Seed Bank in Long-Term Establishment Methods Trials under Rice-Wheat Cropping System. Agronomy. 2020; 10(2):292. https://doi.org/10.3390/agronomy10020292
Chicago/Turabian StyleSharma, Prashant, Manoj Kumar Singh, Kamlesh Verma, and Saroj Kumar Prasad. 2020. "Changes in the Weed Seed Bank in Long-Term Establishment Methods Trials under Rice-Wheat Cropping System" Agronomy 10, no. 2: 292. https://doi.org/10.3390/agronomy10020292
APA StyleSharma, P., Singh, M. K., Verma, K., & Prasad, S. K. (2020). Changes in the Weed Seed Bank in Long-Term Establishment Methods Trials under Rice-Wheat Cropping System. Agronomy, 10(2), 292. https://doi.org/10.3390/agronomy10020292