Study Regarding the Potential Use of a Spent Microbial Biomass in Fertilizer Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Analysis
- (1)
- The carbon (C) and nitrogen (N) content was determined using a CHNS/O Analyzer (Perkin Elmer 2400 Series II, with a thermal conductivity detector and the following analytical range: C: 0.01–3.6 mg (max 0.1%); N: 0.001–1.0 mg (max 0.03%)); each measurement was performed in triplicate.
- (2)
- The content of metallic cations, boron (B), silicon (Si), and phosphorus (P) (Figure 1) was determined with inductively coupled plasma atomic emission spectroscopy, using a spectrometer (ICP-AES VARIAN Liberty 110 with following detection limits: B: 10 μg/L; Ca: 0.5 μg/L; Co: 5 μg/L; Cu: 55 μg/L; Fe: 5 μg/L; K: 100 μg/L; Mg: 0.5 μg/L; Na: 50 μg/L; Mn: 1 μg/L; Mo: 10 μg/L; Si: 20 μg/L, Zn: 5 μg/L). Solubilization was performed with 65% HNO3 and 30% H2O2 (Sigma Aldrich Co., St. Louis, MO, USA), using a Berghoff Digestor. The results represent the average value obtained for three samples; for each element, the device was programmed to make three measurements. The standard deviation (STDEV) for the elemental analysis was 5%.
2.2. Cultivation Substrate for Germination
2.3. Germination Trials
2.4. Cultivation Trials
2.4.1. Fertilizers with Microbial Biomass
2.4.2. Soil Surface Preparation (Plot Preparation)
2.4.3. Fertilizer Influence on Vegetable
2.5. Statistics
3. Results
3.1. Studies Regarding the Influence of Functionalized Biomass on Seed Germination
3.2. Studies on the Influence of Fertilizers with Functionalized Biomass on the Development and Production of Solanum lycopersicum and Capsicum annuum Crops
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- González, M.E.; Cea, M.; Medina, J.; González, A.; Diez, M.C.; Cartes, P.; Monreal, C.; Navia, R. Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Sci. Total Environ. 2015, 505, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Han, Y.; Wu, Z.; He, Y.; Bang-Ce, Y.; Wang, J. Rapid synthesis of a corncob-based semi interpenetrating polymer network slow-release nitrogen fertilizer by microwave irradiation to control water and nutrient losses. Arab. J. Chem. 2017, 10, 922–934. [Google Scholar] [CrossRef]
- Olad, A.; Hamid, Z.; Salari, M.A.; Tabar, A.R. Slow-release NPK fertilizer encapsulated by carboxymethyl D. cellulose-based nanocomposite with the function of water retention in soil. Mater. Sci. Eng. 2018, 90, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Purnomo, C.W.; Respito, A.; Sitanggang, E.P.; Mulyono, P. Slow release fertilizer preparation from sugar cane industrial waste. Environ. Technol. Innov. 2018, 10, 275–280. [Google Scholar] [CrossRef]
- Al-Rawajfeh, A.E.; Al Shamaileh, E.M.; Alrbaihat, M.R. Clean and efficient synthesis using mechanochemistry: Preparation of kaolinite–KH2PO4 and kaolinite–(NH4)2HPO4 complexes as slow released fertilizer. J. Ind. Eng. Chem. 2019, 73, 336–343. [Google Scholar] [CrossRef]
- Wei, H.; Wang, H.; Chu, H.; Li, J. Preparation and characterization of slow-release and water-retention fertilizer based on starch and halloysite. Int. J. Biol. Macromol. 2019, 133, 1210–1218. [Google Scholar] [CrossRef]
- Versino, F.; Urriza, M.; García, M.A. Eco-compatible cassava starch films for fertilizer controlled-release. Int. J. Biol. Macromol. 2019, 134, 302–307. [Google Scholar] [CrossRef]
- Harada, J.; de Souza, A.G.; de Macedo, J.R.N.; Rosa, D.S. Soil culture: Influence of different natural fillers incorporated in biodegradable mulching film. J. Mol. Liq. 2019, 273, 33–36. [Google Scholar] [CrossRef]
- Radu, N.; Bondar, E.; Meghea, A.; Rau, I. Removal cooper and cobalt from diluted aqueous system by bio sorption process. Rev. Chim. Bucharest 2006, 7, 711–717. [Google Scholar]
- Radu, N.; Meghea, A. Studies concernig the use of microbial biomass by fertilisers manufacture. J. Environ. Prot. Ecol. 2007, 8, 875–890. [Google Scholar]
- Radu, N.; Lanyi, S.; Meghea, A. Studies concerning the recovery of nutrient from industrial wastewaters as fertilisers. J. Environ. Prot. Ecol. 2007, 8, 866–874. [Google Scholar]
- Meghea, A.; Radu, N.; Rau, I.; Marica, E.; Sandru, L. Fertilizers with microbial biomass. Patent RO121557 (B1), 30 November 2007. Available online: https://worldwide.espacenet.com/patent/search/family/038777886/publication/RO121557B1?q=Fertilizers%20with%20microbial%20biomass.
- Dima, G.; Radu, N.; Chirvase, A.; Pena, E.L. Studies regarding using biomass in bioremediation of wastewater with heavy metal. Rev. Chim Bucharest 2007, 58, 561–565. [Google Scholar]
- Zhang, Z.; Yu, F. Effects of salt stress on seed germination of four ornamental non-halophyte species. Intl. J. Agric. Biol. 2019, 21, 47–53. [Google Scholar]
- Awatif, S.A.; Elozeiri, A.A. Metabolic Processes During Seed Germination, Advances in Seed Biology; Jose, C.J.-L., Ed.; IntechOpen Publishing: Rijeka, Croatia, 2017; pp. 141–166. [Google Scholar]
- Vaistij, F.E.; Barros-Galvão, T.; Cole, A.F.; Gilday, A.D.; He, Z.; Li, Y.; Harvey, D.; Larson, T.R.; Graham, I.A. Mother-of-ft-and-tfl1 represses seed germination under far-red light by modulating phytohormone responses in Arabidopsis thaliana. PNAS 2018, 115, 8442–8447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeboah, S.; Berchie, J.N.; Asumadu, H.; Agyeman, K.; Acheampong, P.P. Influenced of Inorganic Fertilizer Products on the Growth and Yield of Tomatoes (Lycopersicon esculentum Mill). JEBAS 2014, 1, 500–506. [Google Scholar]
- Ewulo, B.S.; Eleduma, A.F.; Sanni, K.O. Effects of Urea and Poultry Manure on Growth and Yield Attributes of Tomatoes (Lycopersicon esculentum Mill) And Soil Chemical Composition. Int. J. Innov. Res. Adv. Stud. 2016, 3, 5–9. [Google Scholar]
- Martins, B.N.M.; Candian, J.S.; de Lima, P.N.; Corrêa, C.V.; de Sousa, G.A.M.; da Silva, J.O.; Falkner, M.; de Sousa, S.; Cardoso, A.I.I. Effect of phosphorus (P) doses on tomato seedlings production in poor nutrients substrates and its importance on fruit yield. Aust. J. Crop. Sci. 2017, 11, 567–572. [Google Scholar] [CrossRef]
- Ashraf, M.I.; Shoukat, S.; Hussain, B.; Sajjad, M.; Adnan, M. Foliar Application Effect of Boron, Calcium and Nitrogen on Vegetative and Reproductive Attributes of Tomato (Solanum lycopersicum L.). J. Agri. Sci. Food. Res. 2018, 9, 1–3. [Google Scholar]
- Souri, M.K.; Dehnavard, S. Tomato plant growth, leaf nutrient concentrations and fruit quality under nitrogen foliar applications. Adv. Hortic. Sci. 2018, 32, 41–47. [Google Scholar]
- Degefa, G.; Benti, G.; Jafar, M.; Tadesse, F.; Berhanu, H. Effects of Intra-Row Spacing and N Fertilizer Rates on Yield and Yield Components of Tomato (Lycopersicon Esculentum L.) at Harawe, Eastern Ethiopia. J. Plant Sci. 2019, 7, 8–12. [Google Scholar]
- Fandi, M.; Muhtaseb, J.; Hussein, M. Effect of N, P, K Concentrations on Yield and Fruit Quality of Tomato (Solanum lycopersicum L.) in Tuff Culture. J. Cent. Eur. Agric. 2010, 11, 179–184. [Google Scholar]
- Kochakinezhad, H.; Gholam-Ali, P.; Abdol-Karim, K.; Jamal-Ali, O.; Asadi, A. A Comparison of Organic and Chemical Fertilizers for Tomato Production. J. Org. Syst. 2012, 7, 14–25. [Google Scholar]
- Hozhbryan, M. Effects of different levels of urea on the growth and yield of tomato. JNAS J. 2013, 2, 1031–1035. [Google Scholar]
- Ogundare, S.K.; Oloniruha, J.A.; Ayodele, F.G.; Bello, I.A. Effect of Different Spacing and Urea Application Rates on Fruit Nutrient Composition, Growth and Yield of Tomato in Derived Savannah Vegetation of Kogi State, Nigeria. Am. J. Plant Sci. 2015, 6, 2227–2233. [Google Scholar] [CrossRef] [Green Version]
- Tesfay, T.; Gebremariam, M.; Gebretsadik, K.; Hagazi, M.; Girmay, S. Tomato Yield and Economic Performance Under Vermicompost and Mineral Fertilizer Applications. Open Agric. J. 2018, 12, 262–269. [Google Scholar] [CrossRef]
- Stagnari, F.; Pisante, M. Slow release and conventional N fertilizers for nutrition of bell pepper. Plant Soil Environ. 2012, 58, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Maleka, N.A.N.N.; Hamzaha, N.S.; Dzkulflia, N.H.; Madhi, W.M.; Abdullaha, W.; Hamdan, S. Effect of Natural Zeolite (Clinoptilolite) and Urea on the Growth of Amaranthus gangeticus, linachantus nutans and Capsicum annuum. J. Teknol. 2014, 68, 141–145. [Google Scholar]
- Islam, M.M.; Islam, M.K.; Proshad, R.; Islam, M.S.; Kormoker, T.K.M.; Billah, M.M. Effect of inorganic and organic fertilizers on soil properties with vegetative growth and yield quality of sweet pepper (Capsicum annuum L.) in Bangladesh. Int. J. Agron. Agric. Res. 2017, 11, 37–46. [Google Scholar]
- Rop, K.; Karuku, G.N.; Mbui, D.; Njomo, N.; Michira, I. Evaluating the effects of formulated nano-NPK slow release fertilizer composite on the performance and yield of maize, kale and capsicum. Ann. Agric. Sci. 2019, 64, 9–19. [Google Scholar] [CrossRef]
- Wainwright, M. An Introduction to Environmental Biotechnology; Springer Science & Business Media: New York, NY, USA, 1999; pp. 5–12. [Google Scholar]
- Kümmerer, K.; INERIS Milieu Ltd. Pharmaceutical and Cosmetic Industry. Environment Policy and Protection of the Environment; Deloite, Directorate General for Environment, EC: Brussels, Belgium, 2019; pp. 40–75. [Google Scholar]
- EU. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing certain Directives; EU: Brussels, Belgium, 2008. [Google Scholar]
- Gowariker, V.; Krishnamurthy, V.N.; Gowariker, S. The Fertilizer Encyclopedia; John Wiley & Sons, Technology&Engineering: Hoboken, NJ, USA, 2009; pp. 533–695. [Google Scholar]
Fertilization variant | Fertilizer Type (Major Macro-Nutrients from Chemical Compounds; Micro-Elements Sources: FM) | Source of Macro-Nutrients/Micro-Nutrients | Content of FM in Fertilizers, % (w/w) | Active Compound (from Chemical Compounds and FM), %(w/w) | Microelements Content %(w/w) |
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 |
V1 | NPK 11:11:11 (33% active compound) Total microelements content: 0.63% | CO(NH2)2 (NH4)2HPO4 K2SO4, FM | 54.43 | 35.72 | B = 0.055; Co = 0.013; Cu = 0.153; Fe = 0.306; Mn = 0.017; Mo = 0.002; Zn = 0.085 |
V2 | N 10:0:0 (10% active compound) Total microelements content: 0.91% | CO(NH2)2 FM | 78.54 | 13.93 | B = 0.08; Co = 0.019; Cu = 0.221; Fe = 0.441; Mn = 0.025; Mo = 0.002; Zn = 0.122 |
V3 | NP 5:5:0 (10% active compound) Total microelements content: 0.85% | CO(NH2)2 Calcium phosphatesa, FM | 73.37 | 13.67 | B = 0.074; Co = 0.017; Cu = 0.206; Fe = 0.412; Mn = 0.023; Mo = 0.002; Zn = 0.114 |
V4 | NK 5:0:5 (10% active compound) Total microelements content: 0.93% | CO(NH2)2 K2SO4, FM | 80 | 14 | B = 0.081; Co = 0.019; Cu = 0.225; Fe = 0.449; Mn = 0.025; Mo = 0.002; Zn = 0.124 |
V5 | PK 0:5:5 (10% active compound) Total microelements content: 0.9% | calcium phosphates, K2SO4 FM | 77.84 | 13.9 | B = 0.079; Co = 0.018; Cu = 0.219; Fe = 0.437; Mn = 0.024; Mo = 0.002; Zn = 0.1241 |
V6 | N 3.7:1:0.3 (5% active compound) Total microelements content: 1.16% | FM | 100 | 5 | B = 0.102; Co = 0.024; Cu = 0.281; Fe = 0.562; Mn = 0.03; Mo = 0.003; Zn = 0.156 |
V7 | Control (untreated variant) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radu, N.; Chirvase, A.A.; Babeanu, N.; Popa, O.; Cornea, P.; Pirvu, L.; Bostan, M.; Ciric, A.; Mathe, E.; Radu, E.; et al. Study Regarding the Potential Use of a Spent Microbial Biomass in Fertilizer Manufacturing. Agronomy 2020, 10, 299. https://doi.org/10.3390/agronomy10020299
Radu N, Chirvase AA, Babeanu N, Popa O, Cornea P, Pirvu L, Bostan M, Ciric A, Mathe E, Radu E, et al. Study Regarding the Potential Use of a Spent Microbial Biomass in Fertilizer Manufacturing. Agronomy. 2020; 10(2):299. https://doi.org/10.3390/agronomy10020299
Chicago/Turabian StyleRadu, Nicoleta, Ana Aurelia Chirvase, Narcisa Babeanu, Ovidiu Popa, Petruta Cornea, Lucia Pirvu, Marinela Bostan, Alexandru Ciric, Endre Mathe, Elena Radu, and et al. 2020. "Study Regarding the Potential Use of a Spent Microbial Biomass in Fertilizer Manufacturing" Agronomy 10, no. 2: 299. https://doi.org/10.3390/agronomy10020299
APA StyleRadu, N., Chirvase, A. A., Babeanu, N., Popa, O., Cornea, P., Pirvu, L., Bostan, M., Ciric, A., Mathe, E., Radu, E., Doni, M., Constantin, M., Raut, I., Gurban, A. M., & Begea, M. (2020). Study Regarding the Potential Use of a Spent Microbial Biomass in Fertilizer Manufacturing. Agronomy, 10(2), 299. https://doi.org/10.3390/agronomy10020299