A Review of Modeled Water Use Efficiency of Highly Productive Perennial Grasses Useful for Bioenergy
Abstract
:1. Introduction
1.1. General
1.2. Quantifying Photosynthetic Performance via Two Approaches: Single Leaf Photosynthesis vs. Radiation Use Efficiency (RUE)
- Field-measured leaf CO2 exchange rate (CER) showed that relatively low productivity sideoats grama ([Bouteloua curtipendula (Michaux) Torrey) had higher CER than the much more productive switchgrass, big bluestem (Andropogon gerardii Vitman) and eastern gamagrass [Tripsacum dactyloides (L.) L.] [16].
- Results under a rainout shelter, showed above ground net primary productivity of nine genotypes of switchgrass was poorly correlated with net photosynthetic rate. The correlation coefficient was only 0.25 [17].
1.3. Quantifying WUE
2. Methods
2.1. Derivation of RUE for Perennial Grasses
2.2. Derivation of RUE Values
2.3. Brief Description of the ALMANAC Model
2.4. Use of the ALMANAC Model to Derive WUE of Grasses
3. Results and Discussion
3.1. Representative Values of RUE for Grasses
3.2. Examples of Testing ALMANAC’s Simulation of Perennial Grass Biomass
3.3. Calculating WUE with the ALMANAC Model
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. The EPIC crop growth model. Trans. ASABE 1989, 32, 497–511. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Williams, J.R.; Gassmann, P.W.; Debaeke, P. General, process-oriented model for two competing plant species. Trans. ASABE 1992, 35, 801–810. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Sanderson, M.A.; Williams, J.R.; Tischler, C.R.; Hussey, M.A.; Ocumpaugh, W.R.; Read, J.C.; Van Esbroeck, G.; Reed, R.L. Simulating Alamo switchgrass with the ALMANAC model. Agron. J. 1996, 88, 602–606. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment Part I: Model development 1. J. Am. Water Res. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Del Grosso, S.J.; Mosier, A.R.; Parton, W.J.; Ojima, D.S. DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil Tillage Res. 2005, 83, 9–24. [Google Scholar] [CrossRef]
- Di Vittorio, A.V.; Anderson, R.S.; White, J.D.; Miller, N.L.; Running, S.W. Development and optimization of an Agro-BGC ecosystem model for C4 perennial grasses. Ecol. Model. 2010, 221, 2038–2053. [Google Scholar] [CrossRef]
- Miguez, F.E.; Maughan, M.; Bollero, G.A.; Long, S.P. Modeling spatial and dynamic variation in growth, yield, and yield stability of the bioenergy crops Miscanthus giganteus and Panicum virgatum across the conterminous United States. GCB Bioenergy 2011, 4, 509–520. [Google Scholar] [CrossRef]
- Gelfand, I.; Sahajpal, R.; Zhang, X.; Izaurralde, R.C.; Gross, K.L.; Robertson, G.P. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 2013, 493, 514–517. [Google Scholar] [CrossRef]
- Kim, S.; Kiniry, J.R.; Williams, A.S.; Meki, N.; Gaston, L.; Brakie, M.; Shadow, A.; Fritschi, F.B.; Wu, Y. Adaptation of C4 bioenergy crop species to various environments within the Southern Great Plains of USA. Sustainability 2017, 9, 89. [Google Scholar] [CrossRef] [Green Version]
- Barney, J.N.; Mann, J.J.; Kyser, G.B.; Blumwald, E.; Van Deynze, A.; DiTOMASO, J.M. Tolerance of switchgrass to extreme soil moisture stress: Ecological implications. Plant Sci. 2009, 177, 724–732. [Google Scholar] [CrossRef]
- Van der Weijde, T.; Huxley, L.M.; Hawkins, S.; Sembiring, E.H.; Farrar, K.; Dolstra, O.; Visser, R.G.F.; Trindade, L.M. Impact of drought stress on growth and quality of miscanthus for biofuel production. GCB Bioenergy 2017, 9, 770–782. [Google Scholar] [CrossRef] [Green Version]
- Bouman, B.A.M.; Kropff, J.; Tuong, T.P.; Woereis, M.C.S.; Berge, H.F.M.T.; Laar, H.H. Oryza2000: Modeling Lowland Rice; International Rice Research Institute: Los Baños, Philippines, 2001. [Google Scholar]
- Li, T.; Angeles, O.; Marcaida, M., III; Manalo, E.; Manalili, M.P.; Radanielson, A.; Mohanty, S. From ORYZA2000 to ORYZA(v3): An improved simulation model for rice in drought and nitrogen-deficient environments. Agric. For. Meteorol. 2017, 237–238, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Asay, K.H.; Nelson, C.J.; Horst, G.L. Genetic variability for net photosynthesis in tall fescue. Crop. Sci. 1974, 14, 571–574. [Google Scholar] [CrossRef]
- Nelson, C.J.; Asay, K.H.; Horst, G.L. Relationship of leaf photosynthesis to forage yield of tall fescue. Crop. Sci. 1975, 15, 476–478. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Tischler, C.R.; Van Esbroeck, G.A. Radiation use efficiency and leaf CO2 exchange for diverse C4 grasses. Biomass Bioenergy 1999, 17, 95–112. [Google Scholar] [CrossRef]
- Aspinwall, M.J.; Lowry, D.B.; Taylor, S.H.; Juenger, T.E.; Hawkes, C.V.; Johnson, M.-V.V.; Kiniry, J.R.; Fay, P.A. Genotypic variation in traits linked to climate and aboveground productivity in a widespread C4 grass: Evidence for a functional trait syndrome. New Phytol. 2013, 199, 966–980. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Horie, T. Leaf Nitrogen, photosynthesis, and crop radiation use efficiency: A review. Crop. Sci. 1989, 29, 90–98. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Tanner, C.B.; Bennett, J.M. Water-use efficiency in crop production. BioScience 1984, 34, 36–40. [Google Scholar] [CrossRef]
- Nippert, J.B.; Fay, P.A.; Knapp, A.K. Photosynthetic traits in C3 and C4 grassland species in mesocosm and field environments. Environ. Exp. Bot. 2007, 60, 412–420. [Google Scholar] [CrossRef]
- Udeo, S.O.; Aro, T.O. New empirical relationships for determining global PAR from measurements of global solar radiation, infrared radiation or sunshine duration. Int. J. Climatotol. 2000, 20, 1265–1274. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Muscha, J.M.; Petersen, M.K.; Kilian, R.W.; Metz, L.J. Short duration, perennial grasses in low rainfall sites in Montana: Deriving growth parameters and simulating with a process-based model. Am. J. Exp. Agric. 2017, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kiniry, J.R.; Burson, B.L.; Evers, G.W.; Williams, J.R.; Sanchez, H.; Wade, C.; Featherston, J.W.; Greenwade, J. Coastal bermudagrass, bahiagrass, and native range simulation at diverse sites in Texas. Agron. J. 2007, 99, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Kiniry, J.R.; Johnson, M.-V.V.; Venuto, B.C.; Burson, B.L. Novel application of ALMANAC: Modelling a functional group, “exotic warm-season perennial grasses”. Am. J. Exp. Agric. 2013, 3, 631–650. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.R.; Jones, C.A.; Dyke, P.T. A modeling approach to determining the relationship between erosion and soil productivity. Trans. ASAE 1984, 27, 129–144. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Schmer, M.R.; Vogel, K.P.; Mitchell, R.B. Switchgrass biomass simulation at diverse sites in the northern Great Plains of the U.S. BioEnergy Res. 2008, 1, 259–264. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Jones, C.A.; O’Toole, J.C.; Blanchet, R.; Cabelguenne, M.; Spanel, D.A. Radiation-use efficiency in biomass accumulation prior to grain-filling for five grain-crop species. Field Crop. Res. 1989, 20, 51–64. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Simpson, C.E.; Schubert, A.M.; Reed, J.D. Peanut leaf area index, light interception, radiation use efficiency, and harvest index at three sites in Texas. Field Crop. Res. 2005, 91, 297–306. [Google Scholar] [CrossRef]
- Kiniry, J.R.; McCauley, G.; Yun, X.; Arnold, J.G. Rice parameters describing crop performance of four U.S. cultivars. Agron. J. 2001, 93, 1354–1361. [Google Scholar] [CrossRef] [Green Version]
- Meki, M.N.; Kiniry, J.R.; Youkhana, A.H.; Crow, S.E.; Ogoshi, R.M.; Nakahata, M.H.; Tirado-Corbalá, R.; Anderson, R.G.; Osorio, J.; Jeong, J. Two-year growth cycle sugarcane crop parameter attributes and their application in modeling. Agron. J. 2015, 107, 1310–1320. [Google Scholar] [CrossRef] [Green Version]
- Kiniry, J.R.; Crosby, L.C.; Johnson, M.-V.V.; Behrman, K.D.; Brakie, M.; Burner, D.; Cordsiemon, R.L.; Fay, P.A.; Fritschi, F.B.; Houx, J.H., III; et al. Perennial biomass grasses and the Mason-Dixon Line: Comparative productivity across latitudes in the southern Great Plains. BioEnergy Res. 2013, 6, 276–291. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Kim, S.; Williams, A.S.; Lock, T.R.; Kallenbach, R.L. Simulating bimodal tall fescue growth with a degree-day based process-oriented plant model. Grass Forage Sci. 2018, 73, 432–439. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Sanchez, H.; Greenwade, J.; Seidensticker, E.; Bell, J.R.; Pringle, F.; Peacock, G., Jr.; Rives, J. Simulating grass productivity on diverse range sites in Texas. J. Soil Water Conserv. 2002, 57, 144–150. [Google Scholar]
- Kim, S.; Jeong, J.; Kiniry, J.R. Simulating the Productivity of Desert Woody Shrubs in Southwestern Texas. In Arid Environments and Sustainability; InTechOpen: London, UK, 2018; pp. 23–52. [Google Scholar]
- Kiniry, J.R.; Cassida, K.A.; Hussey, M.A.; Muri, J.P.; Ocumpaugh, W.R.; Read, J.C.; Reed, R.L.; Sanderson, M.A.; Venuto, B.C.; Williams, J.R. Switchgrass simulation by the ALMANAC model at diverse sites in the southern U.S. Biomass Bioenergy 2005, 29, 419–425. [Google Scholar] [CrossRef]
- Byrd, G.T.; May, P.A. Physiological comparisons of switchgrass cultivars differing in transpiration efficiency. Crop. Sci. 2000, 40, 1271–1277. [Google Scholar] [CrossRef]
- McLaughlin, S.B.; Kiniry, J.R.; Taliaferro, C.M.; Ugarte, D.D. Projecting yield and utilization potential of switchgrass as an energy crop. Adv. Agron. 2006, 90, 267–297. [Google Scholar]
- Fairbourn, M.L. Water use by forage species. Agron. J. 1982, 74, 62–66. [Google Scholar] [CrossRef]
- Akhter, J.; Mahmood, K.; Tasneem, M.A.; Naqvi, M.H.; Malik, K.A. Comparative water-use efficiency of Sporobolus arabicus and Leptochloa fusca and its relation with carbon-isotope discrimination under semi-arid conditions. Plant Soil 2003, 249, 263–269. [Google Scholar] [CrossRef]
- Eggemeyer, K.D.; Awada, T.; Wedin, D.A.; Harvey, F.E.; Zhou, X. Ecophysiology of two native invasive woody species and two dominant warm-season grasses in the semiarid grassland of the Nebraska sandhills. Int. J. Plant Sci. 2006, 167, 991–999. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Li, F.; Shan, L.; Ma, Y.; Ichizen, N.; Huang, J. Gas exchange, biomass partition, and water relationships of three grass seedlings under water stress. Weed Biol. Manag. 2006, 6, 79–88. [Google Scholar] [CrossRef]
- Nelson, J.A.; Morgan, J.A.; LeCain, D.R.; Mosier, A.R.; Milchunas, D.G.; Parton, B.A. Elevated CO2 increases soil moisture and enhances plant water relations in a longterm study in semi-arid shortgrass steppe of Colorado. Plant Soil 2004, 259, 169–179. [Google Scholar] [CrossRef]
- Perlack, R.D.; Wright, L.L.; Turhollow, A.F.; Graham, R.L.; Stokes, B.J.; Erbach, D.C. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply; Technical Report. ORNL/TM 2006/66; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2005. [Google Scholar]
- Kiniry, J.R.; Lynd, L.; Greene, N.; Johnson, M.V.; Casler, M.; Laser, M.S. Biofuels and water use: Comparison of maize and switchgrass and general perspectives. In New Research on Biofuels; Wright, J.H., Evans, D.A., Eds.; Nova Science Publ.: New York, NY, USA, 2008; pp. 17–30. [Google Scholar]
- Behrman, K.D.; Meki, M.N.; Wu, Y.; Kiniry, J.R. Applications of biomass production modeling for switchgrass. In Compendium of Bioenergy Plants SWITCHGRASS; Luo, H., Wu, Y., Cole, C., Eds.; CRC Press: Boca Raton, FL, USA; Francis & Taylor Group: Milton, UK, 2014; pp. 356–377. [Google Scholar]
- Casler, M.D.; Vogel, K.P.; Taliagerro, C.M.; Wynia, R.L. Latitudinal adaptation of switchgrass populations. Crop. Sci. 2004, 44, 293–303. [Google Scholar] [CrossRef]
- Woli, P.; Paz, J.O.; Lang, D.J.; Baldwin, B.S.; Kiniry, J.R. Soil and variety effects on the energy and carbon balances of switchgrass-derived ethanol. J. Sustain. Bioenergy Syst. 2012, 2, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Hendrickson, J.R.; Schmer, M.; Sanderson, M. Water use efficiency by switchgrass compared to a native grass or a native grass alfalfa mixture. BioEnergy Res. 2013, 6, 746–754. [Google Scholar] [CrossRef] [Green Version]
- Giannoulis, K.D.; Kayotis, T.; Sakellariou-Makrantonaki, M.; Bastiaans, K.; Struik, P.C.; Danalatos, N.G. Switchgrass biomass partitioning and growth characteristics under different management practices. NJAS Wagen. J. Life Sci. 2016, 78, 61–67. [Google Scholar] [CrossRef]
- Kim, S.; Williams, A.S.; Kiniry, J.R.; Hawkes, C.V.; Youkhana, A.H.; Nakahata, M.H.; Littlejohn, K. Simulating diverse native C4 perennial grasses with varying rainfall. J. Arid. Environ. 2016, 134, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Behrman, K.D.; Keitt, T.H.; Kiniry, J.R. Modeling differential growth in switchgrass cultivars across the Central and Southern Great Plains. BioEnergy Res. 2014, 7, 1165–1773. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Kiniry, J.R. Two-phase simulation-based location-allocation optimization of biomass storage distribution. Simul. Model. Pract. Theory 2018, 86, 155–168. [Google Scholar] [CrossRef]
Common Name | Scientific Name | Cultivar | RUE (g/MJ) | Study Site | Reference |
---|---|---|---|---|---|
Annual agricultural crops | |||||
Wheat | Triticum aestivum L. | 2.8 | Mexico | [27] | |
Grain Sorghum | Sorghum bicolor (L.) Moench | 2.8 | France | [27] | |
Maize | Zea mays L. | 3.5 | Texas | [27] | |
Peanut | Arachis hypogaea L. | 2 | Texas | [28] | |
Rice | Oryza sativa L. | 2.2 | Philippines | [27] | |
2.4 | Texas | [27] | |||
Sunflower | Helianthus annus L. | 2.2 | Texas, France | [27] | |
Perennial grasses | |||||
Switchgrass | Panicum virgatum, L. | Alamo | 4.35, 4.4 | Texas | [28,31] |
Cave-in-Rock | 3.2 | Illinois | [31] | ||
Kanlow | 3.7 | Oklahoma | [31] | ||
Bahiagrass | Paspalum notatum Flügge var saurae Parodi | 1.25 | Texas | [23] | |
Big Bluestem | Andropogon gerardii Vitman | 1.4 | Texas | [16] | |
Blue Grama | Bouteloua gracilis (H.B.K.)) | 0.63 | Texas | [23] | |
Buffalograss | Buchloe¨ dactyloides (Nutt.) Englem | 1.43 | Texas | [23] | |
Buffelgrass | Pennisetum ciliare (L.) Link | 1.3 | Texas | [24] | |
Coastal Bermuda Grass | Cynodon dactylon (L.) Pers | 1.5 | Texas | [23] | |
Eastern Gamagrass | Tripsacum dactyloides (L.) L. | 2.1 | Texas | [16] | |
1.1 | Texas | [23] | |||
Giant Miscanthus | Miscanthus × giganteus | 3.7 | Illinois | [31] | |
Green Needlegrass | Nassella viridula (Trin.) | 3.8 | Montana | [22] | |
Needle and Thread | Hesperostipa comata (Trin. & Rupr.) Barkworth | 4 | Montana | [22] | |
Old World Bluestem | Bothriochloa Kuntze | 1.3 | Oklahoma | [24] | |
Scented-tops | Capillipedium Stapf | 1.3 | Oklahoma | [24] | |
Bluestem | Dichanthium Willemet | 1.3 | Oklahoma | [24] | |
Prairie Sandreed | Calamovilfa longifolia (Hook.) Scribn.) | 0.4 | Montana | [24] | |
Sideoats Grama | Bouteloua curtipendula (Michaux) Torrey | 1.1 | Texas | [16] | |
Tall Fescue | Festuca arundinacea Schreb | 3.2 | Montana | [22] | |
Threadleaf Sedge | Carex filifolia Nutt. | 3.5 | Montana | [22] | |
Two-Year Sugarcane | Saccharin officinarum L | 2.1 | Hawaii | [30] |
Location/Soil Type | SL | NL | SU | NU |
---|---|---|---|---|
Ames, Iowa | ||||
Clarion loam | 4 | 4 | 5 | 3.3 |
Nicollet loam | 4 | 4.6 | 3 | 2.8 |
Webster clay loam | 5 | 4.3 | 4 | 2.8 |
Mead, Nebraska | ||||
Yutan silty clay loam | 5 | 5.4 | 4 | 3.6 |
Tomek silt loam | 5 | 4.9 | 3 | 3 |
Nodaway silt loam | 5 | 4.9 | 3 | 3 |
Columbia, Missouri | ||||
Keswick silt loam | 5 | 4.6 | 4 | 3.9 |
Mexico silt loam | 4 | 4.5 | 4 | 3.2 |
Weller silt loam | 4 | 4.3 | 4 | 3.2 |
Stephenville, Texas | ||||
Brackett clay loam | 4 | 3.3 | 3 | 3.2 |
Altoga clay loam | 4 | 3.2 | 3 | 3.1 |
Houston Black clay | 4 | 3.2 | 3 | 3.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiniry, J.R.; Kim, S. A Review of Modeled Water Use Efficiency of Highly Productive Perennial Grasses Useful for Bioenergy. Agronomy 2020, 10, 328. https://doi.org/10.3390/agronomy10030328
Kiniry JR, Kim S. A Review of Modeled Water Use Efficiency of Highly Productive Perennial Grasses Useful for Bioenergy. Agronomy. 2020; 10(3):328. https://doi.org/10.3390/agronomy10030328
Chicago/Turabian StyleKiniry, James R., and Sumin Kim. 2020. "A Review of Modeled Water Use Efficiency of Highly Productive Perennial Grasses Useful for Bioenergy" Agronomy 10, no. 3: 328. https://doi.org/10.3390/agronomy10030328
APA StyleKiniry, J. R., & Kim, S. (2020). A Review of Modeled Water Use Efficiency of Highly Productive Perennial Grasses Useful for Bioenergy. Agronomy, 10(3), 328. https://doi.org/10.3390/agronomy10030328