Use of Plant Water Extracts for Weed Control in Durum Wheat (Triticum turgidum L. Subsp. durum Desf.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Use of Plant Water Extracts
2.2. Field Management
2.3. Experimental Site and Climatic Details
2.4. Statistical Data Management
3. Results
3.1. Effects of Treatments on Durum Wheat Growth and Yield
3.2. Effect of Treatments on Weed Population
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Özҫatalbaş, O. Current Status of Advisory and Extension Services for Organic Agriculture in Europe and Turkey. In Organic Agriculture Towards Sustainability; Pilipavicius, V., Ed.; InTech Open publ.: London, UK, 2014; pp. 67–87. [Google Scholar] [CrossRef] [Green Version]
- Barberi, P. Weed management in organic agriculture: Are we addressing the right issues? Weed Res. 2002, 42, 177–193. [Google Scholar] [CrossRef]
- Bond, W.; Turner, R.J.; Grundy, A.C. A Review of Non-Chemical Weed Management; HDRA, The Organic Organisation, Ryton Organic Gardens: Coventry, UK, 2003. [Google Scholar]
- Carrubba, A.; Militello, M. Nonchemical weeding of medicinal and aromatic plants. Agron. Sustain. Dev. 2013, 33, 551–561. [Google Scholar] [CrossRef]
- Vyvyan, J.R. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 2002, 58, 1631–1646. [Google Scholar] [CrossRef]
- Bhowmik, P.C. Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot. 2003, 22, 661–671. [Google Scholar] [CrossRef]
- Mallik, A.U. Introduction: Allelopathy research and application in sustainable agriculture and forestry. In Allelopathy in Sustainable Agriculture and Forestry; Zeng, R.S., Mallik, A.U., Luo, S.M., Eds.; Springer: New York, NY, USA, 2008; pp. 1–10. [Google Scholar]
- Soltys, D.; Krasuska, U.; Bogatek, R.; Gniazdowska, A. Allelochemicals as Bioherbicides—Present and Perspectives. In Herbicides—Current Research and Case Studies in Use; Price, A.J., Kelton, J.A., Eds.; IntechOpen: London, UK, 2013; pp. 517–542. [Google Scholar] [CrossRef] [Green Version]
- Dudai, N.; Poljakoff-Mayber, A.; Mayer, A.M.; Putievsky, E.; Lerner, H.R. Essential oils as allelochemicals and their potential use as bioherbicides. J. Chem. Ecol. 1999, 25, 1079–1089. [Google Scholar] [CrossRef]
- Duke, S.O.; Rimando, A.M.; Baerson, S.R.; Scheffler, B.E.; Ota, E.; Belz, R.G. Strategies for the use of natural products for weed management. J. Pestic. Sci. 2002, 27, 298–306. [Google Scholar] [CrossRef] [Green Version]
- De Mastro, G.; Fracchiolla, M.; Verdini, L.; Montemurro, P. Oregano and its potential use as bioherbicide. Acta Hortic. 2006, 723, 335–345. [Google Scholar] [CrossRef]
- Khan, K. Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biol. Manag. 2004, 4, 1–7. [Google Scholar]
- Khan, S.; Ali, K.W.; Shinwari, M.I.; Khan, R.A.; Rana, T. Environmental, ecological and evolutionary effects of weeds allelopathy. Int. J. Botany Stud. 2019, 4, 77–84. [Google Scholar]
- Duke, S.O. Proving Allelopathy in Crop–Weed Interactions. Weed Sci. 2015, 63, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Jabran, K.; Mahmood, K.; Melander, B.; Bajwa, A.A.; Kudsk, P. Weed Dynamics and Management in Wheat. Adv. Agron. 2017, 145, 97–166. [Google Scholar] [CrossRef]
- Palumbo, M.; Spina, A.; Boggini, G. Bread-making quality of Italian durum wheat (Triticum durum Desf.) cultivars. Ital. J. Food Sci. 2002, 2, 123–133. [Google Scholar]
- Rharrabti, Y.; Villegas, D.; Royo, C.; Martos-Núñez, V.; García del Moral, L.F. Durum wheat quality in Mediterranean environments. II. Influence of climatic variables and relationships between quality parameters. Field Crop Res. 2003, 80, 133–140. [Google Scholar] [CrossRef]
- Giannone, V.; Giarnetti, M.; Spina, A.; Todaro, A.; Pecorino, B.; Summo, C.; Caponio, F.; Paradiso, V.M.; Pasqualone, A. Physico-chemical properties and sensory profile of durum wheat Dittaino PDO (Protected Designation of Origin) bread and quality of re-milled semolina used for its production. Food Chem. 2018, 241, 242–249. [Google Scholar] [CrossRef]
- Bulut, S.; Öztürk, A.; Karaoğlu, M.M.; Yildiz, N. Effects of organic manures and non-chemical weed control on wheat. II. Grain quality. Turk. J. Agric. For. 2013, 37, 271–280. [Google Scholar] [CrossRef]
- Alföldi, T.; Fliessbach, A.; Geier, U.; Kilcher, L.; Niggli, U.; Pfiffner, L.; Stolze, M.; Willer, H. Organic agriculture and the environment. In Organic Agriculture, Environment and Food Security; El-Hage Scialabba, N., Hattam, C., Eds.; Environment and Natural Resources Series 4; FAO: Rome, Italy, 2002; Chapter 2. [Google Scholar]
- Cheema, Z.A.; Iqbal, M.; Ahmad, R. Response of Wheat Varieties and some Rabi Weeds to Allelopathic Effects of Sorghum Water Extract. Int. J. Agric. Biol. 2002, 1, 52–55. [Google Scholar]
- Khan, R.; Khan, M.A. Weed Control Efficiency of Bioherbicides and Their Impact on Grain Yield of Wheat (Triticum aestivum L.). Eur. J. Appl. Sci. 2012, 4, 216–219. [Google Scholar] [CrossRef]
- Khan, M.A.; Afridi, R.A.; Hashim, S.; Khattak, A.M.; Ahmad, Z.; Wahid, F.; Chauhan, B.S. Integrated effect of allelochemicals and herbicides on weed suppression and soil microbial activity in wheat (Triticum aestivum L.). Crop Prot. 2016, 90, 34–39. [Google Scholar] [CrossRef]
- Naeem, M.; Cheema, Z.A.; Ihsan, M.Z.; Hussain, Y.; Mazari, A.; Abbas, H.T. Allelopathic effects of different plant water extracts on yield and weeds of wheat. Planta Daninha 2018, 36, e018177840. [Google Scholar] [CrossRef] [Green Version]
- Labruzzo, A.; Carrubba, A.; Di Marco, G.; Ebadi, M.T. Herbicidal potential of aqueous extracts from Melia azedarach L., Artemisia arborescens L., Rhus coriaria L. and Lantana camara L. Allelopath. J. 2017, 41, 81–92. [Google Scholar] [CrossRef]
- Carrubba, A.; Comparato, A.; Labruzzo, A.; Muccilli, S.; Giannone, V.; Spina, A. Quality characteristics of wholemeal flour and bread from durum wheat (Triticum turgidum L subsp. durum Desf.) after field treatment with plant water extracts. J. Food Sci. 2016, 81, C2158–C2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Militello, M.; Settanni, L.; Aleo, A.; Mammina, C.; Moschetti, G.; Giammanco, G.M.; Blazquez, M.A.; Carrubba, A. Chemical composition and antibacterial potential of Artemisia arborescens L. essential oil. Curr. Microbiol. 2011, 62, 1274–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Militello, M. Studi Fitochimici e Agronomici su Artemisia Arborescens L. (Asteraceae) Della flora Spontanea Siciliana e Attività Biocida Degli oli Essenziali. Ph.D. Thesis, Università di Palermo, Palermo, Italy, 2012. (In Italian with English Abstract). [Google Scholar]
- Militello, M.; Carrubba, A. Biological activity of extracts from Artemisia arborescens (Vaill.) L.: An overview about insecticidal, antimicrobial, antifungal and herbicidal properties. In Natural Products: Research Reviews; Gupta, V.K., Ed.; Daya Publishing House—Astral International Pvt. Ltd.: New Delhi, Indian, 2016; Volume 3, pp. 361–387. [Google Scholar]
- Labruzzo, A.; Cantrell, C.L.; Carrubba, A.; Ali, A.; Wedge, D.E.; Duke, S.O. Phytotoxic lignans from Artemisia arborescens. Nat. Prod. Commun. 2018, 3, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Rayne, S.; Mazza, G. Biological activities of extracts from Sumac (Rhus spp.): A review. Plant Foods Hum. Nutr. 2007, 62, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovanelli, S.; Giusti, G.; Cioni, P.L.; Minissale, P.; Ciccarelli, D.; Pistelli, L. Aroma profile and essential oil composition of Rhus coriaria fruits from four Sicilian sites of collection. Ind. Crop Prod. 2017, 97, 166–174. [Google Scholar] [CrossRef]
- Özcan, M. Antioxidant Activities of Rosemary, Sage, and Sumac Extracts and Their Combinations on Stability of Natural Peanut Oil. J. Med. Food 2003, 3, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Regazzoni, L.; Arlandini, E.; Garzon, D.; Santagati, N.A.; Beretta, G.; Maffei Facino, R. A rapid profiling of gallotannins and flavonoids of the aqueous extract of Rhus coriaria L. by flow injection analysis with high-resolution mass spectrometry assisted with database searching. J. Pharmaceut. Biomed. 2013, 72, 202–207. [Google Scholar] [CrossRef]
- Romeo, F.V.; Ballistreri, G.; Fabroni, S.; Pangallo, S.; Li Destri Nicosia, M.G.; Schena, L.; Rapisarda, P. Chemical characterization of different Sumac and Pomegranate extracts effective against Botrytis cinerea Rots. Molecules 2015, 20, 11941–11958. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.P.; Raghubanshi, A.S.; Singh, J.S. Lantana invasion: An overview. Weed Biol. Manag. 2005, 5, 157–165. [Google Scholar] [CrossRef]
- Talukdar, D. Allelopathic effects of Lantana camara L. on Lathyrus sativus L.: Oxidative imbalance and cytogenetic consequences. Allelopath. J. 2013, 31, 71–90. [Google Scholar]
- Kumar, S.; Sandhir, R.; Ojha, S. Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Res. Notes 2014, 7, 560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, J.G.M.; Rodrigues, F.F.G.; Sousa, E.O.; Junior, D.M.S.; Campos, A.R.; Coutinho, H.D.M.; de Lima, S.G. Composition and larvicidal activity of the essential oils of Lantana camara and Lantana montevidensis. Chem. Nat. Compd. 2010, 46, 313–315. [Google Scholar] [CrossRef]
- El Abed, N.; Kaabi, B.; Smaali, M.I.; Chabbouh, M.; Habibi, K.; Mejri, M.; Marzouki, M.N.; Ahmed, S.B.H. Chemical composition, antioxidant and antimicrobial activities of Thymus capitata essential oil with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Evid.-Based Compl. Altern. 2014, 152487. [Google Scholar] [CrossRef] [Green Version]
- De Martino, L.; Bruno, M.; Formisano, C.; De Feo, V.; Napolitano, F.; Rosselli, S.; Senatore, F. Chemical composition and antimicrobial activity of the essential oils from two species of Thymus growing wild in Southern Italy. Molecules 2009, 14, 4614–4624. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Khaneghah, A.M.; Gavahian, M.; Marszałek, K.; Eş, I.; Munekata, P.E.S.; Ferreira, I.C.F.R.; Barba, F.J. Understanding the potential benefits of thyme and its derived products for food industry and consumer health: From extraction of value-added compounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities. Crit. Rev. Food Sci. 2018, 17. [Google Scholar] [CrossRef]
- Savo, V.; La Rocca, A.; Caneva, G.; Rapallo, F.; Cornara, L. Plants used in artisanal fisheries on the Western Mediterranean coasts of Italy. J. Ethnobiol. Ethnomed. 2013, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- de Souza, L.S.; Puziol, L.C.; Tosta, C.L.; Bittencourt, M.L.F.; Ardisson, J.S.; Kitagawa, R.R.; Filgueiras, P.R.; Kuster, R.M. Analytical methods to access the chemical composition of an Euphorbia tirucalli anticancer latex from traditional Brazilian medicine. J. Ethnopharmacol. 2019, 237, 255–265. [Google Scholar] [CrossRef]
- Barbieri, L.; Falasca, A.; Franceschi, C.; Licastro, F.; Rossi, C.A.; Stirpe, F. Purification and properties of two lectins from the latex of the euphorbiaceous plants Hura crepitans L. (sand-box tree) and Euphorbia characias L. (Mediterranean spurge). Biochem. J. 1983, 215, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Pintus, F.; Spanò, D.; Mascia, C.; Macone, A.; Floris, G.; Medda, R. Acetylcholinesterase inhibitory and antioxidant properties of Euphorbia characias latex. Rec. Nat. Prod. 2013, 2, 147–151. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Hoad, S.; Topp, C.; Davies, K. Selection of cereals for weed suppression in organic agriculture: A method based on cultivar sensitivity to weed growth. Euphytica 2008, 163, 355–366. [Google Scholar] [CrossRef]
- Légère, A.; Stevenson, F.C.; Benoit, D.L. Diversity and assembly of weed communities: Contrasting responses across cropping systems. Weed Res. 2005, 45, 303–315. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons Inc.: New York, NY, USA, 1984. [Google Scholar]
- Hammer, Ø. PAST PAleontological Statistics, Version 3.25, Reference Manual 1999–2019. Available online: https://folk.uio.no/ohammer/past/past3manual.pdf (accessed on 10 January 2020).
- Fahad, S.; Hussain, S.; Chauhan, B.S.; Saud, S.; Wu, C.; Hassan, S.; Tanveer, M.; Jan, A.; Huang, J. Weed growth and crop yield loss in wheat as influenced by row spacing and weed emergence times. Crop Prot. 2015, 71, 101–108. [Google Scholar] [CrossRef]
- Andrew, I.K.S.; Storkey, J.; Sparkes, D.L. A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Res. 2015, 55, 239–248. [Google Scholar] [CrossRef]
- Lemerle, D.; Verbeek, B.; Cousens, R.D.; Coombes, N.E. The potential for selecting wheat varieties strongly competitive against weeds. Weed Res. 1996, 36, 505–513. [Google Scholar] [CrossRef]
- Hurle, K. Concepts in weed control—How does biocontrol fit in? Pest Manag. Rev. 1997, 2, 87–89. [Google Scholar] [CrossRef]
- Beringer, J. Farming for biodiversity—The nature of intervention. Outlook Agric. 2001, 30, 7–9. [Google Scholar] [CrossRef]
- García-Martín, A.; López-Bellido, R.J.; Coleto, J.M. Fertilisation and weed control effects on yield and weeds in durum wheat grown under rain-fed conditions in a Mediterranean climate. Weed Res. 2007, 47, 140–148. [Google Scholar] [CrossRef]
- Sims, B.; Corsi, S.; Gbehounou, G.; Kienzle, J.; Taguchi, M.; Friedrich, T. Sustainable Weed Management for Conservation Agriculture: Options for Smallholder Farmers. Agriculture 2018, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Bajwa, A.A.; Khan, M.J.; Bhowmik, P.C.; Walsh, M.; Chauhan, B.S. Sustainable Weed Management. In Innovations in Sustainable Agriculture; Farooq, M., Pisante, M., Eds.; Springer Nature: Basel, Switzerland, 2019; pp. 249–286. [Google Scholar] [CrossRef]
Plant species | Concentration (% w/v) |
---|---|
Rhus coriaria | 8.75 |
Artemisia arborescens | 18.82 |
Euphorbia characias | 2.27 |
Lantana camara | 6.14 |
Thymus vulgaris | 22.33 |
(a) weight/volume percentage |
Variability Source | Plants height at Harvest Time (cm) | Plant Population at Harvest Time (n. plants m−2) | Grain yield (g m−2) | Spikes (n m−2) | Spikelets (n plant−1) | Tillers (n plant−1) | TKW (g) | HI (% dm) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | |||||||||||||||
Water | 139.8 ± 0.3 | A | 81.7 ± 11.7 | 441.6 ± 56.0 | A | 293.0 ± 35.0 | 20.4 ± 0.2 | AB | 3.58 ± 0.14 | A | 46.6 ± 0.2 | A | 51.2 ± 2.1 | ||
Untreated | 137.5 ± 5.5 | A | 110.0 ± 23.3 | 392.0 ± 59.4 | AB | 261.5 ± 28.5 | 19.2 ± 0.5 | AC | 2.45 ± 0.68 | B | 43.9 ± 2.0 | A | 53.2 ± 0.5 | ||
Chemical | 132.5 ± 2.5 | AB | 105.0 ± 5.0 | 406.5 ± 8.3 | AB | 284.5 ± 13.5 | 18.4 ± 0.8 | AC | 2.71 ± 0.00 | AB | 42.8 ± 0.6 | A | 42.2 ± 1.3 | ||
A. arborescens | 116.8 ± 14.3 | B | 98.3 ± 11.7 | 256.4 ± 62.0 | B | 268.0 ± 3.0 | 17.0 ± 1.8 | C | 2.73 ± 0.15 | AB | 36.1 ± 2.0 | B | 41.5 ± 9.4 | ||
R. coriaria | 138.8 ± 8.3 | A | 93.3 ± 6.7 | 430.3 ± 57.6 | AB | 312.0 ± 46.0 | 20.8 ± 0.7 | A | 3.38 ± 0.74 | AB | 44.3 ± 3.2 | A | 43.5 ± 3.7 | ||
E. characias | 130.3 ± 7.8 | AB | 86.7 ± 6.7 | 383.1 ± 112.3 | AB | 313.5 ± 14.5 | 18.2 ± 1.5 | AC | 3.64 ± 0.25 | A | 43.5 ± 0.0 | A | 44.8 ± 0.6 | ||
T. vulgaris | 135.8 ± 2.8 | AB | 100.0 ± 0.0 | 365.8 ± 61.9 | AB | 304.5 ± 5.5 | 17.8 ± 0.5 | BC | 3.05 ± 0.06 | AB | 44.7 ± 1.7 | A | 50.8 ± 11.7 | ||
L. camara | 140.8 ± 3.8 | A | 108.3 ± 1.7 | 469.8 ± 8.6 | A | 317.0 ± 5.0 | 19.5 ± 0.1 | AC | 2.93 ± 0.09 | AB | 46.4 ± 2.5 | A | 46.5 ± 3.8 | ||
2014 F value (7, 16) (a) | 3.79 * | 2.65 n.s. | 3.30 * | 2.36 n.s. | 5.64 ** | 2.94 * | 9.43 *** | 1.87 n.s. | |||||||
2016 | |||||||||||||||
Water | 104.6 ± 10.9 | 64.6 ± 5.5 | 145.8 ± 105.0 | 254.0 ± 103.0 | 16.5 ± 0.8 | 3.92 ± 1.57 | 31.8 ± 4.0 | 25.0 ± 12.5 | |||||||
Untreated | 95.1 ± 8.5 | 75.7 ± 16.7 | 167.1 ± 29.1 | 246.8 ± 39.3 | 16.3 ± 1.1 | 3.35 ± 0.84 | 37.3 ± 1.8 | 33.6 ± 5.0 | |||||||
Chemical | 100.1 ± 8.1 | 66.7 ± 5.5 | 116.5 ± 89.9 | 213.7 ± 106.9 | 16.4 ± 1.4 | 3.27 ± 1.56 | 32.4 ± 4.9 | 23.8 ± 17.0 | |||||||
A. arborescens | 95.7 ± 4.8 | 62.5 ± 14.6 | 110.6 ± 93.6 | 234.8 ± 93.0 | 16.0 ± 0.6 | 3.53 ± 1.27 | 33.1 ± 9.7 | 23.2 ± 16.8 | |||||||
R. coriaria | 103.2 ± 5.3 | 68.8 ± 6.3 | 192.6 ± 58.7 | 275.5 ± 43.6 | 16.4 ± 1.3 | 4.09 ± 0.44 | 37.1 ± 2.9 | 33.0 ± 2.6 | |||||||
2016 F value (4, 10) (b) | <1 n.s. | <1 n.s. | <1 n.s. | <1 n.s. | <1 n.s. | <1 n.s. | <1 n.s. | <1 n.s. | |||||||
Year (Y) (c) | |||||||||||||||
Mean 2014 (c) | 133.1 ± 11.0 | A | 97.7 ± 15.2 | A | 385.4 ± 82.2 | A | 283.8 ± 31.1 | 19.2 ± 1.6 | A | 2.99 ± 0.61 | 42.7 ± 4.0 | A | 46.3 ± 6.4 | A | |
Mean 2016 | 99.7 ± 7.7 | B | 67.6 ± 10.3 | B | 146.5 ± 74.9 | B | 245.0 ± 73.0 | 16.3 ± 0.9 | B | 3.64 ± 1.08 | 34.3 ± 5.2 | B | 27.7 ± 11.5 | B | |
Y F value (1,20) (c) | 135.25 *** | 45.76 *** | 92.88 *** | 2.94 n.s. | 56.91 *** | 3.69 n.s. | 32.29 *** | 29.86 *** | |||||||
Treatment (T) (c) | |||||||||||||||
Water | 122.2 ± 20.5 | A | 73.1 ± 12.4 | 293.7 ± 178.6 | AB | 273.5 ± 72.0 | 18.4 ± 2.2 | A | 3.76 ± 1.01 | 39.2 ± 8.5 | 38.10 ± 16.44 | ||||
Untreated | 116.3 ± 24.1 | AB | 92.8 ± 26.1 | 279.5 ± 130.1 | AB | 254.2 ± 31.8 | 17.8 ± 1.7 | AB | 2.92 ± 0.87 | 40.6 ± 4.0 | 43.40 ± 11.24 | ||||
Chemical | 116.3 ± 18.5 | AB | 85.8 ± 21.5 | 261.5 ± 168.8 | AB | 249.1 ± 78.4 | 17.4 ± 1.5 | AB | 2.94 ± 0.94 | 37.6 ± 6.5 | 32.98 ± 14.76 | ||||
A. arborescens | 106.2 ± 14.9 | B | 80.4 ± 22.9 | 183.5 ± 106.9 | B | 251.4 ± 61.6 | 16.5 ± 1.3 | B | 3.25 ± 1.05 | 34.6 ± 6.5 | 32.31 ± 15.73 | ||||
R. coriaria | 121.0 ± 20.4 | A | 81.0 ± 14.7 | 311.4 ± 140.2 | A | 293.8 ± 44.8 | 18.6 ± 2.6 | A | 3.69 ± 0.64 | 40.7 ± 4.8 | 38.26 ± 6.41 | ||||
T F value (4, 20) (c) | 3.83 * | 2.16 n.s. | 3.20 * | <1 n.s. | 4.04 * | 1.10 n.s. | 2.39 n.s. | 1.42 n.s. | |||||||
Year (Y) × Treatment (T) (c) | |||||||||||||||
YxT F value (4,20) (c) | 1.48 n.s. | <1 n.s. | <1 n.s. | <1 n.s. | 2.60 n.s. | <1 n.s. | 1.80 n.s. | <1 n.s. | |||||||
(a): Results of univariate ANOVA for 2014 data (DF: 7, 16) | |||||||||||||||
(b): Results of univariate ANOVA for 2016 data (DF: 4, 10) | |||||||||||||||
(c): Means and ANOVA are referred only to treatments in common to both years | |||||||||||||||
Significance of F values: *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001; n.s.: not significant |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrubba, A.; Labruzzo, A.; Comparato, A.; Muccilli, S.; Spina, A. Use of Plant Water Extracts for Weed Control in Durum Wheat (Triticum turgidum L. Subsp. durum Desf.). Agronomy 2020, 10, 364. https://doi.org/10.3390/agronomy10030364
Carrubba A, Labruzzo A, Comparato A, Muccilli S, Spina A. Use of Plant Water Extracts for Weed Control in Durum Wheat (Triticum turgidum L. Subsp. durum Desf.). Agronomy. 2020; 10(3):364. https://doi.org/10.3390/agronomy10030364
Chicago/Turabian StyleCarrubba, Alessandra, Andrea Labruzzo, Andrea Comparato, Serena Muccilli, and Alfio Spina. 2020. "Use of Plant Water Extracts for Weed Control in Durum Wheat (Triticum turgidum L. Subsp. durum Desf.)" Agronomy 10, no. 3: 364. https://doi.org/10.3390/agronomy10030364
APA StyleCarrubba, A., Labruzzo, A., Comparato, A., Muccilli, S., & Spina, A. (2020). Use of Plant Water Extracts for Weed Control in Durum Wheat (Triticum turgidum L. Subsp. durum Desf.). Agronomy, 10(3), 364. https://doi.org/10.3390/agronomy10030364