Fine Mapping of a Grain Shape Gene from a Rice Landrace Longliheinuo-Dwarf (Oryza sativa L. ssp. japonica)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Population Development
2.2. Trait Evaluation
2.3. Molecular Marker Analysis
2.4. Genetic Mapping
2.5. Sequencing Analysis and Expression Analysis
2.6. Agronomic Traits Evaluation of Paired NILs for qGS7
3. Results
3.1. qGS7 is a Major QTL for Grain Length and Grain Width
3.2. Fine Mapping of qGS7
3.3. Candidate Genes Predication of qGS7
3.4. SNP Diversity Analysis of qGS7
3.5. Agronomic Traits Evaluation of Paired NILs for qGS7
4. Discussion
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Sakamoto, T.; Matsuoka, M. Identifying and exploiting grain yield genes in rice. Curr. Opin. Plant Biol. 2008, 11, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.K.; Zeng, D.D.; Qin, R.; Liu, J.L.; Shi, C.H.; Jin, X.L. A Novel and Pleiotropic Factor SLENDER GRAIN3 Is Involved in Regulating Grain Size in Rice. Rice Sci. 2018, 25, 132–141. [Google Scholar] [CrossRef]
- Xing, Y.Z.; Zhang, Q.F. Genetic and Molecular Bases of Rice Yield. Annu. Rev. Plant Biol. 2010, 61, 421–442. [Google Scholar] [CrossRef] [PubMed]
- Harberd, N.P. Shaping Taste: The Molecular Discovery of Rice Genes Improving Grain Size, Shape and Quality. J. Genet. Genom. 2015, 42, 597–599. [Google Scholar] [CrossRef]
- Huang, R.Y.; Jiang, L.R.; Zheng, J.S.; Wang, T.S.; Wang, H.C.; Huang, Y.M.; Hong, Z.L. Genetic bases of rice grain shape: So many genes, so little known. Trends Plant Sci. 2013, 18, 218–226. [Google Scholar] [CrossRef]
- Zuo, J.R.; Li, J.Y. Molecular Genetic Dissection of Quantitative Trait Loci Regulating Rice Grain Size. Annu. Rev. Genet. 2014, 48, 99–118. [Google Scholar] [CrossRef]
- Li, N.; Xu, R.; Li, Y. Molecular Networks of Seed Size Control in Plants. Annu. Rev. Plant Biol. 2019, 70, 435–463. [Google Scholar] [CrossRef]
- Fan, C.H.; Xing, Y.Z.; Mao, H.L.; Lu, T.T.; Han, B.; Xu, C.G.; Li, X.H.; Zhang, Q.F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 2006, 112, 1164–1171. [Google Scholar] [CrossRef]
- Mao, H.L.; Sun, S.Y.; Yao, J.L.; Wang, C.R.; Yu, S.B.; Xu, C.G.; Li, X.H.; Zhang, Q.F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc. Natl. Acad. Sci. USA 2010, 107, 19579–19584. [Google Scholar] [CrossRef] [Green Version]
- Song, X.J.; Huang, W.; Shi, M.; Zhu, M.Z.; Lin, H.X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 2007, 39, 623–630. [Google Scholar] [CrossRef]
- Weng, J.F.; Gu, S.H.; Wan, X.Y.; Gao, H.; Guo, T.; Su, N.; Lei, C.L.; Zhang, X.; Cheng, Z.J.; Guo, X.P.; et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 2008, 18, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.G.; Xu, J.S.; Zeng, D.L.; Zhang, B.L.; Geng, M.F.; Zhang, G.Z.; Huang, K.; Huang, L.J.; Xu, R.; Ge, S.; et al. Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice. Mol. Plant 2017, 10, 685–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.F.; Chen, J.; Zheng, X.M.; Wu, F.Q.; Lin, Q.B.; Heng, Y.Q.; Tian, P.; Cheng, Z.J.; Yu, X.W.; Zhou, K.N.; et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat. Plants 2017, 3. [Google Scholar] [CrossRef] [PubMed]
- Si, L.Z.; Chen, J.Y.; Huang, X.H.; Gong, H.; Luo, J.H.; Hou, Q.Q.; Zhou, T.Y.; Lu, T.T.; Zhu, J.J.; Shangguan, Y.Y.; et al. OsSPL13 controls grain size in cultivated rice. Nat. Genet. 2016, 48, 447. [Google Scholar] [CrossRef]
- Wang, S.K.; Wu, K.; Yuan, Q.B.; Liu, X.Y.; Liu, Z.B.; Lin, X.Y.; Zeng, R.Z.; Zhu, H.T.; Dong, G.J.; Qian, Q.; et al. Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 2012, 44, 950. [Google Scholar] [CrossRef]
- Wang, S.K.; Li, S.; Liu, Q.; Wu, K.; Zhang, J.Q.; Wang, S.S.; Wang, Y.; Chen, X.B.; Zhang, Y.; Gao, C.X.; et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 2015, 47, 949. [Google Scholar] [CrossRef]
- Song, X.J.; Kuroha, T.; Ayano, M.; Furuta, T.; Nagai, K.; Komeda, N.; Segami, S.; Miura, K.; Ogawa, D.; Kamura, T.; et al. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proc. Natl. Acad. Sci. USA 2015, 112, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Qi, P.; Lin, Y.S.; Song, X.J.; Shen, J.B.; Huang, W.; Shan, J.X.; Zhu, M.Z.; Jiang, L.W.; Gao, J.P.; Lin, H.X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res. 2012, 22, 1666–1680. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.J.; Wang, J.F.; Huang, J.; Lan, H.X.; Wang, C.L.; Yin, C.F.; Wu, Y.Y.; Tang, H.J.; Qian, Q.; Li, J.Y.; et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc. Natl. Acad. Sci. USA 2012, 109, 21534–21539. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.Y.; Zhang, J.Q.; Zhang, X.J.; Zhou, J.; Jiang, Z.S.; Huang, P.; Tang, Z.B.; Bao, Y.M.; Cheng, J.P.; Tang, H.J.; et al. Rice qGL3/OsPPKL1 Functions with the GSK3/SHAGGY-Like Kinase OsGSK3 to Modulate Brassinosteroid Signaling. Plant Cell 2019, 31, 1077–1093. [Google Scholar] [CrossRef]
- Li, Y.B.; Fan, C.C.; Xing, Y.Z.; Jiang, Y.H.; Luo, L.J.; Sun, L.; Shao, D.; Xu, C.J.; Li, X.H.; Xiao, J.H.; et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 2011, 43, 1266. [Google Scholar] [CrossRef] [PubMed]
- Che, R.H.; Tong, H.N.; Shi, B.H.; Liu, Y.Q.; Fang, S.R.; Liu, D.P.; Xiao, Y.H.; Hu, B.; Liu, L.C.; Wang, H.R.; et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses (vol 1, 15195, 2015). Nat. Plants 2016, 2. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.X.; Fang, Y.X.; Zeng, L.J.; Xu, J.; Yu, H.P.; Shi, Z.Y.; Pan, J.J.; Zhang, D.; Kang, S.J.; et al. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice. Mol. Plant 2015, 8, 1455–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.J.; Lu, S.J.; Wang, M.J.; He, H.H.; Sun, L.; Wang, H.R.; Liu, X.H.; Jiang, L.; Sun, J.L.; Xin, X.Y.; et al. A Novel QTL qTGW3 Encodes the GSK3/SHAGGY-Like Kinase OsGSK5/OsSK41 that Interacts with OsARF4 to Negatively Regulate Grain Size and Weight in Rice. Mol. Plant 2018, 11, 736–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishimaru, K.; Hirotsu, N.; Madoka, Y.; Murakami, N.; Hara, N.; Onodera, H.; Kashiwagi, T.; Ujiie, K.; Shimizu, B.; Onishi, A.; et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 2013, 45, 707. [Google Scholar] [CrossRef]
- Liu, L.C.; Tong, H.N.; Xiao, Y.H.; Che, R.H.; Xu, F.; Hu, B.; Liang, C.Z.; Chu, J.F.; Li, J.Y.; Chu, C.C. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc. Natl. Acad. Sci. USA 2015, 112, 11102–11107. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.P.; Wang, L.; Du, W.L.; Lai, Y.Y.; Huang, X.; Wang, Z.F.; Zhang, H.S. Dynamic quantitative trait locus analysis of seed dormancy at three development stages in rice. Mol. Breed. 2014, 34, 501–510. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Abe, Y.; Mieda, K.; Ando, T.; Kono, I.; Yano, M.; Kitano, H.; Iwasaki, Y. The SMALL AND ROUND SEED1 (SRS1/DEP2) gene is involved in the regulation of seed size in rice. Genes Genet. Syst. 2010, 85, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Liu, W.B.; Tang, J.Y.; Chen, J.F.; Tong, H.N.; Hu, B.; Li, C.L.; Fang, J.; Chen, M.S.; Chu, C.C. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res. 2010, 20, 838–849. [Google Scholar] [CrossRef]
- Zhu, K.M.; Tang, D.; Yan, C.J.; Chi, Z.C.; Yu, H.X.; Chen, J.M.; Liang, J.S.; Gu, M.H.; Cheng, Z.K. ERECT PANICLE2 Encodes a Novel Protein That Regulates Panicle Erectness in Indica Rice. Genetics 2010, 184, 343–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, D.H.; Li, J.; Duan, Y.B.; Yang, Y.C.; Wei, P.C.; Xu, R.F.; Li, C.R.; Liang, D.D.; Li, H.; Song, F.S.; et al. Identification and utilization of cleistogamy gene cl7(t) in rice (Oryza sativa L.). J. Exp. Bot. 2014, 65, 2107–2117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, K.; Wang, D.K.; Duan, P.G.; Zhang, B.L.; Xu, R.; Li, N.; Li, Y.H. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J. 2017, 91, 849–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Li, Y.H. Signaling pathways of seed size control in plants. Curr. Opin. Plant Biol. 2016, 33, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Xiong, G.S.; Hu, J.; Jiang, L.; Yu, H.; Xu, J.; Fang, Y.X.; Zeng, L.J.; Xu, E.B.; Xu, J.; et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 2015, 47, 944. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.G.; Liu, X.Y.; Wang, M.H.; Meyer, R.S.; Luo, X.J.; Ndjiondjop, M.N.; Tan, L.B.; Zhang, J.W.; Wu, J.Z.; Cai, H.W.; et al. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat. Plants 2017, 3. [Google Scholar] [CrossRef]
- Yu, J.P.; Xiong, H.Y.; Zhu, X.Y.; Zhang, H.L.; Li, H.H.; Miao, J.L.; Wang, W.S.; Tang, Z.S.; Zhang, Z.Y.; Yao, G.X.; et al. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biol. 2017, 15. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.P.; Miao, J.L.; Zhang, Z.Y.; Xiong, H.Y.; Zhu, X.Y.; Sun, X.M.; Pan, Y.H.; Liang, Y.T.; Zhang, Q.; Rehman, R.M.A.; et al. Alternative splicing of OsLG3b controls grain length and yield in japonica rice. Plant Biotechnol. J. 2018, 16, 1667–1678. [Google Scholar] [CrossRef] [Green Version]
Traits | Chr | QTL | Flanking Markers | LOD | PVE (%) | Add | Dom |
---|---|---|---|---|---|---|---|
Grain Length | 3 | qGL3 | RM7370-RM6832 | 8.85 | 7.20 | 0.323 | −0.189 |
7 | qGL7 | RM6344-RM8261 | 41.26 | 64.56 | −0.957 | 0.505 | |
Grain Width | 5 | qGW5 | RM7444-RM1089 | 15.72 | 13.47 | 0.126 | 0.027 |
7 | qGW7 | RM6344-RM8261 | 35.15 | 60.136 | 0.268 | −0.133 | |
Grain Length/Grain Width | 7 | qGS7 | RM6344-RM8261 | 43.94 | 68.67 | −0.606 | 0.268 |
ORF | Locus Name | Nucleotide Length | Putative Function | Coding Sequence and Amino Acid Change |
---|---|---|---|---|
ORF1 | LOC_Os07g42395 | 2636 | DNA-directed RNA polymerase II subunit RPB9 | No difference in coding region |
ORF2 | LOC_Os07g42400 | 2229 | Transposon protein | - |
ORF3 | LOC_Os07g42410 | 7850 | Expressed protein | 7 SNPs, SNP1:T1145→A caused Ile382→Asn; SNP2: A base deletion at 1505 caused a frameshift and termination at 1525 position |
ORF4 | LOC_Os07g42420 | 5661 | 3-oxoacyl-synthase | 4 SNPs, no AA change |
ORF5 | LOC_Os07g42430 | 1673 | Expressed protein | 2 SNPs, SNP1:T135→C, no AA change; SNP2:T369→A caused a 2 AA deletion at C-terminal |
ORF6 | LOC_Os07g42440 | 5540 | Glycolate oxidase | 1 SNP, C566→T caused Ile189→Thr |
ORF7 | LOC_Os07g42450 | 2260 | Ribosomal protein S2 | 2 SNPs, SNP1:C488→T, no AA change SNP2: A772→G caused Val258 →Ile |
ORF8 | LOC_Os07g42460 | 2268 | Transposon protein | - |
Accession | Subsp | Grain Length(mm) | Grain Width (mm) | Grain Length/Grain Width | SNP1 | SNP2 | SNP3 |
---|---|---|---|---|---|---|---|
1145 | 1505 | 1547 | |||||
Longliheinuo-dwarf | Japonica | 4.5 | 3.36 | 1.34 | T | - | G |
N643 | Indica | 8.89 | 2.34 | 3.8 | A | T | T |
80-4 | Japonica | 6.96 | 3.28 | 2.12 | T | T | G |
Jiangdu6102 | Indica | 7.45 | 3.5 | 2.13 | A | T | T |
J4195/zhen 511 | Japonica | 6.81 | 3.1 | 2.2 | T | T | G |
Nipponbare | Japonica | 7.41 | 3.29 | 2.25 | T | T | G |
SWWR | Indica | 6.28 | 2.74 | 2.29 | A | T | T |
Siyang 87-2566 | Japonica | 7.5 | 3.25 | 2.3 | T | T | G |
Jiguang1 | Indica | 7.49 | 2.93 | 2.56 | A | T | T |
93-11 | Indica | 9.84 | 2.56 | 3.84 | A | T | T |
IR50 | Indica | 8.99 | 2.29 | 3.92 | A | T | T |
YR303-304-1-3 | Indica | 9.83 | 2.25 | 4.37 | T | T | G |
YR3030-12-6-39 | Indica | 9.64 | 2.14 | 4.5 | T | T | G |
H94-1 | Indica | 9.67 | 2.07 | 4.67 | T | T | G |
Traits | LH | N-643 | NIL-1 | NIL-2 | NIL-3 | |||
---|---|---|---|---|---|---|---|---|
qGS7N643 | qGS7LH | qGS7N643 | qGS7LH | qGS7N643 | qGS7LH | |||
Plant Height (cm) | 84.6 ± 1.53 | 89.67 ± 3.06 | 103.43 ± 3.97 | 92.25 ± 3.30 *** | 118.95 ± 3.47 | 105.43 ± 5.38 *** | 115.99 ± 5.12 | 102.95 ± 4.94 *** |
Panicles Per Plant | 3.00 ± 0.00 | 13.33 ± 2.08 | 10.67 ± 3.93 | 9.70 ± 1.77 | 9.50 ± 1.78 | 10.50 ± 1.96 | 10.10 ± 2.28 | 9.60 ± 1.96 |
Stem Diameter (mm) | 6.78 ± 0.17 | 5.80 ± 0.20 | 4.94 ± 0.55 | 5.36 ± 0.42 | 5.29 ± 0.79 | 5.05 ± 0.71 | 5.54 ± 0.63 | 5.53 ± 0.48 |
Top Internode Diameter (mm) | 4.56 ± 0.19 | 3.17 ± 0.17 | 3.24 ± 0.36 | 3.76 ± 0.34 * | 2.86 ± 0.42 | 3.19 ± 0.53 | 3.19 ± 0.49 | 3.46 ± 0.31 |
Flag Leaf Length (cm) | 22.44 ± 2.33 | 32.00 ± 3.77 | 28.43 ±3.47 | 28.00 ± 9.21 | 28.63 ± 2.03 | 26.95 ± 1.93 | 28.66 ± 2.27 | 27.98 ± 3.02 |
Flag Leaf Angle (°) | 15.78 ± 0.51 | 11.92 ± 0.14 | 16.07 ± 4.77 | 16.52 ± 3.47 | 25.70 ± 3.58 | 19.43 ± 2.81 | 17.86 ± 2.18 | 21.07 ± 2.57 |
Length of Second Leaf from the Top (cm) | 36.02 ± 2.72 | 43.25 ± 3.83 | 45.03 ± 3.14 | 39.80 ± 1.75 ** | 46.37 ± 2.23 | 42.42 ± 2.37 *** | 46.39 ± 2.19 | 43.48 ± 2.70 * |
Panicle Length (cm) | 15.81 ± 0.13 | 19.94 ± 0.93 | 22.69 ± 2.13 | 17.95 ± 3.14 ** | 23.79 ± 1.26 | 18.37 ± 0.91 ** | 23.75 ± 1.34 | 18.86 ± 0.77 *** |
Panicle Exertion (cm) | 5.58 ± 0.92 | −3.21 ± 1.07 | −1.01 ± 1.70 | −1.56 ± 1.28 | 0.90 ± 0.65 | 2.11 ± 1.06 | 1.32 ± 0.71 | 3.10 ± 1.42 |
Panicle Curvature (°) | 4.11 ± 0.19 | 104.36 ± 12.39 | 120.96 ± 4.21 | 31.98 ± 12.65 *** | 111.68 ± 9.84 | 60.15 ± 9.99 *** | 113.83 ± 11.89 | 61.93 ± 6.09 *** |
Primary Branch Number | 13.11 ± 0.38 | 13.65 ± 0.26 | 13.93 ± 1.25 | 14.72 ± 0.74 | 15.18 ± 0.87 | 14.75 ± 0.76 | 15.34 ± 0.88 | 15.26 ± 0.64 |
Secondary Branch Number | 29.00 ± 5.29 | 30.07 ± 7.42 | 31.02 ± 7.96 | 28.79 ± 3.45 | 34.49 ± 7.80 | 32.47 ± 5.58 | 35.19 ± 3.60 | 36.87 ± 5.18 |
Spikelet Number Per Panicle | 169.33 ± 18.76 | 171.21 ± 24.00 | 192.21 ± 42.39 | 185.54 ± 15.45 | 209.90 ± 34.32 | 191.75 ± 23.75 | 211.27 ± 17.92 | 211.12 ± 21.83 |
Filled Grain Number Per Panicle | 131.44 ± 12.22 | 135.49 ± 16.59 | 164.59 ± 36.68 | 160.35 ± 15.54 | 167.40 ± 29.87 | 156.43 ± 19.56 | 179.53 ± 18.86 | 178.10 ± 20.71 |
Grain Length (mm) | 4.50 ± 0.07 | 8.89 ± 0.04 | 8.00 ± 0.25 | 6.80 ± 0.07 *** | 8.06 ± 0.13 | 7.06 ± 0.11 *** | 8.02 ± 0.14 | 6.97 ± 0.10 *** |
Grain Width (mm) | 3.56 ± 0.08 | 2.34 ± 0.08 | 2.44 ± 0.05 | 2.86 ± 0.06 *** | 2.50 ± 0.04 | 2.87 ± 0.04 *** | 2.40 ± 0.03 | 2.85 ± 0.03 *** |
1000-Grain Weight (g) | 11.77 ± 1.05 | 19.37 ± 0.32 | 18.98 ± 0.47 | 18.75 ± 0.67 | 19.81 ± 0.30 | 19.34 ± 0.44 * | 18.88 ± 0.42 | 18.97 ± 0.39 |
Chalkiness (%) | glutinous | 10.4 ± 2.88 | 11.25 ± 3.59 | 24.28 ± 6.84 *** | 13.4 ± 2.44 | 34.25 ± 6.23 *** | 15.65 ± 3.65 | 32.30 ± 8.32 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, F.; Chao, X.; Meng, K.; Meng, X.; Li, Q.; Chen, L.; Wang, J. Fine Mapping of a Grain Shape Gene from a Rice Landrace Longliheinuo-Dwarf (Oryza sativa L. ssp. japonica). Agronomy 2020, 10, 380. https://doi.org/10.3390/agronomy10030380
Shang F, Chao X, Meng K, Meng X, Li Q, Chen L, Wang J. Fine Mapping of a Grain Shape Gene from a Rice Landrace Longliheinuo-Dwarf (Oryza sativa L. ssp. japonica). Agronomy. 2020; 10(3):380. https://doi.org/10.3390/agronomy10030380
Chicago/Turabian StyleShang, Fei, Xu Chao, Kaiwen Meng, Xianghe Meng, Qin Li, Lifang Chen, and Jianfei Wang. 2020. "Fine Mapping of a Grain Shape Gene from a Rice Landrace Longliheinuo-Dwarf (Oryza sativa L. ssp. japonica)" Agronomy 10, no. 3: 380. https://doi.org/10.3390/agronomy10030380
APA StyleShang, F., Chao, X., Meng, K., Meng, X., Li, Q., Chen, L., & Wang, J. (2020). Fine Mapping of a Grain Shape Gene from a Rice Landrace Longliheinuo-Dwarf (Oryza sativa L. ssp. japonica). Agronomy, 10(3), 380. https://doi.org/10.3390/agronomy10030380