Aboveground Carbon Storage in Coffee Agroecosystems: The Case of the Central Region of the State of Veracruz in Mexico
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Content of C by Species and Stratum
3.2. C Storage at the Regional Level and by Type of Agroecosystem
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caro, D.; Davis, S.J.; Bastianoni, S.; Caldeira, K. Global and regional trends in greenhouse gas emissions from livestock. Clim. Chang. 2014, 126, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Field, C.B.; Barros, V.R.; Dokken, D.; Mach, K.; Mastrandrea, M.; Bilir, T.; Chatterjee, M.; Ebi, K.; Genova, R.; Yohe, G.W. IPCC 2014: Summary for Policymakers in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Phillips, O.L.; Malhi, Y.; Higuchi, N.; Laurance, W.F.; Núñez, P.V.; Vásquez, R.M.; Laurance, S.G.; Ferreira, L.V.; Stern, M.; Brown, S.; et al. Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science 1998, 282, 439–442. [Google Scholar] [CrossRef]
- De Jong, B.; Anaya, C.; Masera, O.; Olguín, M.; Paz, F.; Etchevers, J.; Martínez, R.D.; Guerrero, G.; Balbontín, C. Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. For. Ecol. Manag. 2010, 260, 1689–1701. [Google Scholar] [CrossRef]
- Watson, R.; Meira Filho, L.; Sanhueza, E.; Janetos, A. Greenhouse gases: Sources and sinks. Clim. Chang. 1992, 92, 25–46. [Google Scholar]
- Stocker, T.; Qin, D.; Plattner, G.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. Summary for policymakers Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Trexler, M.C.; Haugen, C. Keeping It Green: Tropical Forestry Opportunities for Mitigating Climate Change; Number F/333.7516 T7; World Resources Institute: Washington, DC, USA, 1995. [Google Scholar]
- Schimel, D.S. Terrestrial ecosystems and the carbon cycle. Glob. Chang. Biol. 1995, 1, 77–91. [Google Scholar] [CrossRef]
- Dixon, R.K.; Solomon, A.; Brown, S.; Houghton, R.; Trexier, M.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Pompa-García, M.; Sigala-Rodríguez, J.Á. Variación de captura de carbono de especies forestales en México: Una revisión. Madera Y Bosques 2017, 23, 225–235. [Google Scholar]
- Pompa-Garcia, M.; Sigala-Rodríguez, J.A.; Jurado, E.; Flores, J. Tissue carbon concentration of 175 Mexican forest species. IFor.-Biogeosci. For. 2017, 10, 754. [Google Scholar] [CrossRef] [Green Version]
- Orihuela-Belmonte, D.; De Jong, B.; Mendoza-Vega, J.; Van der Wal, J.; Paz-Pellat, F.; Soto-Pinto, L.; Flamenco-Sandoval, A. Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agric. Ecosyst. Environ. 2013, 171, 72–84. [Google Scholar] [CrossRef]
- De Jong, B.H. Forestry for Mitigating the Greenhouse Effect: An Ecological and Economic Assessment of the Potential of Land Use to Mitigate CO2 Emissions in the Highlands of Chiapas, Mexico; Instituto Nacional de Ecología: Mexico City, Mexico, 2000; pp. 220–230. [Google Scholar]
- Cairns, M.; Barker, J.; Shea, R.; Haggerty, P. Carbon dynamics of Mexican tropical evergreen forests: Influence of forestry mitigation options and refinement of carbon-flux estimates. Interciencia Caracas 1995, 20, 401–408. [Google Scholar]
- Dixon, R.K.; Winjum, J.K.; Andrasko, K.J.; Lee, J.J.; Schroeder, P.E. Integrated land-use systems: Assessment of promising agroforest and alternative land-use practices to enhance carbon conservation and sequestration. Clim. Chang. 1994, 27, 71–92. [Google Scholar] [CrossRef]
- Masera, O.R. Carbon mitigation scenarios for Mexican forests: Methodological considerations and results. Interciencia 1995, 20, 388–436. [Google Scholar]
- Brown, S.; Lugo, A.E. Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia Caracas 1992, 17, 8–18. [Google Scholar]
- Makundi, W.; Sathaye, J.; Fearnside, P. Carbon Emissions and Sequestration in Forests: Case Studies from Seven Developing Countries; Technical Report; Lawrence Berkeley Lab. Environmental Protection Agency: Berkeley, CA, USA, 1992.
- Houghton, R.; Unruh, J.; Lefebvre, P. Current land cover in the tropics and its potential for sequestering carbon. Glob. Biogeochem. Cycles 1993, 7, 305–320. [Google Scholar] [CrossRef]
- Myers, N. The greenhouse effect: A tropical forestry response. Biomass 1989, 18, 73–78. [Google Scholar] [CrossRef]
- Sedjo, R.A.; Solomon, A.M. Climate and forests. Greenh. Warm. Abat. Adapt. 1989, 3, 105–120. [Google Scholar]
- Mora, F.; Jaramillo, V.J.; Bhaskar, R.; Gavito, M.; Siddique, I.; Byrnes, J.E.; Balvanera, P. Carbon accumulation in Neotropical dry secondary forests: The roles of forest age and tree dominance and diversity. Ecosystems 2018, 21, 536–550. [Google Scholar] [CrossRef]
- Gay, C.; Martínez, J. Mitigation of emissions of greenhouse gases in Mexico. Interciencia-Caracas 1995, 20, 336–342. [Google Scholar]
- Detwiler, R.P.; Hall, C.A. Tropical forests and the global carbon cycle. Science 1988, 239, 42–47. [Google Scholar] [CrossRef]
- López-Morgado, R.; Díaz-Padilla, G.; Salazar-García, G.; García-Mayoral, L.E.; Guajardo-Panes, R. Desarrollo y medio ambiente en México: Diganóstico; Friedrich Ebert Stiftung, Ed.; Fundación Universo Veintiuno: Mexico City, México, 1990; 165p. [Google Scholar]
- Riley, R. The Contribution of Forest Land Use to Total National Carbon Flux: Case Studies in the Former Soviet Union, United States, Mexico, and Brazil; EPA/600/R-95/044; United States Environmental Protection Agency: Washington, DC, USA, 1995.
- Casanova-Lugo, F.; Ramírez-Avilés, L.; Parsons, D.; Caamal-Maldonado, A.; Piñeiro-Vázquez, A.T.; Díaz-Echeverría, V. Environmental services from tropical agroforestry systems. Rev. Chapingo. Ser. Cienc. For. Y Del Ambiente 2016, 22, 269–284. [Google Scholar] [CrossRef]
- Beer, J.; Harvey, C.; Ibrahim, M.; Harmand, J.M.; Somarriba, E.; Jiménez, F. Servicios ambientales de los sistemas agroforestales. Agroforestería En Las Américas 2003, 10, 80–87. [Google Scholar]
- Ruelas-Monjardín, L.C.; Nava-Tablada, M.E.; Cervantes, J.; Barradas, V.L. Importancia ambiental de los agroecosistemas cafetaleros bajo sombra en la zona central montañosa del estado de Veracruz, México. Madera Y Bosques 2014, 20, 27–40. [Google Scholar] [CrossRef]
- Van Rikxoort, H.; Schroth, G.; Läderach, P.; Rodríguez-Sánchez, B. Carbon footprints and carbon stocks reveal climate-friendly coffee production. Agron. Sustain. Dev. 2014, 34, 887–897. [Google Scholar] [CrossRef] [Green Version]
- Toledo, V.M.; Moguel, P. Coffee and sustainability: The multiple values of traditional shaded coffee. J. Sustain. Agric. 2012, 36, 353–377. [Google Scholar] [CrossRef]
- De Souza, H.N.; de Goede, R.G.; Brussaard, L.; Cardoso, I.M.; Duarte, E.M.; Fernandes, R.B.; Gomes, L.C.; Pulleman, M.M. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agric. Ecosyst. Environ. 2012, 146, 179–196. [Google Scholar] [CrossRef]
- Mena Mosquera, V.E. Relation between the Carbon Stored in the Biomass and the Physiognomic Composition of the Vegetation in the Agroforestry Systems with Coffee and in Secondary Forests of the Volcánica Central-Talamanca Biological Corridor in Costa Rica. Ph.D. Thesis, CATIE, Turrialba, Costa Rica, October 2008. [Google Scholar]
- Peña del Valle, A.; Pérez Haro, E.; Pérez Samayoa, I. Café Sustentable y Bonos de Carbono; El cafetal del futuro; Shaker Verlag: Aachen, Germany, 2006; pp. 333–360. [Google Scholar]
- Segura, M.; Kanninen, M.; Suárez, D. Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agrofor. Syst. 2006, 68, 143–150. [Google Scholar] [CrossRef]
- Soto Pinto, L.; De Jong, B.; Esquivel Bazán, E.; Quechulpa, S. Potencial Ecológico y Económico de Captura de Carbono en Cafetales; El cafetal del futuro: Realidades y visiones; Shaker: Aachen, Germany, 2006; pp. 333–360. [Google Scholar]
- García, C. Identificación de Cafetales de Sombra Jugando un Papel Sobresaliente en la Conservación de la Biodiversidad en el Centro del Estado de Veracruz; Escuela de Biología, BUAP: Puebla, Mexico, 2015. [Google Scholar]
- Escamilla Prado, E. El café Cereza en México: Tecnología de la Producción; Number 633.73972 E74; Universidad Autónoma Chapingo, Centro de Investigaciones: Chapingo, Mexico, 1993. [Google Scholar]
- López-Morgado, R.; Contreras, A.; Ruiz, J.; Castillo, G.; Martínez-Rodríguez, J. Diagnóstico de la Cafeticultura en la Zona Centro del Estado de Veracruz; Décima Segunda Reunión Científica-Tecnológica Forestal y Agropecuaria; INIFAP: Veracruz, México, 1999. [Google Scholar]
- Manson, R.H. Agroecosistemas Cafetaleros de Veracruz: Biodiversidad, Manejo y Conservación; Instituto Nacional de Ecología: Mexico City, Mexico, 2008; pp. 223–234. [Google Scholar]
- Mokondoko, P.; Manson, R.H.; Pérez-Maqueo, O. Assessing the service of water quality regulation by quantifying the effects of land use on water quality and public health in central Veracruz, Mexico. Ecosyst. Serv. 2016, 22, 161–173. [Google Scholar] [CrossRef]
- Pineda-López, M.; Ortiz-Ceballos, G.; Sánchez-Velásquez, L.R. Los cafetales y su papel en la captura de carbono: Un servicio ambiental aún no valorado en Veracruz. Madera Y Bosques 2005, 11, 3–14. [Google Scholar]
- Hergoualch, K.; Blanchart, E.; Skiba, U.; Hénault, C.; Harmand, J.M. Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agric. Ecosyst. Environ. 2012, 148, 102–110. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Soil organic carbon sequestration in agroforestry systems. A review. Agron. Sustain. Dev. 2014, 34, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Dávalos, R.; Rodrigues, M.; Martínez, E. Almacenamiento de carbono; Manson, R., Hernández, V., Gallina, S., Mehltreter, K., Eds.; INECOL-SERMANAT: Xalapa, México, 2008; pp. 223–234. [Google Scholar]
- De Miguel Magana, S.; Harmand, J.M.; Hergoualc’h, K. Cuantificación del carbono almacenado en la biomasa aérea y el mantillo en sistemas agroforestales de café en el suroeste de Costa Rica. Agroforestería En Las Américas 2004, 11, 98–104. [Google Scholar]
- Negash, M.; Kanninen, M. Modeling biomass and soil carbon sequestration of indigenous agroforestry systems using CO2FIX approach. Agric. Ecosyst. Environ. 2015, 203, 147–155. [Google Scholar] [CrossRef]
- Soto-Pinto, L.; Aguirre-Dávila, C.M. Carbon stocks in organic coffee systems in Chiapas, Mexico. J. Agric. Sci. 2015, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- Soto-Pinto, L.; Anzueto, M.; Mendoza, J.; Ferrer, G.J.; de Jong, B. Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor. Syst. 2010, 78, 39. [Google Scholar] [CrossRef]
- Ortiz Ceballos, G. El Agroecosistema Café: Crisis de Mercado y Sustentabilidad. Ph.D. Thesis, Colegio de Posgraduados, Veracruz, México, January 2004. [Google Scholar]
- Sánchez-Velásquez, L.R.; Lóopez, R.P. Ecología Cuantitativa en Plantas; Universidad de Guadalajara: Guadalajara, Mexico, 2000. [Google Scholar]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Mueller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology; John Wiley and Sons: New York, NY, USA, 1974; p. 347. [Google Scholar]
- Espinoza-Domínguez, W.; Krishnamurthy, L.; Vázquez-Alarcón, A.; Torres-Rivera, A. Almacén de carbono en sistemas agroforestales con café. Rev. Chapingo Ser. Cienc. For. del Ambiente 2012, 18, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Basuki, T.; Van Laake, P.; Skidmore, A.; Hussin, Y. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manag. 2009, 257, 1684–1694. [Google Scholar] [CrossRef]
- Alvarez, E.; Duque, A.; Saldarriaga, J.; Cabrera, K.; de Las Salas, G.; del Valle, I.; Lema, A.; Moreno, F.; Orrego, S.; Rodríguez, L. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manag. 2012, 267, 297–308. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Picard, N.; Rutishauser, E.; Ploton, P.; Ngomanda, A.; Henry, M. Should tree biomass allometry be restricted to power models? For. Ecol. Manag. 2015, 353, 156–163. [Google Scholar] [CrossRef]
- Duque, A.; Saldarriaga, J.; Meyer, V.; Saatchi, S. Structure and allometry in tropical forests of Chocó, Colombia. For. Ecol. Manag. 2017, 405, 309–318. [Google Scholar] [CrossRef]
- Hao, H.; Li, W.; Zhao, X.; Chang, Q.; Zhao, P. Estimating the Aboveground Carbon Density of Coniferous Forests by Combining Airborne LiDAR and Allometry Models at Plot Level. Front. Plant Sci. 2019, 10, 917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta-Mireles, M.; Vargas Hernandez, J.; Velázquez-Martínez, A.; Etchevers-Barra, J. Estimación de la biomasa aérea mediante el uso de relaciones alométricas en seis especies arboreas en oaxaca, México. Agrociencia 2002, 36, 725–736. [Google Scholar]
- Campbell, J.S.; Lieffers, V.J.; Pielou, E. Regression equations for estimating single tree biomass of trembling aspen: Assessing their applicability to more than one population. For. Ecol. Manag. 1985, 11, 283–295. [Google Scholar] [CrossRef]
- Brown, S.; Gillespie, A.J.; Lugo, A.E. Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci. 1989, 35, 881–902. [Google Scholar]
- Ter-Mikaelian, M.T.; Korzukhin, M.D. Biomass equations for sixty-five North American tree species. For. Ecol. Manag. 1997, 97, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 45, 573–593. [Google Scholar]
- Nelson, B.W.; Mesquita, R.; Pereira, J.L.; De Souza, S.G.A.; Batista, G.T.; Couto, L.B. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For. Ecol. Manag. 1999, 117, 149–167. [Google Scholar] [CrossRef]
- Jimenez Avila, E.; Martinez Vara, P. Estudios ecologicos del agroecosistema cafetalero. II. Produccion de materia organica en diferentes tipos de estructura. Biotica 1979, 4, 109–116. [Google Scholar]
- Montoya, G.; Soto, L.; de Jong, B.; Nelson, K.; Farias, P.; Yakactic, P.; Taylor, J.H.; Tipper, R. Desarrollo forestal sustentable: Captura de carbono en las zonas tzeltal y tojolabal del estado de Chiapas. Cuad. De Trab. 1995, 4, 80. [Google Scholar]
- Ávila, G.; Jiménez, F.; Beer, J.; Gómez, M.; Ibrahim, M. Almacenamiento, fijación de carbono y valoración de servicios ambientales en sistemas agroforestales en Costa Rica. Agroforestería En Las Américas 2001, 8, 32–35. [Google Scholar]
- García Mayoral, L.E.; Valdez Hernández, J.I.; Luna Cavazos, M.; López Morgado, R. Estructura y diversidad arbórea en sistemas agroforestales de café en la Sierra de Atoyac, Veracruz. Madera y Bosques 2015, 21, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Zamora, A.G.; Rodríguez, M.E.; Barradas, V.L. Mountain cloud forest and grown-shade coffee plantations: A comparison of tree biodiversity in central Veracruz, Mexico. For. Syst. 2016, 25, 10. [Google Scholar]
- Toledo-Aceves, T. Regiones prioritarias para la conservación del bosque mesófilo de montaña. AGROProductividad 2017, 10, 10–14. [Google Scholar]
- Sosa-Fernández, V.; López-Morgado, R.; Toledo-Aceves, T.; Bárcenas-Pazos, G. Oportunidades de conservación del bosque de niebla a través del manejo alternativo: Los agroecosistemas cafetaleros. Agroproductividad 2017, 10, 62–68. [Google Scholar]
- Ortiz Ceballos, G.; Pineda-López, M.; del Rosario, M. Las Fincas de Café: Sitos de conservación in situ de biodiversidad. In Ecología, Manejo y Conservación de los Ecosistemas de Montaña en México; Sanchez, L., Fletcher, F., Eds.; CONABIO: México City, México, 2008; pp. 231–249. [Google Scholar]
- Montagnini, F.; Nair, P. Carbon sequestration: An underexploited environmental benefit of agroforestry systems. Agrofor. Syst. 2004, 61, 281–295. [Google Scholar]
- Young, A. Agroforestry for Soil Management.; Number Ed. 2; CAB International: Wallingford, UK, 1997. [Google Scholar]
- Peeters, L.Y.; Soto-Pinto, L.; Perales, H.; Montoya, G.; Ishiki, M. Coffee production, timber, and firewood in traditional and Inga-shaded plantations in Southern Mexico. Agric. Ecosyst. Environ. 2003, 95, 481–493. [Google Scholar] [CrossRef]
- Ordoñez Díaz, J.A.B. Captura de carbono en un bosque templado: El caso de San Juan Nuevo, Michoacán.; INE-SEMARNAP: Mexico City, Mexico, 1999. [Google Scholar]
- Fournier, O. Fijación de carbono y diversidad biológica en el agroecosistema cafetero. In Simposio de Caficultura Latinoamericana; Inter-American Institute for Cooperation on Agriculture, Ed.; IICA: San Salvador, El Salvador, 1995. [Google Scholar]
- López, A.; Schlönvoigt, A.; Ibrahim, M.; Kleinn, C.; Kanninen, M. Cuantificación del carbono almacenado en el suelo de un sistema silvopastoril en la zona Atlántica de Costa Rica. Agroforestería En Las Américas 1999, 6, 51. [Google Scholar]
- Brigido, J.G.; Nikolskii, I.; Terrazas, L.; Herrera, S.S. Estimación del impacto del cambio climático sobre fertilidad del suelo y productividad de café en Veracruz, México. Tecnol. y Cienc. del Agua 2015, 6, 101–116. [Google Scholar]
- Sánchez Hernández, S.; Briseño, M.; Alfonso, M.; Hernández, G.; Vidal, R. Diversificación de la sombra tradicional de cafetales en Veracruz mediante especies maderables. Rev. Mex. De Cienc. For. 2017, 8, 7–18. [Google Scholar]
- Chave, J.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2004, 359, 409–420. [Google Scholar] [CrossRef]
- Clark, D.A. Detecting tropical forests’ responses to global climatic and atmospheric change: Current challenges and a way forward. Biotropica 2007, 39, 4–19. [Google Scholar] [CrossRef]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Sierra, C.A.; Valle, J.I.d.; Orrego, S.A.; Moreno, F.H.; Harmon, M.E.; Zapata, M.; Colorado, G.J.; Herrera, M.A.; Lara, W.; Restrepo, D.E. Total carbon stocks in a tropical forest landscape of thePorce region, Colombia. For. Ecol. Manag. 2007, 243, 299–309. [Google Scholar] [CrossRef]
- Litton, C.M.; Boone Kauffman, J. Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica 2008, 40, 313–320. [Google Scholar] [CrossRef]
No. | Agroecosystem (AES) | Surface (ha) | Sample Points (n) |
---|---|---|---|
1 | Coffee + Acacia + Inga (Co + AcaciaInga) | 3039.25 | 10 |
2 | Coffee + Mango + Citrus (Co + MaCi) | 564.98 | 9 |
3 | Coffee + Mango + Others (Co + MaOthers) | 1148.67 | 6 |
4 | Coffee + Ingas (Co + Inga) | 18,862.87 | 65 |
5 | Coffee + Tall trees (Co + Talltrees) | 16,305.56 | 70 |
Total | 39,921.33 | 160 |
Model | Source | |
---|---|---|
diameter at breast height in cm | 0.9860 | [64] |
aboveground biomass in kg tree | ||
diameter at breast height in cm | 0.9750 | [64] |
aboveground biomass in kg tree | ||
diameter at breast height in cm | 0.9700 | [63] |
tree total height in m | ||
aboveground biomass in kg tree | ||
diameter at breast height in cm | — | [65] |
tree total height in m | ||
aboveground biomass in kg tree | ||
diameter at breast height in cm | 0.9840 | [66] |
aboveground biomass in kg tree | ||
diameter at breast height in cm | 0.8300 | [62] |
tree total height in m | ||
aboveground biomass in kg tree | ||
diameter at breast height in cm | 0.8600 | [62] |
tree total height in m | ||
aboveground biomass in kg tree | ||
diameter at breast height in cm | 0.9840 | [62] |
aboveground biomass in kg tree |
Agroecosystem | Stratum | Density (ind ha−1) | Species | Surface (ha) | Sample size (n) |
---|---|---|---|---|---|
Co + AcaciaInga | arboreal | 114 | 15 | 3039.25 | 40 |
fruit | 73 | 8 | 40 | ||
Co + MaCi | arboreal | 83 | 12 | 564.98 | 32 |
fruit | 90 | 8 | 32 | ||
Co + MaOthers | arboreal | 144 | 9 | 1148.67 | 20 |
fruit | 159 | 6 | 24 | ||
Co + Inga | arboreal | 184 | 39 | 18,862.87 | 260 |
fruit | 142 | 18 | 256 | ||
Co + talltrees | arboreal | 114 | 40 | 16,305.56 | 280 |
fruit | 73 | 16 | 280 | ||
Total | 39,921.33 | 1264 |
Species | Frequency | Stored Carbon (kg C ha) |
---|---|---|
Lonchocarpus guatemalensis | 10 | 2320.47 |
Enterolobium cyclocarpum | 25 | 1068.18 |
Zinowiewia integerrima | 9 | 924.89 |
Inga jinicuil | 68 | 756.32 |
Quercus sp | 16 | 510.73 |
Mangifera indica | 87 | 483.24 |
Tapirira mexicana | 11 | 399.89 |
Persea schiedeana | 17 | 314.46 |
Persea americana | 18 | 275.63 |
Bursera simaruba | 15 | 262.29 |
Grevillea robusta | 13 | 256.37 |
Leucaena pulverulenta | 18 | 241.30 |
Dendropanax arboreus | 16 | 234.82 |
Trema micrantha | 30 | 210.63 |
Cecropia obtusifolia | 11 | 130.63 |
Inga edulis | 15 | 123.63 |
Inga leptoloba | 63 | 113.63 |
Inga spuri | 170 | 90.83 |
Syzygium jambos | 13 | 89.49 |
Heliocarpus appendiculatus | 12 | 78.93 |
Citrus sinensis | 117 | 42.01 |
Psidium guajava | 23 | 40.46 |
Eriobotrya japonica | 55 | 32.61 |
Citrus reticulata | 22 | 22.67 |
Citrus latifolia | 16 | 17.48 |
Musa sapientum | 234 | 3.56 |
Total | 1264 | 9045.27 |
AES | Stratum | Species | ACT | Trees | ACD | Surface | TCAAS | TCAA |
---|---|---|---|---|---|---|---|---|
kg | Ind·ha | Mg·C· ha | ha | Mg·C | Mg·C | |||
Co+AcaciaInga | arboreal | 15 | 261.67 | 114 | 29.86 | 3039.25 | 90,752.01 | 116,919.25 |
fruit | 8 | 117.97 | 73 | 8.61 | 3039.25 | 26,167.94 | ||
Co+MaCi | arboreal | 12 | 375.10 | 83 | 31.17 | 564.98 | 17,610.43 | 27,243.34 |
fruit | 8 | 188.78 | 90 | 17.05 | 564.98 | 9632.91 | ||
Co+MaOthers | arboreal | 9 | 165.15 | 144 | 23.80 | 1148.67 | 27,338.35 | 70,367.52 |
fruit | 6 | 234.43 | 159 | 37.46 | 1148.67 | 43,029.18 | ||
Co+Inga | arboreal | 39 | 226.34 | 184 | 41.67 | 18,862.87 | 786,007.46 | 1,026,708.25 |
fruit | 18 | 89.67 | 142 | 12.73 | 18,862.87 | 240,121.22 | ||
Co+talltrees | arboreal | 40 | 436.74 | 143 | 62.63 | 16,305.56 | 1,021,217.22 | 1,194,708.38 |
fruit | 16 | 118.14 | 118 | 10.64 | 16,305.56 | 173,491.16 | ||
Total | 39,921.33 | 2,435,368.44 | 2,435,368.44 |
Agroecosystem | Carbon Density (Mg C ha) | ||
---|---|---|---|
Arboreal | Fruit | Total | |
Co + Inga | 41.67 | 12.73 | 54.4 |
Co + talltrees | 62.63 | 10.64 | 73.27 |
Co + MaOthers | 23.80 | 37.46 | 61.26 |
Co + MaCi | 31.17 | 17.05 | 48.22 |
Co + AcaciaInga | 29.86 | 8.61 | 38.47 |
Mean | 37.83 | 17.30 | 55.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz-Ceballos, G.C.; Vargas-Mendoza, M.; Ortiz-Ceballos, A.I.; Mendoza Briseño, M.; Ortiz-Hernández, G. Aboveground Carbon Storage in Coffee Agroecosystems: The Case of the Central Region of the State of Veracruz in Mexico. Agronomy 2020, 10, 382. https://doi.org/10.3390/agronomy10030382
Ortiz-Ceballos GC, Vargas-Mendoza M, Ortiz-Ceballos AI, Mendoza Briseño M, Ortiz-Hernández G. Aboveground Carbon Storage in Coffee Agroecosystems: The Case of the Central Region of the State of Veracruz in Mexico. Agronomy. 2020; 10(3):382. https://doi.org/10.3390/agronomy10030382
Chicago/Turabian StyleOrtiz-Ceballos, Gustavo Celestino, Mónica Vargas-Mendoza, Angel Isauro Ortiz-Ceballos, Martín Mendoza Briseño, and Gustavo Ortiz-Hernández. 2020. "Aboveground Carbon Storage in Coffee Agroecosystems: The Case of the Central Region of the State of Veracruz in Mexico" Agronomy 10, no. 3: 382. https://doi.org/10.3390/agronomy10030382
APA StyleOrtiz-Ceballos, G. C., Vargas-Mendoza, M., Ortiz-Ceballos, A. I., Mendoza Briseño, M., & Ortiz-Hernández, G. (2020). Aboveground Carbon Storage in Coffee Agroecosystems: The Case of the Central Region of the State of Veracruz in Mexico. Agronomy, 10(3), 382. https://doi.org/10.3390/agronomy10030382