Effects of Management Practices on Quinoa Growth, Seed Yield, and Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Treatments
2.3. Agronomic Practices
2.4. Irrigation Scheduling
2.5. Measurements and Calculations
2.5.1. Estimation of Crop Evapotranspiration
2.5.2. Plant Height
2.5.3. Leaf Area Index (LAI)
2.5.4. Dry Matter and Protein Content of Leaf, Stem, and Seed, and Nitrogen Uptake
2.5.5. Yield Per Plant
2.5.6. The Thousand Kernel Weight and Seed Protein Content
2.5.7. Soil Available Nitrogen Amount
2.6. Statistical Analysis
3. Results
3.1. Weather Conditions and Insect Pressure
3.2. Quinoa Seasonal Evapotranspiration
3.3. Quinoa Height and Leaf Area Index (LAI)
3.4. The Thousand Kernel Weight and Seed Protein Content
3.5. Seed Yield Per Plant
3.6. Dry Matter and Nitrogen Content of Leaf, Stem, and Seed, and Nitrogen Uptake
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cusack, D.F. Quinoa: Grain of the Incas. Ecologist 1984, 14, 21–31. [Google Scholar]
- Jacobsen, S.E. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev. Int. 2016, 19, 167–177. [Google Scholar] [CrossRef]
- Bhargava, A.; Shukla, S.; Ohri, D. Chenopodium quinoa-An Indian perspective. Ind. Crop. Prod. 2006, 23, 73–87. [Google Scholar] [CrossRef]
- FAO. Quinoa: An Ancient Crop to Contribute to World Food Security. Technical report. In Proceedings of the 37th FAO Conference, Rome, Italy, 25 June–2 July 2011. [Google Scholar]
- Bazile, D.; Bertero, H.D.; Nieto, C. State of the Art Report on Quinoa Around the World in 2013; FAO&CIRAD: Roma, Italy, 2015. [Google Scholar]
- Yazar, A.; Sezen, S.M.; Çolak, Y.B. Supplemental irrigation of wheat and quinoa using drainage canal water under the Mediterranean environmental conditions. In Proceedings of the International Conference on: Sustainable Water Use for Securing Food Production in the Mediterranean Region under Changing Climate, Agadir, Morocco, 10−15 March 2013. [Google Scholar]
- Razzaghi, F.; Bahadori-Ghasroldashti, M.R.; Henriksen, S.; Sepaskhah, A.R.; Jacobsen, S.E. Physiological characteristics and irrigation water productivity of quinoa (Chenopodium quinoa Willd.) in response to deficit irrigation imposed at different growing stages—A field study from Southern Iran. J. Agro. Crop Sci. 2020. [Google Scholar] [CrossRef]
- Schulte Auf’ m Erley, G.; Kaul, H.P.; Kruse, M.; Aufhammer, W. Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. Eur. J. of Agron. 2005, 22, 95–100. [Google Scholar] [CrossRef]
- Jacobsen, S.E.; Christiansen, J.L. Some agronomic strategies for organic quinoa (Chenopodium quinoa Willd.). J. Agron. Crop Sci. 2016, 202, 454–463. [Google Scholar] [CrossRef]
- Risi, J.; Galwey, N.W. Effects of sowing date and sowing rate on plant development and grain yield of quinoa (Chenopodium quinoa) in a temperate environment. J. Agr. Sci. 1991, 117, 325–332. [Google Scholar] [CrossRef]
- Jacobsen, S.E.; Jørgensen, I.; Stølen, O. Cultivation of quinoa (Chenopodium quinoa) under temperate climatic conditions in Denmark. J. Agr. Sci. 1994, 122, 47–52. [Google Scholar] [CrossRef]
- Jacobsen, S.E.; Mujica, A.; Jensen, C.R. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev. Int. 2003, 19, 99–109. [Google Scholar] [CrossRef]
- Garcia Cardenas, M. Agroclimatic Study and Drought Resistance Analysis of Quinoa for an Irrigation Strategy in the Bolivian Altiplano. Ph.D. Thesis, Dissertationes de Agricultura No. 556. Fac. of Agr. and Applied Biol. Sciences, K.U. Leuven, Belgium, 2003. [Google Scholar]
- Geerts, S.; Raes, D.; Garcia, M.; Condori, O.; Mamani, J.; Miranda, R.; Cusicanqui, J.; Taboada, C.; Yucra, E.; Vacher, J. Could deficit irrigation be a sustainable practice for quinoa (Chenopodium quinoa Willd.) in the Southern Bolivian Altiplano? Agric. Water Manag. 2008, 95, 909–917. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D.; Garcia, M.; Vacher, J.; Mamani, R.; Mendoza, J.; Huanca, R.; Morales, B.; Miranda, R.; Cusicanqui, J.; et al. Introducing deficit irrigation to stabilize yields of quinoa (Chenopodium quinoa Willd.). Eur. J. Agron. 2008, 28, 417–436. [Google Scholar] [CrossRef]
- Wang, F.X.; Wu, X.X.; Shock, C.C.; Chu, L.Y.; Gu, X.X.; Xue, X. Effects of drip irrigation regimes on potato tuber yield and quality under plastic mulch in arid northwestern China. Field Crops Res. 2011, 122, 78–84. [Google Scholar] [CrossRef]
- Yang, K.J.; Wang, F.X.; Shock, C.C.; Kang, S.Z.; Huo, Z.L.; Song, N.; Ma, D. Potato performance as influenced by the proportion of wetted soil volume and nitrogen under drip irrigation with plastic mulch. Agric. Water Manag. 2017, 179, 260–270. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, F.X.; Shock, C.C.; Yang, K.J.; Kang, S.Z.; Qin, J.T.; Li, S.E. Influence of different plastic film mulches and wetted soil percentages on potato grown under drip irrigation. Agric. Water Manag. 2017, 180, 160–171. [Google Scholar] [CrossRef]
- Hirich, A.; Choukr–Allah, R.; Jacobsen, S.E. The combined effect of deficit irrigation by treated wastewater and organic amendment on quinoa (Chenopodium quinoa Willd.) productivity. Desalin. Water Treat. 2014, 52, 2208–2213. [Google Scholar] [CrossRef]
- Fghire, R.; Anaya, F.; Ali, O.I.; Benlhabib, O.; Ragab, R.; Wahbi, S. Physiological and photosynthetic response of quinoa to drought stress. Chil. J. Agric. Res. 2015, 75, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Rachid, F.; Said, W.; Fatima, A.; Oudou, I.A.; Ouafae, B.; Ragab, R. Response of quinoa to different water management strategies: Field experiments and Saltmed model application results. Irrig. Drain. 2015, 64, 232–238. [Google Scholar]
- Razzaghi, F.; Ahmadi, S.H.; Jacobsen, S.E.; Jensen, C.R.; Andersen, M.N. Effects of salinity and soil-drying on radiation use efficiency, water productivity and yield of quinoa (Chenopodium quinoa Willd.). J. Agro. Crop Sci. 2012, 198, 173–184. [Google Scholar] [CrossRef]
- Razzaghi, F.; Plauborg, F.; Jacobsen, S.E.; Jensen, C.R.; Andersen, M.N. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agric. Water Manag. 2012, 109, 20–29. [Google Scholar] [CrossRef]
- Hegde, D.M.; Srinivas, K. Effect of soil matric potential and nitrogen on growth, yield, nutrient uptake and water use of banana. Agric. Water Manag. 1989, 16, 109–117. [Google Scholar] [CrossRef]
- Meng, C.B.; Wang, F.X.; Engel, B.A.; Yang, K.J.; Zhang, Y.L. Is cattle manure application with plastic-film mulch a good choice for potato production? Agronomy 2019, 9, 534. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.H.; Wan, S.Q. Effect of soil water potential on radish (Raphanus sativus L.) growth and water use under drip irrigation. Sci. Hort. 2005, 106, 275–292. [Google Scholar] [CrossRef]
- Wang, D.; Kang, Y.H.; Wan, S.Q. Effect of soil matric potential on tomato yield and water use under drip irrigation condition. Agric. Water Manag. 2007, 87, 180–186. [Google Scholar] [CrossRef]
- Wang, F.X.; Kang, Y.H.; Liu, S.P.; Hou, X.Y. Effects of soil matric potential on potato growth under drip irrigation in the north china plain. Agric. Water Manag. 2007, 88, 34–42. [Google Scholar] [CrossRef]
- Shock, C.C.; Wang, F.X. Soil water tension, a powerful measurement for productivity and stewardship. HortScience 2011, 46, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Eisa, S.; Abdel–Ati, A. Optimization of Chenopodium quinoa nitrogen nutrition in sandy soil. In Proceedings of the 16th World Fertilizer Congress on CIEC: Proceedings of the Technological Innovation for a Sustainable Tropical Agriculture, Rio de Janeiro, Brazil, 20–24 October 2014. [Google Scholar]
- Van Gaelen, H.; Tsegay, A.; Delbecque, N.; Shretha, N.; Garcia, M.; Fajardo, H.; Miranda, R.; Vanuyrecht, E.; Abrha, B.; Raes, D. A semi-quantitative approach for modelling crop response to soil fertility: Evaluation of the AquaCrop procedure. J. Agric. SC 2015, 153, 1218–1233. [Google Scholar] [CrossRef]
- Badr, M.A.; Abou-Hussein, S.D.; El-Tohamy, W.A. Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region. Agric. Water Manag. 2016, 169, 90–97. [Google Scholar] [CrossRef]
- Aguilar, P.C.; Jacobsen, S.E. Cultivation of quinoa on the Peruvian Altiplano. Food Rev. Int. 2003, 19, 31–41. [Google Scholar] [CrossRef]
- Gimplinger, D.M.; Schulte Auf’ m Erley, G.; Dobos, G.; Kaul, H.P. Optimum crop densities for potential yield and harvestable yield of grain amaranth are conflicting. Eur. J. Agron. 2008, 28, 119–125. [Google Scholar] [CrossRef]
- Spehar, C.R.; Rocha, J.E.D.S. Effect of sowing density on plant growth and development of quinoa, genotype 4.5, in the Brazilian Savannah highlands. Biosci. J. 2009, 25, 53–58. [Google Scholar]
- Shrief, S.A.; Shabana, R.; Ibrahim, A.F.; Geisler, G. Variation in seed yield and quality characters of four spring oil rapeseed cultivars as influenced by population arrangements and densities. J. Agron. Crop Sci. 1990, 165, 103–109. [Google Scholar] [CrossRef]
- Henderson, T.L.; Johnson, B.L.; Schneiter, A.A. Row spacing, plant population, and cultivar effects on grain amaranth in the northern Great Plains. Agron. J. 2000, 92, 329–336. [Google Scholar] [CrossRef]
- Yang, F.R. Breeding and Application prospects of new variety Chenopodium quinoa cv. Longli 1. Gansu Agr. Sci. Technol. 2015, 12, 1–5, (In Chinese with English abstract). [Google Scholar]
- Fen, S.J. Experiment Report on Different Planting Density of Quinoa in loess Plateau in Longzhong. Info. Agric. Sci. Technol. 2019, 5, 79–80. (In Chinese) [Google Scholar]
- Ross, P.J. Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, H.A. The Kjeldahl determination of nitrogen: Retrospect and prospect. Trends Anal. Chem. 1994, 13, 138–144. [Google Scholar] [CrossRef]
- Su, L.S.; Zhang, J.B.; Wang, G.T.; Zhang, Y.K.; Li, Z.; Song, Y.; Jin, T.; Ma, Z. Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments. Appl. Energy 2016, 163, 201–210. [Google Scholar] [CrossRef]
- Liu, H.J.; Yang, H.Y.; Zheng, J.H.; Jia, D.H.; Wang, J.; Li, Y.; Huang, G.H. Irrigation scheduling strategies based on soil matric potential on yield and fruit quality of mulched-drip irrigated chili pepper in northwest China. Agric. Water Manag. 2012, 115, 232–241. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, F.; Bendevis, M.; Shabala, S.; Jacobsen, S.E. Sensitivity of two quinoa (Chenopodium quinoa Willd.) varieties to progressive drought stress. J. Agron. Crop Sci. 2014, 200, 12–23. [Google Scholar] [CrossRef]
- Walters, H.; Carpenter–Boggs, L.; Desta, K.; Yan, L.; Matanguihan, J.; Murphy, K. Effect of irrigation, intercrop, and cultivar on agronomic and nutritional characteristics of quinoa. Agroec. Sust. Food. 2016, 40, 783–803. [Google Scholar] [CrossRef]
- Ince Kaya, Ç.; Yazar, A. Saltmed model performance for quinoa irrigated with fresh and saline water in a mediterranean environment. Irrig. Drain. 2016, 65, 29–37. [Google Scholar] [CrossRef]
- Oktem, A. Effect of water shortage on yield, and protein and mineral compositions of drip-irrigated sweet corn in sustainable agricultural systems. Agric. Water Manag. 2008, 95, 1003–1010. [Google Scholar] [CrossRef]
- Elbehri, A.; Putnam, D.H.; Schmitt, M. Nitrogen fertilizer and cultivar effects on yield and nitrogen–use efficiency of grain amaranth. Agron. J. 1993, 85, 120–128. [Google Scholar] [CrossRef]
- Jacobsen, S.E.; Monteros, C.; Christiansen, J.L.; Bravo, L.A.; Corcuera, L.J.; Mujica, A. Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. Eur. J. Agron. 2005, 22, 131–139. [Google Scholar] [CrossRef]
- Alandia, G.; Jacobsen, S.E.; Kyvsgaard, N.C.; Condori, B.; Liu, F.L. Nitrogen sustains seed yield of quinoa under intermediate drought. J. Agro. Crop Sci. 2016, 202, 281–291. [Google Scholar] [CrossRef]
- Khan, S.; Anwar, S.; Kuai, J.; Ullah, S.; Fahad, S.; Zhou, G.S. Optimization of nitrogen rate and planting density for improving yield, nitrogen use efficiency, and lodging resistance in oilseed rape. Front. Plant Sci. 2017, 8, 532. [Google Scholar] [CrossRef] [Green Version]
- Qiu, R.J.; Song, J.J.; Du, T.S.; Kang, S.Z.; Tong, L.; Chen, R.Q.; Wu, L.S. Response of evapotranspiration and yield to planting density of solar greenhouse grown tomato in northwest china. Agric. Water Manag. 2013, 130, 44–51. [Google Scholar] [CrossRef]
- Jiang, X.L.; Kang, S.Z.; Tong, L.; Li, F.S.; Li, D.H.; Ding, R.S.; Qiu, R.J. Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China. Agric. Water Manag. 2014, 142, 135–143. [Google Scholar] [CrossRef]
- Badr, M.A.; El-Tohamy, W.A.; Zaghloul, A.M. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 2012, 110, 9–15. [Google Scholar] [CrossRef]
- Cardozo, A.; Tapia, M.E. Valor nutritivo. Quinua y Kaniwa. Cultivos Andinos. In Serie librosy Materiales educativos; Tapia, M.E., Ed.; Instituto Interamericano de Ciencias Agricolas: Bogota, Columbia, 1979; Volume 49, pp. 149–192. [Google Scholar]
- Koziol, M.J. Chemical composition and nutritional value of quinoa (Chenopodium quinoa Willd). J. Food Compos. Anal. 1992, 5, 35–68. [Google Scholar] [CrossRef]
- Wright, K.H.; Pike, O.A.; Fairbanks, D.J.; Huber, C.S. Composition of Atriplex hortensis, sweet and bitter Chenopodium quinoa seeds. J. Food Sci. 2002, 67, 1383–1385. [Google Scholar] [CrossRef]
- Repo-Carrasco, R.; Espinoza, C.; Jacobsen, S.E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev. Int. 2003, 19, 179–189. [Google Scholar] [CrossRef]
- Bhargava, A.; Shukla, S.; Ohri, D. Genome size variation in some cultivated and wild species of Chenopodium (Chenopodiaceae). Caryologia 2007, 60, 245–250. [Google Scholar] [CrossRef]
- Maliro, M.F.A.; Guwela, V.F.; Jacinta, N.; Murphy, K.M. Preliminary studies of the performance of quinoa (Chenopodium quinoa Willd.) genotypes under irrigated and rainfed conditions of central Malawi. Front. Plant Sci. 2017, 8, 227. [Google Scholar] [CrossRef] [Green Version]
Soil Parameters | 2018 | 2019 |
---|---|---|
Soil bulk density (g cm−3) | 1.5 | 1.5 |
Clay (%) | 9.8 | 9.9 |
Silt (%) | 64.6 | 65.2 |
Sand (%) | 25.6 | 24.9 |
Field capacity (%) | 30.9 | 30 |
Mineral content (%) | 1.245 | 1.091 |
Available nitrogen (mg kg−1) | 51.6 | 60.8 |
Available phosphorus (mg kg−1) | 20.1 | 12.4 |
Available potassium (mg kg−1) | 261 | 128 |
Soil electric conductivity (μs cm−1) | 157.5 | 161.8 |
Treatments | Soil Matric Potential (−kPa) | Nitrogen Rate (kg ha−1) | Plant Density (plants m−2) |
---|---|---|---|
T1 | 15 | 80 | 20 |
T2 | 15 | 160 | 30 |
T3 | 15 | 240 | 40 |
T4 | 25 | 80 | 30 |
T5 | 25 | 160 | 40 |
T6 | 25 | 240 | 20 |
T7 | 55 | 80 | 40 |
T8 | 55 | 160 | 20 |
T9 | 55 | 240 | 30 |
Treatment | 2018 | 2019 | |||
---|---|---|---|---|---|
ETC | Yield | ETC | Yield | ||
(mm) | (g plant−1) | (mm) | (g plant−1) | ||
Soil matric potential (−kPa) | 15 | 534 a | 38.1 a | 495 a | 36.2 a |
25 | 433 b | 31.5 ab | 424 a | 32.6 a | |
55 | 347 c | 25.6 b | 311 b | 24.8 b | |
Nitrogen rate (kg ha−1) | 80 | 429 b | 29.8 a | 398 a | 28.4 b |
160 | 430 b | 32.6 a | 413 a | 32.8 a | |
240 | 455 a | 32.4 a | 420 a | 32.3 a | |
Plant density (plants m−2) | 20 | 382 c | 39.7 a | 365 b | 39.2 a |
30 | 453 b | 33.3 ab | 426 ab | 33.1 b | |
40 | 479 a | 26.2 b | 440 a | 25.8 c |
Treatment | 2018 | 2019 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
49 | 52 | 59 | 66 | 80 | 51 | 61 | 68 | 74 | 84 | ||
Soil matric potential (−kPa) | 15 | 96 a | 119 a | 151 a | 177 a | 179 a | 71 a | 121 a | 158 a | 178 a | 184 a |
25 | 93 b | 115 b | 146 ab | 169 b | 173 b | 67 ab | 114 b | 151 ab | 169 ab | 171 ab | |
55 | 91 c | 112 b | 139 b | 166 b | 172 b | 62 b | 110 b | 141 b | 161 b | 165 b | |
Nitrogen rate (kg ha−1) | 80 | 85 c | 106 b | 135 b | 158 b | 162 b | 57 c | 103 c | 135 b | 157 b | 161 b |
160 | 96 b | 119 a | 150 a | 176 a | 179 a | 67 b | 117 b | 152 a | 172 a | 176 ab | |
240 | 99 a | 121 a | 152 a | 179 a | 183 a | 77 a | 125 a | 162 a | 178 a | 183 a | |
Plant density (plants m−2) | 20 | 94 a | 116 a | 147 a | 171 a | 176 a | 68 a | 117 a | 151 a | 170 a | 175 a |
30 | 93 a | 115 a | 144 a | 171 a | 174 a | 67 a | 115 a | 150 a | 169 a | 174 a | |
40 | 93 a | 115 a | 145 a | 171 a | 174 a | 65 a | 113 a | 148 a | 168 a | 172 a |
Treatment | 2018 | 2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
51 | 61 | 76 | 89 | 52 | 61 | 68 | 74 | 84 | ||
Soil matric potential (−kPa) | 15 | 2.5 a | 3.7 a | 6.3 a | 2.3 a | 2.6 a | 3.3 a | 5.1 a | 3.9 a | 2.6 a |
25 | 2.6 a | 3.6 a | 5.8 b | 2.0 b | 2.4 a | 3.2 a | 4.9 ab | 3.8 a | 2.3 a | |
55 | 2.2 b | 2.9 b | 5.3 b | 1.6 c | 1.8 b | 2.7 b | 4.5 b | 3.3 b | 1.8 b | |
Nitrogen rate (kg ha−1) | 80 | 2.3 b | 3.3 b | 5.2 b | 1.8 c | 2.0 b | 2.8 b | 4.3 c | 3.2 c | 1.9 b |
160 | 2.5 ab | 3.4 b | 5.7 b | 1.9 b | 2.2 b | 3.1 ab | 4.9 b | 3.7 b | 2.2 b | |
240 | 2.6 a | 3.6 a | 6.5 a | 2.2 a | 2.6 a | 3.5 a | 5.4 a | 4.2 a | 2.7 a | |
Plant density (plants m−2) | 20 | 2.2 c | 3.1 b | 5.4 b | 1.8 c | 1.9 b | 2.6 c | 4.3 b | 3.1 c | 1.8 b |
30 | 2.4 b | 3.4 b | 5.8 ab | 2.0 b | 2.3 a | 3.1 b | 5.0 a | 3.6 b | 2.2 b | |
40 | 2.7 a | 3.8 a | 6.1 a | 2.1 a | 2.6 a | 3.7 a | 5.3 a | 4.3 a | 2.8 a |
Treatment | 2018 | 2019 | |||
---|---|---|---|---|---|
The Thousand Kernel Weight (g) | Protein Content (%) | The Thousand Kernel Weight (g) | Protein Content (%) | ||
Soil matric potential (−kPa) | 15 | 2.28 a | 20.3 ab | 2.21 a | 20.4 b |
25 | 2.18 b | 21.3 a | 2.11 b | 21.1 a | |
55 | 2.12 b | 20.0 b | 2.03 c | 19.6 c | |
Nitrogen rate (kg ha−1) | 80 | 2.12 b | 19.8 b | 2.02 c | 19.1 c |
160 | 2.18 b | 20.5 ab | 2.10 b | 20.8 b | |
240 | 2.28 a | 21.3 a | 2.23 a | 21.2 a | |
Plant density (plants m−2) | 20 | 2.19 a | 20.7 a | 2.12 a | 20.6 a |
30 | 2.18 a | 20.6 a | 2.11 a | 20.4 a | |
40 | 2.22 a | 20.4 a | 2.12 a | 20.2 a |
Treatment | Dry Matter (Mg ha−1) | Nitrogen Content (%) | N Uptake (kg ha−1) | |||||
---|---|---|---|---|---|---|---|---|
Leaf | Stem | Seed | Leaf | Stem | Seed | |||
2018 | ||||||||
Soil matric potential (−kPa) | 15 | 12.4 a | 34.1 a | 11.4 a | 1.8 a | 0.8 ab | 3.2 ab | 857 a |
25 | 8.0 ab | 24.9 b | 9.4 ab | 1.9 a | 0.7 b | 3.4 a | 647 b | |
55 | 4.0 b | 13.9 c | 7.7 b | 1.8 a | 0.9 a | 3.2 b | 438 c | |
Nitrogen rate (kg ha−1) | 80 | 6.1 a | 18.5 c | 8.9 a | 1.6 b | 0.8 a | 3.2 b | 536 b |
160 | 7.9 a | 24.8 b | 9.8 a | 1.9 ab | 0.8 a | 3.3 ab | 657 ab | |
240 | 10.4 a | 29.6 a | 9.7 a | 2.0 a | 0.8 a | 3.4 a | 748 a | |
Plant density (plants m−2) | 20 | 6.9 a | 22.5 a | 7.9 b | 2.0 a | 0.9 a | 3.2 a | 602 a |
30 | 7.9 a | 23.6 a | 10.0 ab | 2.0 a | 0.8 b | 3.3 a | 666 a | |
40 | 9.6 a | 23.9 a | 10.5 a | 1.5 b | 0.7 b | 3.3 a | 674 a | |
2019 | ||||||||
Soil matric potential (−kPa) | 15 | 12.3 a | 33.1 a | 10.9 a | 1.7 a | 0.6 a | 3.3 b | 817 a |
25 | 7.7 ab | 22.9 ab | 9.8 a | 2.0 a | 0.8 a | 3.4 a | 628 b | |
55 | 4.2 b | 13.2 b | 7.4 b | 1.8 a | 0.8 a | 3.1 c | 514 c | |
Nitrogen rate (kg ha−1) | 80 | 6.3 a | 18.1 b | 8.5 b | 1.7 a | 0.8 a | 3.1 b | 515 c |
160 | 7.2 a | 22.4 ab | 9.8 a | 2.0 a | 0.7 a | 3.3 b | 620 b | |
240 | 10.6 a | 28.8 a | 9.7 a | 1.8 a | 0.7 a | 3.4 a | 725 a | |
Plant density (plants m−2) | 20 | 6.6 a | 21.5 a | 7.9 b | 2.0 a | 0.7 a | 3.3 a | 552 b |
30 | 7.9 a | 21.8 a | 9.9 ab | 2.0 ab | 0.8 a | 3.3 a | 643 ab | |
40 | 10.5 a | 26.0 a | 10.3 a | 1.5 b | 0.8 a | 3.2 a | 666 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Wang, F.; Shock, C.C.; Meng, C.; Qiao, L. Effects of Management Practices on Quinoa Growth, Seed Yield, and Quality. Agronomy 2020, 10, 445. https://doi.org/10.3390/agronomy10030445
Wang N, Wang F, Shock CC, Meng C, Qiao L. Effects of Management Practices on Quinoa Growth, Seed Yield, and Quality. Agronomy. 2020; 10(3):445. https://doi.org/10.3390/agronomy10030445
Chicago/Turabian StyleWang, Ning, Fengxin Wang, Clinton C. Shock, Chaobiao Meng, and Lifang Qiao. 2020. "Effects of Management Practices on Quinoa Growth, Seed Yield, and Quality" Agronomy 10, no. 3: 445. https://doi.org/10.3390/agronomy10030445
APA StyleWang, N., Wang, F., Shock, C. C., Meng, C., & Qiao, L. (2020). Effects of Management Practices on Quinoa Growth, Seed Yield, and Quality. Agronomy, 10(3), 445. https://doi.org/10.3390/agronomy10030445