Differential Aquaporin Response to Distinct Effects of Two Zn Concentrations after Foliar Application in Pak Choi (Brassica rapa L.) Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Experimental Design
2.3. Root Hydraulic Conductance
2.4. Gas Exchange Measurements
2.5. RNA Extraction and Reverse Transcription
2.6. Quantitative Real-Time PCR (QRT-PCR) Analyses
2.7. Zinc and Calcium Tissue Analyses
2.8. Statistical Analysis
3. Results
3.1. Plant Biomass
3.2. Effect of Zn on Root Hydraulic Conductance (L0)
3.3. Effect of Zn on Gas Exchange Parameters
3.4. Tissue Contents of Zn and Ca
3.5. PIP1 and PIP2 Isoforms Expression in Root and Leaf Tissues
4. Discussion
4.1. Growth, Root Hydraulic Conductance and Gas Exchange Parameters
4.2. Calcium and Zinc Concentrations in Pak Choi Plants after Treatments
4.3. PIP Aquaporin Expression Remove
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prasad, A.S. Zinc: The biology and therapeutics of an ion. Ann. Intern. Med. 1996, 125, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J.E. Zinc enzymes. Curr. Opin. Chem. Biol. 1998, 2, 222–234. [Google Scholar] [CrossRef]
- Andreini, C.; Banci, L.; Bertini, I.; Rosato, A. Zinc through the three domains of life. J. Proteome Res. 2006, 5, 3173–3178. [Google Scholar] [CrossRef]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef]
- Ali, G.; Srivastava, P.S.; Iqbal, M. Influence of cadmium and zinc on growth and photosynthesis of Bacopa monniera cultivated in vitro. Biol. Plant. 2000, 43, 599–601. [Google Scholar] [CrossRef]
- Khudsar, T.; Uzzafar, M.; Iqbal, M.; Sairam, R.K. Zinc-induced changes in morpho-physiological and biochemical parameters in Artemisia annua. Biol. Plant. 2004, 48, 255–260. [Google Scholar] [CrossRef]
- Kholodova, V.P.; Volkov, K.S.; Kuznetsov, V.V. Adaptation of the common ice plant to high copper and zinc concentrations and their potential using for phytoremediation. Russ. J. Plant Physiol. 2005, 52, 748–757. [Google Scholar] [CrossRef]
- Mallick, M.F.R.; Muthukrishnan, C.R. Effect of micronutrients on tomato (Lycopersicon esculentum Mill). II. Effect on flowering, fruit-set and yield. South Indian Hort. 1980, 28, 14–20. [Google Scholar]
- Long, X.X.; Yang, X.E.; Ni, W.Z.; Ye, Z.Q.; He, Z.L.; Calvert, D.V.; Stoffella, J.P. Assessing zinc thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. Commn. Soil Sci. Plant. Anal. 2003, 34, 1421–1434. [Google Scholar] [CrossRef]
- Swietlik, D. Zinc nutrition of fruit trees by foliar sprays. Acta Hort. 2002, 93, 123–129. [Google Scholar] [CrossRef]
- Deshmukh, R.; Bélanger, R.R. Molecular evolution of aquaporins and silicon influx in plants. Funct. Ecol. 2016, 30, 1277–1285. [Google Scholar] [CrossRef]
- Kitchen, P.; Day, R.E.; Salman, M.M.; Conner, M.T.; Bill, R.M.; Conner, A.C. Beyond water homeostasis: Diverse functional roles of mammalian aquaporins. Biochim. Biophys. Acta 2015, 1850, 2410–2421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreida, S.; Törnroth-Horsefield, S. Structural insights into aquaporin selectivity and regulation. Curr. Opin. Struct. Biol. 2015, 33, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.Y.; Kim, Y.D.; Kim, J.S.; Kang, H. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol. Biol. 2004, 54, 713–725. [Google Scholar] [CrossRef] [PubMed]
- Danielson, J.Å.H.; Johanson, U. Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol. 2008, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, K.; Hara, S.; Kondo, S. Aquaporin water channels in mammals. Clin. Exp. Nephrol. 2009, 13, 107–117. [Google Scholar] [CrossRef]
- Henzler, T.; Ye, Q.; Steudle, E. Oxidative gating of water channels (aquaporins) in Chara by hydroxyl radicals. Plant Cell Environ. 2004, 27, 1184–1195. [Google Scholar] [CrossRef]
- Maurel, C. Aquaporins and water permeability of plant membranes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 399–429. [Google Scholar] [CrossRef] [Green Version]
- Tyerman, S.D.; Bohnert, H.J.; Maurel, C.; Steudle, E.; Smith, J.A.C. Plant aquaporins: Their molecular biology, biophysics and significance for plant water relations. J. Exp. Bot. 1999, 50, 1055–1071. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, H.; Fukuoka, H.; Arao, T.; Ohyama, A.; Nunome, T.; Miyatake, K.; Negoro, S. Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum. J. Exp. Bot. 2010, 61, 423–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gitto, A.; Fricke, W. Zinc treatment of hydroponically grown barley plants causes a reduction in root and cell hydraulic conductivity and isoform-dependent decrease in aquaporin gene expression. Physiol. Plant. 2018, 164, 176–190. [Google Scholar] [CrossRef] [Green Version]
- Kholodova, V.; Volkov, K.; Abdeyeva, A.; Kuznetsov, V. Water status in Mesembryanthemum crystallinum under heavy metal stress. Environ. Exp. Bot. 2011, 71, 382–389. [Google Scholar] [CrossRef]
- Tazawa, M.; Asai, K.; Iwasaki, N. Characteristics of Hg- and Zn-sensitive water channels in the plasma membrane of Chara cells. Bot. Acta 1996, 109, 388–396. [Google Scholar] [CrossRef]
- Qiu, Q.S.; Wang, Z.Z.; Cai, Q.G.; Jiang, R.X. Characterization of aquaporins at the plasma membrane of leaf callus protoplasts from Actinidia deliciosa cv. Hayward. Acta Bot. Sin. 2000, 42, 143–147. [Google Scholar]
- Yukutake, Y.; Hirano, Y.; Suematsu, M.; Yasui, M. Rapid and reversible inhibition of aquaporin-4 by zinc. Biochemistry 2009, 48, 12059–12061. [Google Scholar] [CrossRef]
- Rygol, J.; Arnold, W.M.; Zimmermann, U. Zinc and salinity effects on membrane transport in Characonnivens. Plant Cell Environ. 1992, 15, 11–23. [Google Scholar] [CrossRef]
- Muries, B.; Carvajal, M.; Martínez-Ballesta, M.C. Response of three broccoli cultivars to salt stress, in relation to water status and expression of two leaf aquaporins. Planta 2013, 237, 1297–1310. [Google Scholar] [CrossRef]
- Kasim, W.A. Changes induced by copper and cadmium stress in the anatomy and grain yield of Sorghum bicolor (L.) Moench. Int. J. Agri. Biol. 2006, 15, 123–128. [Google Scholar]
- Sagardoy, R.; Vázquez, S.; Florez-Sarasa, I.D.; Albacete, A.; Ribas-Carbó, M.; Flexas, J.; Abadía, J.; Morales, F. Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. New Phytol. 2010, 187, 145–158. [Google Scholar] [CrossRef]
- Khan, H.R.; McDonald, G.K.; Rengel, Z. Zinc fertilization and water stress affects plant water relations, stomatal conductance and osmotic adjustment in chickpea (Cicer arientinum L.). Plant Soil 2004, 267, 271–284. [Google Scholar] [CrossRef]
- Ahmed, N.; Ahmad, F.; Abid, M.; Aman Ullah, M. Impact of zinc fertilisation on gas exchange characteristics and water use efficiency of cotton crop under arid environment. Pak. J. Bot. 2009, 41, 2189–2197. [Google Scholar]
- Acikgoz, F.E. Seasonal variations on quality parameters of Pak Choi (Brassica rapa L. subsp. chinensis L.). Adv. Crop Sci. Technol. 2016, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Dixon, G.R. Vegetable brassicas and related crucifers. In Crop Production Science in Horticulture, 14th ed.; CABI: Walllingford, Oxfordshire, 2007; p. 327. [Google Scholar]
- Fang, X.Z.; Zhu, Z.J.; Sun, G.W. Effects of different concentrations of cadmium on growth and antioxidant system in Brassica campestris ssp. Chinensis. J. Agro-Environ. Sci. 2004, 23, 877–880. [Google Scholar]
- Chen, X.L.; Xu, Y.R.; Cui, X.M.; Wu, X.B. Studies on zinc tolerance and accumulation characteristic of pakchoi (Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee). China Vegetables 2010, 14, 19–25. [Google Scholar]
- Davis, J.G.; Parker, M.B. Zinc toxicity symptom development and partioning of biomass and zinc in peanut plants. J. Plant Nutr. 1993, 16, 2353–2369. [Google Scholar] [CrossRef]
- Baker, A.J.M. Ecophysiological aspects of zinc tolerance in Silene maritime. New Phytol. 1978, 80, 635–642. [Google Scholar] [CrossRef]
- Salah, S.A.; Barrington, S.F. Effect of soil fertility and transpiration rate on young wheat plants (Triticum aestivum) Cd/Zn uptake and yield. Agr. Water Manag. 2006, 82, 177–192. [Google Scholar] [CrossRef]
- Llamas, A.; Ullrich, C.I.; Sanz, A. Ni2+ toxicity in rice: Effect on membrane functionality and plant water content. Plant Physiol. Biochem. 2008, 46, 905–910. [Google Scholar] [CrossRef]
- Hoagland, D.T.; Arnon, D.I. The water culture method for growing plants without soil. Calif. Agr. Expt. Sta. Circ. 1938, 347, 1–39. [Google Scholar]
- Javot, H.; Lauvergeat, V.; Santoni, V.; Martin-Laurent, F.; Güclü, J.; Vinh, J.; Heyes, J.; Franck, K.I.; Schäffner, A.R.; Bouchez, D.; et al. Role of a single aquaporin isoform in root water uptake. Plant Cell 2003, 15, 509–522. [Google Scholar] [CrossRef] [Green Version]
- Muries, B.; Faize, M.; Carvajal, M.; Martínez-Ballesta, M.C. Identification and differential induction of the expression of aquaporins by salinity in broccoli plants. Mol. BioSyst. 2011, 7, 1322–1335. [Google Scholar] [CrossRef] [PubMed]
- Kayum, M.A.; Park, J.I.; Nath, U.K.; Biswas, M.K.; Kim, H.-T.; Nou, I.-S. Genome-wide expression profiling of aquaporin genes confer responses to abiotic and biotic stresses in Brassica rapa. BMC Plant Biol. 2017, 17, 23. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Hansen, T.H.; Laursen, K.H.; Persson, D.P.; Pedas, P.; Husted, S.; Schjoerring, J.K. Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis. Plant Method. 2009, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhopadhyay, M.; Das, A.; Subba, P.; Bantawa, P.; Sarkar, B.; Ghosh, P.D.; Mondal, T.K. Structural, physiological and biochemical profiling of tea plants (Camellia sinensis (L.) O. Kuntze) under zinc stress. Biol. Plant. 2013, 57, 474–480. [Google Scholar] [CrossRef]
- Haslett, B.S.; Reid, R.J.; Rengel, Z. Zinc mobility in wheat: Uptake and distribution of zinc applied to leaves or roots. Ann. Bot. 2001, 87, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Rengel, Z. Genotypic difference in micronutrient use efficiency in crops. Commn. Soil Sci. Plant. Anal. 2001, 323, 1163–1186. [Google Scholar] [CrossRef]
- De Silva, N.D.G.; Cholewa, E.; Ryser, P. Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.). J. Exp. Bot. 2012, 63, 5957–5966. [Google Scholar] [CrossRef] [Green Version]
- Vitali, V.; Bellati, J.; Soto, G.; Ayub, N.D.; Amodeo, G. Root hydraulic conductivity and adjustments in stomatal conductance: Hydraulic strategy in response to salt stress in a halotolerant species. AoB Plants 2015, 7, plv136. [Google Scholar] [CrossRef] [Green Version]
- Ohki, K. Effect of Zinc nutrition on photosynthesis and carbonic anhydrase activity in cotton. Physiol. Plant. 1976, 38, 300–304. [Google Scholar] [CrossRef]
- Arif, N.; Yadav, V.; Singh, S.; Singh, S.; Ahmad, P.; Mishra, R.K.; Sharma, S.; Tripathi, D.K.; Dubey, N.K.; Chauhan, D.K. Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front. Environ. Sci. 2016, 4, 69. [Google Scholar] [CrossRef]
- Sagardoy, R.; Morales, F.; Lopez-Millan, A.F.; Abadıa, A.; Abadıa, J. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biol. 2009, 11, 339–350. [Google Scholar] [CrossRef]
- Vassilev, A.; Nikolova, A.; Koleva, L.; Lidon, F. Effects of excess Zn on growth and photosynthetic performance of young bean plants. J. Phytol. 2011, 3, 58–62. [Google Scholar]
- Januškaitienė, I. Impact of low concentration of cadmium on photosynthesis and growth of pea and barley. Environ. Res. Eng. Manag. 2010, 3, 24–29. [Google Scholar]
- White, P.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- Kinraide, T.B.; Pedler, J.F.; Parker, D.R. Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant Soil 2004, 259, 201–208. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kobayashi, Y.; Watanabe, T.; Shaff, J.F.; Ohta, H.; Kochian, L.V.; Wagatsuma, T.; Kinraide, T.B.; Koyama, H. Molecular and physiological analysis of Al3+ and H+ rhizotoxicities at moderately acidic conditions. Plant Physiol. 2013, 163, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.; Srivastava, R.K.; Dubey, R.S. Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense. Ecotoxicology 2013, 22, 656–670. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S.; Kumar, D. Interactions of zinc with other nutrients in soils and plants—A review. Indian J. Fertil. 2016, 12, 16–26. [Google Scholar]
- Khan, I.; Ghani, A.; Rehman, A.U.; Awan, S.A.; Noreen, A.; Khalid, I. Comparative analysis of heavy metal profile of Brassica campestris (L.) and Raphanus sativus (L.) irrigated with municipal waste water of Sargodha city. J. Clin. Toxicol. 2016, 6, 307. [Google Scholar] [CrossRef]
- Azad, A.K.; Sawa, Y.; Ishikawa, T.; Shibata, H. Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals. Plant Cell Physiol. 2004, 45, 608–617. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.Y.; Xu, C.Y.; Jing, R.L.; Li, R.Z.; Mao, X.G.; Wang, J.P.; Chang, X.P. Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought stressed responses. J. Exp. Bot. 2008, 59, 739–751. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.C.; Cabañero, F.; Olmos, E.; Periago, P.M.; Maurel, C.; Carvajal, M. Two different effects of calcium on aquaporins in salinity-stressed pepper plants. Planta 2008, 228, 15–25. [Google Scholar] [CrossRef]
- Ariani, A.; Barozzi, F.; Sebastiani, L.; Di Toppi, L.S.; Di Sansebastiano, G.P.; Andreucci, A. AQUA1 is a mercury sensitive poplar aquaporin regulated at transcriptional and post-translational levels by Zn stress. Plant Physiol. Biochem. 2019, 135, 588–600. [Google Scholar] [CrossRef]
- Przedpelska-Wasowicz, E.M.; Wierzbicka, M. Gating of aquaporins by heavy metals in Allium cepa L. epidermal cells. Protoplasma 2011, 248, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Rucińska-Sobkowiak, R. Water relations in plants subjected to heavy metal. Acta Physiol. Plant. 2016, 38, 257. [Google Scholar] [CrossRef] [Green Version]
- Aroca, R.; Ferrante, A.; Vernieri, P.; Chrispeels, M.J. Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Ann. Bot. 2006, 98, 1301–1310. [Google Scholar] [CrossRef]
- Maurel, C.; Verdoucq, L.; Luu, D.T.; Santoni, V. Plant aquaporins: Membrane channels with multiple integrated functions. Annu. Rev. Plant Biol. 2008, 59, 595–624. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Wang, Z.Y.; Lin, H.; Cui, W.E.; Chen, J.; Liu, M.; Chen, Z.L.; Qu, L.J.; Gu, H. Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res. 2006, 16, 277–286. [Google Scholar] [CrossRef]
- Sreedharan, S.; Shekhawat, U.K.S.; Ganapathi, T.R. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses. Plant Biotechnol. J. 2013, 11, 942–952. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, W.; Liu, J.; Zhang, J.; Jia, C.; Miao, H.; Xu, B.; Jin, Z. A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses. BMC Plant Biol. 2014, 14, 59. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, Y.; Feng, S.; Yang, J.; Li, D.; Zhang, J. Roles of plasmalemma aquaporin gene StPIP1 in enhancing drought tolerance in potato. Front. Plant Sci. 2017, 8, 616. [Google Scholar] [CrossRef] [Green Version]
- Fetter, K.; Van, V.W.; Moshelion, M.; Chaumont, F. Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 2004, 16, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Alexandersson, E.; Fraysse, L.; Sjövall-Larsen, S.; Gustavsson, S.; Fellert, M.; Karlsson, M.; Johanson, U.; Kjellbom, P. Whole gene family expression and drought stress regulation of aquaporins. Plant Mol. Biol. 2005, 59, 469–484. [Google Scholar] [CrossRef]
- Abdeeva, A.R.; Kholodova, V.P.; Kuznetsov, V.V. Expression of aquaporin genes in the common ice plant during induction of the water-saving mechanism of CAM photosynthesis under salt stress conditions. Dokl. Biol. Sci. 2008, 418, 30–33. [Google Scholar] [CrossRef]
- Vandeleur, R.K.; Sullivan, W.; Athman, A.; Jordans, C.; Gilliham, M.; Kaiser, B.N.; Tyerman, S.D. Rapid shoot-to-root signalling regulates root hydraulic conductance via aquaporins. Plant Cell Environ. 2014, 37, 520–538. [Google Scholar] [CrossRef]
- Da Ines, O. Functional Analysis of PIP2 Aquaporins in Arabidopsis thaliana. Ph.D. Thesis, Ludwig Maximilians Universität, Munich, Germany, 2008. [Google Scholar]
- Boursiac, Y.; Chen, S.; Luu, D.T.; Sorieul, M.; van den Dries, N.; Maurel, C. Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol. 2005, 139, 790–805. [Google Scholar] [CrossRef] [Green Version]
- Maathuis, F.J.; Filatov, V.; Herzyk, P.; Krijger, G.C.; Axelsen, K.B.; Chen, S.; Green, B.J.; Li, Y.; Madagan, K.L.; Sánchez-Fernández, R.; et al. Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J. 2003, 35, 675–692. [Google Scholar] [CrossRef]
- Weig, A.; Deswarte, C.; Chrispeels, M.J. The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol. 1997, 114, 1347–1357. [Google Scholar] [CrossRef] [Green Version]
- Pih, K.T.; Kabilan, V.; Lim, J.H.; Kang, S.G.; Piao, H.L.; Jin, J.B.; Hwang, I. Characterization of two new channel protein genes in Arabidopsis. Mol. Cells 1999, 9, 84–90. [Google Scholar]
- Mosa, K.A.; Kumar, K.; Chhikara, S.; Mcdermott, J.; Liu, Z.; Musante, C.; White, J.C.; Dhankher, O.P. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res. 2012, 21, 1265–1277. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Mosa, K.; Chhikara, S.; Musante, C.; White, J.C.; Dhankher, O.P. Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in transport and providing tolerance to boron toxicity. Planta 2014, 239, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Markakis, M.N.; De Cnodder, T.; Lewandowski, M.; Simon, D.; Boron, A.; Balcerowicz, D.; Doubbo, T.; Taconnat, L.; Renou, J.P.; Höfte, H.; et al. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana. BMC Plant Biol. 2012, 12, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dynowski, M.; Schaaf, G.; Loque, D.; Moran, O.; Ludewig, U. Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem. J. 2008, 414, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Bienert, G.P.; Møller, A.L.B.; Kristiansen, K.A.; Schulz, A.; Møller, I.M.; Schjoerring, J.K.; Jahn, T.P. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 2007, 282, 1183–1192. [Google Scholar] [CrossRef] [Green Version]
- Neill, S.J.; Desikan, R.; Hancock, J.T. Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 2002, 5, 388–395. [Google Scholar] [CrossRef]
- Ben Rejeb, K.; Benzarti, M.; Debez, A.; Bailly, C.; Savouré, A.; Abdelly, C. NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana. J. Plant Physiol. 2015, 174, 5–15. [Google Scholar] [CrossRef]
- Luo, Z.B.; He, X.J.; Chen, L.; Tang, L.; Gao, S.; Chen, F. Effects of zinc on growth and antioxidant responses in Jatropha curcas seedlings. Int. J. Agric. Biol. 2010, 12, 119–124. [Google Scholar]
Zinc Treatments | Shoot Fresh Weight | Root Fresh Weight | Shoot Dry Weight | Root Dry Weight |
---|---|---|---|---|
Control | 77.87 ± 5.23b | 14.71 ± 1.25b | 5.51 ± 0.51b | 0.99 ± 0.15a |
25 µM | 98.83 ± 4.74a | 20.12 ± 1.46a | 6.02 ± 0.57a | 1.25 ± 0.10a |
50 µM | 66.06 ± 5.09cb | 11.08 ± 0.77cb | 5.10 ± 0.54cb | 0.72 ± 0.08b |
100 µM | 69.00 ± 5.70cb | 11.21 ± 1.38cb | 5.28 ± 0.26b | 0.72 ± 0.11b |
500 µM | 54.32 ± 3.08c | 9.91 ± 0.47c | 4.19 ± 0.20c | 0.64 ± 0.08b |
1 mM | 41.89 ± 4.82c | 8.83 ± 1.13c | 3.74 ± 0.44d | 0.54 ± 0.10c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatemi, H.; Zaghdoud, C.; Nortes, P.A.; Carvajal, M.; Martínez-Ballesta, M.d.C. Differential Aquaporin Response to Distinct Effects of Two Zn Concentrations after Foliar Application in Pak Choi (Brassica rapa L.) Plants. Agronomy 2020, 10, 450. https://doi.org/10.3390/agronomy10030450
Fatemi H, Zaghdoud C, Nortes PA, Carvajal M, Martínez-Ballesta MdC. Differential Aquaporin Response to Distinct Effects of Two Zn Concentrations after Foliar Application in Pak Choi (Brassica rapa L.) Plants. Agronomy. 2020; 10(3):450. https://doi.org/10.3390/agronomy10030450
Chicago/Turabian StyleFatemi, Hamideh, Chokri Zaghdoud, Pedro A. Nortes, Micaela Carvajal, and Maria del Carmen Martínez-Ballesta. 2020. "Differential Aquaporin Response to Distinct Effects of Two Zn Concentrations after Foliar Application in Pak Choi (Brassica rapa L.) Plants" Agronomy 10, no. 3: 450. https://doi.org/10.3390/agronomy10030450
APA StyleFatemi, H., Zaghdoud, C., Nortes, P. A., Carvajal, M., & Martínez-Ballesta, M. d. C. (2020). Differential Aquaporin Response to Distinct Effects of Two Zn Concentrations after Foliar Application in Pak Choi (Brassica rapa L.) Plants. Agronomy, 10(3), 450. https://doi.org/10.3390/agronomy10030450