Pre- and Postharvest Factors Control the Disease Incidence of Superficial Scald in the New Fire Blight Tolerant Apple Variety “Ladina”
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leumann, L.; Baumgartner, I.O.; Lussi, L.; Frey, L.; Nölly, M.; Weber, M.; Kellerhals, M. Ladina, die neue feuerbrandrobuste Apfelsorte. Schweiz. Z. Obst-Und Weinbau 2013, 1, 10–13. [Google Scholar]
- Baumgartner, I.; Leumann, L.R.; Frey, J.E.; Joos, M.; Voegele, R.T.; Kellerhals, M. Breeding apples to withstand infection pressure by fire blight and other diseases. In Proceedings of the 15th International Conference on Organic Fruit-Growing. Proceedings for the conference, Hohenheim, Germany, 20–22 February 2012; pp. 14–21. [Google Scholar]
- Whitaker, B.D. Genetic and biochemical bases of superficial scald storage disorder in apple and pear fruits. Actahortic 2013, 989, 47–60. [Google Scholar] [CrossRef]
- Zanella, A. Control of apple superficial scald and ripening—A comparison between 1-methylcyclopropene and diphenylamine postharvest treatments, initial low oxygen stress and ultra low oxygen storage. Postharvest Biol. Technol. 2003, 27, 69–78. [Google Scholar] [CrossRef]
- Bain, J.M.; Mercer, F.V. The submicroscopic cytology of superficial scald, a physiological disease of apples. Aust. J. Biol. Sci. 1963, 16, 442. [Google Scholar] [CrossRef]
- Huelin, F.E.; Coggiola, I.M. Superficial scald, a functional disorder of stored apples. IV.—Effect of variety, maturity, oiled wraps and diphenylamine on the concentration of a-farnesene in the fruit. J. Sci. Food Agric. 1968, 19, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Ingle, M.; D’Souza, M.C. Physiology and control of superficial scald of apples: A review. HortScience 1989, 24, 28–31. [Google Scholar]
- Whitaker, B.D. Oxidative stress and superficial scald of apple fruit. HortScience 2004, 39, 933–937. [Google Scholar] [CrossRef]
- Huelin, F.E.; Coggiola, I.M. Superficial scald, a functional disorder of stored apples. V.—Oxidation of α-farnesene and its inhibition by diphenylamine. J. Sci. Food Agric. 1970, 21, 44–48. [Google Scholar] [CrossRef]
- Mir, N.; Perez, R.; Beaudry, R.M. A poststorage burst of 6-Methyl-5-hepten-2-one (MHO) may be related to superficial scald development in Cortland’Apples. J. Am. Soc. Hortic. Sci. 1999, 124, 173–176. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Mattheis, J.P.; Blankenship, S. Development of apple superficial scald, soft scald, core flush, and greasiness is reduced by MCP. J. Agric. Food Chem. 1999, 47, 3063–3068. [Google Scholar] [CrossRef]
- Barden, C.L.; Bramlage, W.J. Accumulation of antioxidants in apple peel as related to preharvest factors and superficial scald susceptibility of the fruit. J. Am. Soc. Hortic. Sci. 1994, 119, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Tian, M.S. Inhibitory effect of diazocyclopentadiene on the development of superficial scald in Granny Smith apple. Plant Growth Regul. 1998, 26, 117–121. [Google Scholar] [CrossRef]
- Watkins, C.B.; Barden, C.L.; Bramlage, W.J. Relationships between alpha-farnesene, ehtylene production and superficial scald development of apples. Actahortic 1993, 343, 155–160. [Google Scholar] [CrossRef]
- Gorny, J.R.; Kader, A.A. Controlled-atmosphere suppression of ACC synthase and ACC oxidase in ‘Golden Delicious’ apples during long-term cold storage. J. Am. Soc. Hortic. Sci. 1996, 121, 751–755. [Google Scholar] [CrossRef] [Green Version]
- DeLong, J.M.; Prange, R.K.; Harrison, P.A. Chlorophyll fluorescence-based low-O2 CA storage of organic ‘Cortland’ and ‘Delicious’ apples. Actahortic 2007, 737, 31–37. [Google Scholar] [CrossRef]
- Sisler, E.C.; Serek, M.; Dupille, E.; Goren, R. Inhibition of ethylene responses by 1-Methylcyclopropene and 3-Methylcyclopropene. Plant Growth Regul. 1999, 27, 105–111. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Murr, D.P.; Paliyath, G.; Skog, L. Inhibitory effect of 1-MCP on ripening and superficial scald development in ‘McIntosh’ and ‘Delicious’ apples. J. Hortic. Sci. Biotechnol. 2000, 75, 271–276. [Google Scholar] [CrossRef]
- Mditshwa, A.; Fawole, O.A.; Opara, U.L. Recent developments on dynamic controlled atmosphere storage of apples—A review. Food Packag. Shelf Life 2018, 16, 59–68. [Google Scholar] [CrossRef]
- Prange, R.K.; Wright, A.H.; DeLong, J.M.; Zanella, A. A Reveiw on the Succesful Adoption of Dynamic Controlled Atmosphere (DCA) Storage as Areplacement for Diphenylamine (DPA), the Chemical Used for Control of Superficial Scald in Apples and Pears. Actahortic 2015, 1071, 389–396. [Google Scholar] [CrossRef]
- Ferguson, I.; Volz, R.; Woolf, A. Preharvest factors affecting physiological disorders of fruit. Postharvest Biol. Technol. 1999, 15, 255–262. [Google Scholar] [CrossRef]
- Perring, M.A.; Pearson, K. Incidence of bitter pit in relation to the calcium content of apples: Calcium distribution in the fruit. J. Sci. Food Agric. 1986, 37, 709–718. [Google Scholar] [CrossRef]
- Demarty, M.; Morvan, C.; Thellier, M. Calcium and the cell wall. Plant Cell Environ. 1984, 7, 441–448. [Google Scholar] [CrossRef]
- Picchioni, G.; Watada, A.; Conway, W.; Whitaker, B.; Sams, C. Postharvest calcium infiltration delays membrane lipid catabolism in apple fruit. J. Agric. Food Chem. 1998, 46, 2452–2457. [Google Scholar] [CrossRef]
- Picchioni, G.A.; Watada, A.E.; Whitaker, B.D.; Reyes, A. Calcium delays senescence-related membrane lipid changes and increases net synthesis of membrane lipid components in shredded carrots. Postharvest Biol. Technol. 1996, 9, 235–245. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- Vang-Petersen, O. Calcium, potassium and magnesium nutrition and their interactions in ‘Cox’s Orange’ apple trees. Sci. Hortic. 1980, 12, 153–161. [Google Scholar] [CrossRef]
- Kalcsits, L.A.; van der Heijden, G.; Reid, M.; Mullin, K. Calcium absorption during fruit development in ‘Honeycrisp’ apple measured using 44Ca as a stable isotope tracer. HortScience 2017, 52, 1804–1809. [Google Scholar] [CrossRef] [Green Version]
- Kalcsits, L.A. Non-destructive measurement of calcium and potassium in apple and pear using handheld X-ray fluorescence. Front. Plant Sci. 2016, 7, 442. [Google Scholar] [CrossRef] [Green Version]
- Zúñiga, C.E.; Jarolmasjed, S.; Sinha, R.; Zhang, C.; Kalcsits, L.; Dhingra, A.; Sankaran, S. Spectrometric techniques for elemental profile analysis associated with bitter pit in apples. Postharvest Biol. Technol. 2017, 128, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Anet, E.F.L.J. Superficial scald, a functional disorder of stored apples. IX. Effect of maturity and ventilation. J. Sci. Food Agric. 1972, 23, 763–769. [Google Scholar] [CrossRef]
- Emongor, V.E.; Murr, D.P.; Lougheed, E.C. Preharvest factors that predispose apples to superficial scald. Postharvest Biol. Technol. 1994, 4, 289–300. [Google Scholar] [CrossRef]
- Wang, Z.; Dilley, D. Control of superficial scald of apples by low-oxygen atmospheres. HortScience 1999, 34, 1145–1151. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Cazzanelli, P.; Panarese, A.; Coser, M.; Chistè, C.; Zeni, F. Fruit fluorescence response to low oxygen stress: Modern storage technologies compared to 1-MCP treatment of apple. Actahortic 2005, 682, 1535–1542. [Google Scholar] [CrossRef]
- Zoffoli, J.P.; Richardson, D.; Chen, P.; Sugar, D. Spectrophotometric characterization of superficial scald and senescent scald in pear fruits relative to different stages of maturity. Actahortic 1998, 475, 543–558. [Google Scholar] [CrossRef]
- Herremans, E.; Melado-Herreros, A.; Defraeye, T.; Verlinden, B.; Hertog, M.; Verboven, P.; Val, J.; Fernández-Valle, M.E.; Bongaers, E.; Estrade, P.; et al. Comparison of X-ray CT and MRI of watercore disorder of different apple cultivars. Postharvest Biol. Technol. 2014, 87, 42–50. [Google Scholar] [CrossRef]
- Herremans, E.; Verboven, P.; Bongaers, E.; Estrade, P.; Verlinden, B.E.; Wevers, M.; Hertog, M.L.A.T.M.; Nicolai, B.M. Characterisation of ‘Braeburn’ browning disorder by means of X-ray micro-CT. Postharvest Biol. Technol. 2013, 75, 114–124. [Google Scholar] [CrossRef]
- Du, L.; Song, J.; Campbell Palmer, L.; Fillmore, S.; Zhang, Z. Quantitative proteomic changes in development of superficial scald disorder and its response to diphenylamine and 1-MCP treatments in apple fruit. Postharvest Biol. Technol. 2017, 123, 33–50. [Google Scholar] [CrossRef]
- Luo, H.; Song, J.; Toivonen, P.; Gong, Y.; Forney, C.; Campbell Palmer, L.; Fillmore, S.; Pang, X.; Zhang, Z. Proteomic changes in ‘Ambrosia’ apple fruit during cold storage and in response to delayed cooling treatment. Postharvest Biol. Technol. 2018, 137, 66–76. [Google Scholar] [CrossRef]
- McClure, K.A.; Gardner, K.M.; Toivonen, P.M.A.; Hampson, C.R.; Song, J.; Forney, C.F.; DeLong, J.; Rajcan, I.; Myles, S. QTL analysis of soft scald in two apple populations. Hortic. Res. 2016, 3, 16043. [Google Scholar] [CrossRef] [Green Version]
- Leisso, R.S.; Gapper, N.E.; Mattheis, J.P.; Sullivan, N.L.; Watkins, C.B.; Giovannoni, J.J.; Schaffer, R.J.; Johnston, J.W.; Hanrahan, I.; Hertog, M.L.A.T.M.; et al. Gene expression and metabolism preceding soft scald, a chilling injury of ‘Honeycrisp’ apple fruit. BMC Genom. 2016, 17, 798. [Google Scholar] [CrossRef] [Green Version]
Plot | Harvest date | Early removal | Late removal | Control | Treatment | Ripeness index |
---|---|---|---|---|---|---|
Wa64 | 29.09.2013 | 03.02.2014 | 29.04.2014 | CA | 1-MCP | 0.117 |
Wa66 | 01.10.2013 | 03.02.2014 | 29.04.2014 | CA | 1-MCP | 0.086 |
Wa64 | 10.09.2014 | 18.02.2015 | 11.05.2015 | CA | 0.5% O2 | 0.116 |
Wa64 | 22.09.2014 | 18.02.2015 | 11.05.2015 | CA | 0.5% O2 | 0.08 |
Wa66 | 10.09.2014 | 18.02.2015 | 11.05.2015 | CA | 0.5% O2 | 0.111 |
Wa66 | 22.09.2014 | 18.02.2015 | 11.05.2015 | CA | 0.5% O2 | 0.079 |
Wu | 05.09.2014 | 18.02.2015 | 11.05.2015 | CA | 1-MCP | 0.097 |
Wu | 13.09.2014 | 18.02.2015 | 11.05.2015 | CA | 1-MCP | 0.082 |
Wa64 | 10.09.2015 | 01.02.2016 | 26.04.2016 | CA | CA | 0.19 |
Wa64 | 15.09.2015 | 01.02.2016 | 26.04.2016 | CA | NA | 0.15 |
Wa64 | 06.10.2015 | 01.02.2016 | 26.04.2016 | CA | NA | 0.1 |
Wa66 | 10.09.2015 | 01.02.2016 | 26.04.2016 | CA | NA | 0.182 |
Wa66 | 15.09.2015 | 01.02.2016 | 26.04.2016 | CA | NA | 0.15 |
Wa66 | 06.10.2015 | 01.02.2016 | 26.04.2016 | CA | NA | 0.1 |
BI | 26.09.2016 | 21.02.2017 | 12.05.2017 | CA | NA | 0.145 |
Gu53 | 26.09.2016 | 21.02.2017 | 12.05.2017 | CA | NA | 0.105 |
Ma | 22.09.2016 | 21.02.2017 | 12.05.2017 | CA | NA | 0.113 |
Wu | 26.09.2016 | 21.02.2017 | 12.05.2017 | CA | NA | 0.116 |
BI | 12.09.2017 | 19.02.2018 | 17.04.2018 | CA | DCA | 0.1 |
Gu53 | 20.09.2017 | 19.02.2018 | 17.04.2018 | CA | DCA | 0.1 |
Wa39 | 20.09.2017 | 19.02.2018 | 17.04.2018 | CA | DCA | 0.099 |
Gu53 | 14.09.2018 | 26.02.2019 | 09.04.2019 | DCA | DCA + 1-MCP | 0.109 |
Wa39 | 14.09.2018 | 26.02.2019 | 09.04.2019 | DCA | DCA + 1-MCP | 0.12 |
Treatment | Factor | df | LRT (χ2) | p-value |
---|---|---|---|---|
Plot | Treatment | 3 | 30 | <0.001 |
Time of removal | 1 | 6.6 | 0.01 | |
Harvest Date | Treatment | 2 | 14.8 | <0.001 |
Time of removal | 1 | 12 | <0.001 | |
Year | Year | 4 | 27.3 | <0.001 |
Time of removal | 1 | 18.6 | <0.001 | |
ULO | Treatment | 1 | 1.7 | 0.202 |
Time of removal | 1 | 9.6 | 0.002 | |
DCA | Treatment | 1 | 6.6 | 0.007 |
Time of removal | 1 | 7.2 | 0.01 | |
1-MCP | Treatment | 1 | 5.8 | 0.016 |
Time of removal | 1 | 28.4 | <0.001 | |
DCA + 1-MCP | Treatment | 1 | 14.1 | <0.001 |
Time of removal | 1 | 3.4 | 0.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dällenbach, L.J.; Eppler, T.; Bühlmann-Schütz, S.; Kellerhals, M.; Bühlmann, A. Pre- and Postharvest Factors Control the Disease Incidence of Superficial Scald in the New Fire Blight Tolerant Apple Variety “Ladina”. Agronomy 2020, 10, 464. https://doi.org/10.3390/agronomy10040464
Dällenbach LJ, Eppler T, Bühlmann-Schütz S, Kellerhals M, Bühlmann A. Pre- and Postharvest Factors Control the Disease Incidence of Superficial Scald in the New Fire Blight Tolerant Apple Variety “Ladina”. Agronomy. 2020; 10(4):464. https://doi.org/10.3390/agronomy10040464
Chicago/Turabian StyleDällenbach, Laura Juliana, Thomas Eppler, Simone Bühlmann-Schütz, Markus Kellerhals, and Andreas Bühlmann. 2020. "Pre- and Postharvest Factors Control the Disease Incidence of Superficial Scald in the New Fire Blight Tolerant Apple Variety “Ladina”" Agronomy 10, no. 4: 464. https://doi.org/10.3390/agronomy10040464
APA StyleDällenbach, L. J., Eppler, T., Bühlmann-Schütz, S., Kellerhals, M., & Bühlmann, A. (2020). Pre- and Postharvest Factors Control the Disease Incidence of Superficial Scald in the New Fire Blight Tolerant Apple Variety “Ladina”. Agronomy, 10(4), 464. https://doi.org/10.3390/agronomy10040464