Physicochemical, Nutraceutical and Sensory Traits of Six Papaya (Carica papaya L.) Cultivars Grown in Greenhouse Conditions in the Mediterranean Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Physicochemicals Analyses
2.3. Standards and Chemicals
2.4. Preparation of Fruit Extracts
2.5. Total Carotenoids Content
2.6. Total Phenolic Content
2.7. Total Antioxidant Activity
2.8. Radical Scavenging Activity (CAA)
2.9. Proximate Composition
2.10. Sensory Profile
2.11. Statistical Analysis
3. Results and Discussion
3.1. Physiochemical Analyses
3.2. Phytochemical Profile and Antioxidant Properties
3.3. Proximate Composition
3.4. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farina, V.; Passafiume, R.; Tinebra, I.; Scuderi, D.; Saletta, F.; Gugliuzza, G.; Sortino, G. Postharvest Application of Aloe vera Gel-Based Edible Coating to Improve the Quality and Storage Stability of Fresh-Cut Papaya. J. Food Qual. 2020, 2020, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Evans, E.A.; Ballen, F.H.; Crane, J.H. Cost Estimates of Establishing and Producing Papaya (Carica papaya) in South Florida1. EDIS 2012, FE918. [Google Scholar]
- Sharma, S.K.; Mitra, S.K.; Saran, S. Papaya production in India - history, present status and future prospects. Acta Hortic. 2016, 1111, 87–94. [Google Scholar] [CrossRef]
- Cabrera, J.A.; Lobo, M.G.; Ritter, A.; Raya, V.; Pérez, E. Characterization of ambient conditions inside greenhouses of papaya (Carica papaya L.) crops in the Canary Islands. Acta Hortic. 2019, 1250, 145–152. [Google Scholar] [CrossRef]
- Calabrese, F. Frutticoltura Tropicale e Subtropicale II Fruttiferi Legnosi; Edagricole: Italia, Bologna, 1993. [Google Scholar]
- Karunamoorthi, K.; Kim, H.M.; Jegajeevanram, K.; Xavier, J.; Vijayalakshmi, J. Papaya: A gifted nutraceutical plant–a critical review of recent human health research. Tang Humanit. Med. 2014, 4, 2.1–2.17. [Google Scholar] [CrossRef] [Green Version]
- Marelli de Souza, L.; Silva Ferreira, K.; Paes Chaves, J.B.; Lopes Teixeira, S. L-ascorbic acid, β- Carotene and lycopene content in papaya fruits (Carica papaya L.) without physiological skin freckles. Sci. Agric. 2008, 65, 246–250. [Google Scholar] [CrossRef]
- Basulto, F.S.; Duch, E.S.; Espadas, F.; Plaza, R.D.; Saavedra, A.L.; Santamaría, J.M. Postharvest ripening and maturity indices for Maradol papaya. Interciencia 2009, 34, 583–588. [Google Scholar]
- Schweiggert, R.M.; Steingass, C.B.; Mora, E.; Esquivel, P.; Carle, R. Carotenogenesis and physico-chemical characteristics during maturation of red-fleshed papaya fruit (Carica papaya L.). Food Res. Int. 2011, 44, 1373–1380. [Google Scholar] [CrossRef]
- Fuggate, P.; Wongs-Aree, C.; Noichinda, S.; Kanlayanarat, S. Quality and volatile attributes of attached and detached “Pluk Mai Lie” papaya during fruit ripening. Sci. Hortic.-Amsterdam. 2010, 126, 120–129. [Google Scholar] [CrossRef]
- Paull, R.E. Effect of temperature and relative humidity on fresh commodity quality. Postharvest Biol. Technol. 1999, 15, 263–277. [Google Scholar] [CrossRef]
- Sharma, M.; Sitbon, C.; Subramanian, J.; Paliyath, G. Changes in nutritional quality of fruits and vegetables during storage. In Postharvest Biology and Technology of Fruits, Vegetables, and Flowers, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 443–466. [Google Scholar]
- CBI Ministry of Foreign Affairs. Exporting Fresh Papayas to Europe. 2018. Available online: https://www.cbi.eu/market-information/fresh-fruit-vegetables/papayas/ (accessed on 5 February 2020).
- Gomez, M.; Lajolo, F.; Cordenunsi, B. Evolution of soluble sugars during ripening of papaya fruit and its relation to sweet taste. J. Food Sci. 2002, 67, 442–447. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. Spectrophotometric determination of antioxidant activity. Redox. Rep. 1996, 2, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, K.L.; Liu, R.H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef]
- Gentile, C.; Di Gregorio, E.; Di Stefano, V.; Mannino, G.; Perrone, A.; Avellone, G.; Farina, V. Food quality and nutraceutical value of nine cultivars of mango (Mangifera indica L.) fruits grown in Mediterranean subtropical environment. Food Chem. 2019, 277, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Niki, E.; Packer, L.; Glazer, A.N. Free Radical Initiators as Source of Water- or Lipid-Soluble Peroxyl Radicals, Oxygen Radicals in Biological Systems Part. B: Oxygen Radicals and Antioxidants. Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1990. [Google Scholar] [CrossRef]
- Barros, L.; Baptista, P.; Ferreira, I.C.F.R. Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays. Food Chem. Toxicol. 2007, 45, 1731–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavanagh, F. Official Methods of Analysis of the AOAC, 13th ed.; Horwitz, W., Ed.; The Association of Official Analytical Chemists: Arlington, AV, USA, 1981; p. 1038. [Google Scholar]
- Palazzolo, E.; Letizia Gargano, M.; Venturella, G. The nutritional composition of selected wild edible mushrooms from Sicily (southern Italy). Int. J. Food Sci. Nutr. 2011, 63, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Morand, P.; Gullo, J.L. Mineralization of plant tissues for the quantitative analysis of phosphorus, calcium, magnesium, sodium, potassium. Ann. Agronom. 1970, 21, 229–236. [Google Scholar]
- Farina, V.; Gianguzzi, G.; Mazzaglia, A. Fruit Quality Traits of Six Ancient Apple (Malus domestica Borkh) Cultivars Grown in the Mediterranean Area. Int. J. Fruit Sci. 2015, 16, 275–283. [Google Scholar] [CrossRef]
- Farina, V.; Gianguzzi, G.; Mazzaglia, A. Fruit quality evaluation of affirmed and local loquat (Eriobotrya japonica Lindl) cultivars using instrumental and sensory analyses. Fruits 2016, 71, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Farina, V.; Volpe, G.; Mazzaglia, A.; Lanza, C.M. Fruit quality traits of two apricot cultivars. Acta Hortic. 2010, 862, 593–598. [Google Scholar] [CrossRef]
- Zaman, W.; Biswas, S.K.; Helali, M.O.H.; Ibrahim, M.; Hassan, P. Physicochemical composition of four papaya varieties grown at Rajshahi. J. Biosci. 1970, 14, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Codex Stan 183-1993, Standard for Papaya, FAO Revised 2001. Amended 2005. 2011. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B183-1993%252FCXS_183e.pdf (accessed on 5 February 2020).
- Blankenship, S.M.; Unrath, C.R. Ethylene inhibitor, 1-methylcyclopropene, delays apple softening. Hortscience 1998, 33, 469. [Google Scholar] [CrossRef]
- Flores, F.; Ben Amor, M.; Jones, B.; Pech, J.C.; Bouzayen, M.; Latché, A.; Romojaro, F. The use of ethylene-suppressed lines to assess differential sensitivity to ethylene of the various ripening pathways in Cantaloupe melons. Acta Hortic. 2001, 553, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Huber, D.J.; Sargent, S.A. Influence of 1-methylcyclopropene (1-MCP) on ripening and cell-wall matrix polysaccharides of avocado (Persea americana) fruit. Postharvest Biol. Techn. 2002, 25, 241–256. [Google Scholar] [CrossRef]
- Bron, I.U.; Jacomino, A.P. Ripening and quality of ‘Golden’ papaya fruit harvested at different maturity stages. Braz. J. Plant. Physiol. 2006, 18, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Harker, F.R.; Lau, K.; Gunson, F.A. Juiciness of fresh fruit: A time–intensity study. Postharvest Biol. Technol. 2003, 29, 55–60. [Google Scholar] [CrossRef]
- Campbell, O.E.; Merwin, I.A.; Padilla-Zakour, O.I. Characterization and the effect of maturity at harvest on the phenolic and carotenoid content of Northeast USA Apricot (Prunus armeniaca) varieties. J. Agric. Food Chem. 2013, 61, 12700–12710. [Google Scholar] [CrossRef]
- Blasco, J.; Aleixos, N.; Cubero, S.; Lorente, D. Fruit, vegetable and nut quality evaluation and control using computer vision. In Computer Vision Technology in the Food and Beverage Industries; Woodhead Publishing: Cambridge, UK, 2012; pp. 379–399. [Google Scholar] [CrossRef]
- Gayosso-García Sancho, L.E.; Yahia, E.M.; González-Aguilar, G.A. Identification and quantification of phenols, carotenoids, and vitamin C from papaya (Carica papaya L., cv. Maradol) fruit determined by HPLC-DAD-MS/MS-ESI. Food Res. Int. 2011, 44, 1284–1291. [Google Scholar] [CrossRef]
- Barragán-Iglesias, J.; Méndez-Lagunas, L.L.; Rodríguez-Ramírez, J. Ripeness indexes and physico-chemical changes of papaya (Carica papaya L. cv. Maradol) during ripening on-tree. Sci. Hortic.-Amsterdam. 2018, 236, 272–278. [Google Scholar] [CrossRef]
- Vázquez, G.E.; Ariza, F.R. Características de Calidad en Postcosecha de Papaya “Maradol” en la regiòn de las Huastecas; 1ª Reunión Nacional de Innovación Agrícola y Forestal: Merida, Mexico, 2006. [Google Scholar]
- Zhou, L.; Paull, R.E. Sucrose metabolism during papaya (Carica papaya) fruit growth and ripening. J. Am. Soc. Hortic. Sci. 2001, 126, 351–357. [Google Scholar] [CrossRef]
- Lobo, M.G.; Ozadali, F. Papaya. Tropical and Subtropical Fruits: Postharvest Physiology, Processing and Packaging, 1st ed.; Muhammad Siddiq-Wiley: Hoboken, NJ, USA, 2012; pp. 299–319. [Google Scholar]
- Luthfunesa, B.; Hassan, P.; Absar, N.; Haque, M.E.; Khuda, M.E.; Pervin, M.M.; Shahanaz, K.; Hossain, M.I. Nutritional analysis of two Local varieties of Papaya (Carica papaya L.) at different maturation stages. Pak. J. Biol. Sci. 2006, 9, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Lazan, H.; Ali, Z.M.; Liang, K.M.; Yee, K.L. Polygalacturonase activity and variation in ripening of papaya fruit with tissue depth and heat treatment. Physiol. Plantarum. 1989, 77, 93–98. [Google Scholar] [CrossRef]
- Al-Duais, M.; Hohbein, J.; Werner, S.; Böhm, V.; Jetschke, G. Contents of Vitamin C, Carotenoids, Tocopherols, and Tocotrienols in the Subtropical Plant Species Cyphostemma digitatumas Affected by Processing. J. Agric. Food Chem. 2009, 57, 5420–5427. [Google Scholar] [CrossRef]
- Yuan, J.M.; Stram, D.O.; Arakawa, K.; Lee, H.; Yu, M.C. Dietary cryptoxanthin and reduced risk of lung cancer: The singapore Chinese Health Study. Cancer Epidem. Biomar. 2003, 12, 890–898. [Google Scholar]
- Septembre-Malaterre, A.; Stanislas, G.; Douraguia, E.; Gonthier, M.P. Evaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Réunion French Island. Food Chem. 2016, 212, 225–233. [Google Scholar] [CrossRef]
- Vijaya Kumar Reddy, C.; Sreeramulu, D.; Raghunath, M. Antioxidant activity of fresh and dry fruits commonly consumed in India. Food Res. Int. 2010, 43, 285–288. [Google Scholar] [CrossRef]
- Oufedjikh, H.; Mahrouz, M.; Amiot, M.J.; Lacroix, M. Effect of gamma-irradiation on phenolic compounds and phenylalanine ammonialyase activity during storage in relation to peel injury from peel of Citrus clementina Hort. ex. Tanaka. J. Agric. Food Chem. 2000, 48, 559–565. [Google Scholar] [CrossRef]
- Gentile, C.; Reig, C.; Corona, O.; Todaro, A.; Mazzaglia, A.; Perrone, A.; Gianguzzi, G.; Agusti, M.; Farina, V. Pomological Traits, Sensory Profile and Nutraceutical Properties of Nine Cultivars of Loquat (Eriobotrya japonica Lindl.) Fruits Grown in Mediterranean Area. Plant. Food Hum. Nutr. 2016, 7, 330–338. [Google Scholar] [CrossRef]
- Gupta, C.; Prakash, D. Phytonutrients as therapeutic agents. JCIM 2014, 11, 151–169. [Google Scholar] [CrossRef]
- Noy, N. Vitamin A in regulation of insulin responsiveness: Mini review. Proc. Nutr. Soc. 2016, 75, 212–215. [Google Scholar] [CrossRef] [Green Version]
- Hammerling, U. Retinol as electron carrier in redox signaling, a new frontier in vitamin A research. Hepatobiliary Surg. Nutr. 2016, 5, 15. [Google Scholar] [PubMed]
- Acin-Perez, R.; Hoyos, B.; Zhao, F.; Vinogradov, V.; Fischman, D.A.; Harris, R.A. Control of oxidative phosphorylation by vitamin A illuminates a fundamental role in mitochondrial energy homoeostasis. Faseb. J. 2010, 24, 627–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wall, M.M. Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. J. Food Compos. Anal. 2006, 19, 434–445. [Google Scholar] [CrossRef]
- U.S. Department Of Agriculture, Agriculture Research Service. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/341582/nutrients (accessed on 5 February 2020).
- Garcia-Diaz, D.F.; Campion, J.; Arellano, A.V.; Milagro, F.I.; Moreno-Aliaga, M.J.; Martinez, J.A. Fat intake leads to differential response of rat adipocytes to glucose, insulin and ascorbic acid. Exp. Biol. Med. 2012, 237, 407–416. [Google Scholar] [CrossRef]
- Akaniwor, J.O.; Arachie, S.N. Nutritive values of fruits and seeds usually eaten raw in Nigeria. J. Appl. Sci. Environ. Manag. 2002, 6, 77–78. [Google Scholar] [CrossRef] [Green Version]
- Hajare, S.N.; Saxena, S.; Kumar, S.; Wadhawan, S.; More, V.; Mishra, B.B.; Sharma, A. Quality profile of litchi (Litchi chinensis) cultivars from India and effect of radiation processing. Radiat. Phys. Chem. 2010, 79, 994–1004. [Google Scholar] [CrossRef]
- Oloyede, O.I. Chemical Profile of Unripe Pulp of Carica papaya. Pak. J. Nutr. 2005, 4, 379–381. [Google Scholar] [CrossRef] [Green Version]
- Cabral, T.A.; de Morais Cardoso, L.; Pinheiro-Sant’Ana, H.M. Chemical composition, vitamins and minerals of a new cultivar of lychee (Litchi chinensis cv. Tailandes) grown in Brazil. Fruits 2014, 69, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Kar, A.; Choudhary, B.K.; Bandyopadhyay, N.G. Preliminary studies on the inorganic constituents of some indigenous hypoglycaemic herbs on oral glucose tolerance test. J. Ethnopharmacol. 1999, 64, 179–184. [Google Scholar] [CrossRef]
Genotype | CAA50 | ||
---|---|---|---|
Guinea Gold | 18.75 | ± 0.18 | b |
Sinta | 15.09 | ± 0.13 | c |
Honeydew | 26.70 | ± 0.43 | a |
Cartagena | 14.03 | ± 0.13 | d |
Maradol | 6.34 | ± 0.05 | e |
Solo | 14.89 | ± 0.18 | dc |
Genotype | Vit. A | Vit. C | Vit. E | ||||||
---|---|---|---|---|---|---|---|---|---|
Guinea Gold | 56.50 | ± 0.01 | a | 62.50 | ± 0.01 | a | 0.29 | ± 0.01 | ns |
Sinta | 18.50 | ± 0.02 | d | 31.50 | ± 0.01 | b | 0.17 | ± 0.02 | ns |
Honeydew | 54.30 | ± 0.01 | a | 56.70 | ± 0.02 | a | 0.27 | ± 0.02 | ns |
Cartagena | 48.50 | ± 0.01 | b | 59.00 | ± 0.01 | a | 0.24 | ± 0.03 | ns |
Maradol | 52.00 | ± 0.03 | a | 60.50 | ± 0.05 | a | 0.22 | ± 0.01 | ns |
Solo | 26.50 | ± 0.02 | c | 30.50 | ± 0.01 | b | 0.15 | ± 0.04 | ns |
Genotype | MST | FAT | TSG | ASH | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Guinea Gold | 88.23 | ± 0.02 | a | 0.34 | ± 0.05 | b | 6.19 | ± 1.60 | b | 0.59 | ± 0.03 | a |
Sinta | 88.93 | ± 0.06 | a | 0.34 | ± 0.04 | b | 6.55 | ± 1.58 | b | 0.57 | ± 0.03 | a |
Honeydew | 86.41 | ± 0.63 | c | 0.23 | ± 0.05 | c | 4.60 | ± 1.68 | c | 0.59 | ± 0.08 | a |
Cartagena | 88.00 | ± 1.02 | a | 0.33 | ± 0.05 | b | 7.02 | ± 1.60 | a | 0.48 | ± 0.12 | b |
Maradol | 87.46 | ± 1.73 | b | 0.34 | ± 0.04 | b | 7.35 | ± 1.70 | a | 0.43 | ± 0.10 | b |
Solo | 87.00 | ± 1.20 | b | 0.40 | ± 0.02 | a | 7.02 | ± 1.50 | a | 0.48 | ± 0.10 | b |
Genotype | Ca | Mg | K | Na | P | Fe |
---|---|---|---|---|---|---|
Guinea Gold | 32.50 ± 0.13 b | 18.00 ± 0.03 ns | 172.50 ± 0.22 b | 4.85 ± 0.19 ab | 36.00 ± 0.04 a | 0.84 ± 0.15 a |
Sinta | 47.00 ± 0.08 a | 17.00 ± 0.01 ns | 222.00 ± 0.13 a | 5.00 ± 0.13 ab | 27.00 ± 0.09 c | 0.65 ± 0.11 b |
Honeydew | 35.33 ± 0.30 b | 16.00 ± 0.05 ns | 164.67 ± 0.17 b | 3.70 ± 0.43 c | 30.67 ± 0.92 b | 0.33 ± 0.08 c |
Cartagena | 49.50 ± 0.11 a | 17.00 ± 0.05 ns | 215.50 ± 0.32 a | 5.95 ± 0.06 a | 29.00 ± 0.04 b | 0.70 ± 0.20 b |
Maradol | 32.00 ± 0.23 b | 15.00 ± 0.04 ns | 198.00 ± 0.09 ab | 4.30 ± 0.29 b | 26.00 ± 0.06 c | 0.28 ± 0.02 c |
Solo | 32.00 ± 0.25 b | 15.00 ± 0.06 ns | 198.00 ± 0.27 ab | 4.00 ± 0.15 b | 26.00 ± 0.12 c | 0.28 ± 0.14 c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farina, V.; Tinebra, I.; Perrone, A.; Sortino, G.; Palazzolo, E.; Mannino, G.; Gentile, C. Physicochemical, Nutraceutical and Sensory Traits of Six Papaya (Carica papaya L.) Cultivars Grown in Greenhouse Conditions in the Mediterranean Climate. Agronomy 2020, 10, 501. https://doi.org/10.3390/agronomy10040501
Farina V, Tinebra I, Perrone A, Sortino G, Palazzolo E, Mannino G, Gentile C. Physicochemical, Nutraceutical and Sensory Traits of Six Papaya (Carica papaya L.) Cultivars Grown in Greenhouse Conditions in the Mediterranean Climate. Agronomy. 2020; 10(4):501. https://doi.org/10.3390/agronomy10040501
Chicago/Turabian StyleFarina, Vittorio, Ilenia Tinebra, Anna Perrone, Giuseppe Sortino, Eristanna Palazzolo, Giuseppe Mannino, and Carla Gentile. 2020. "Physicochemical, Nutraceutical and Sensory Traits of Six Papaya (Carica papaya L.) Cultivars Grown in Greenhouse Conditions in the Mediterranean Climate" Agronomy 10, no. 4: 501. https://doi.org/10.3390/agronomy10040501
APA StyleFarina, V., Tinebra, I., Perrone, A., Sortino, G., Palazzolo, E., Mannino, G., & Gentile, C. (2020). Physicochemical, Nutraceutical and Sensory Traits of Six Papaya (Carica papaya L.) Cultivars Grown in Greenhouse Conditions in the Mediterranean Climate. Agronomy, 10(4), 501. https://doi.org/10.3390/agronomy10040501