Agronomic Responses of Soybean Genotypes to Starter Nitrogen Fertilizer Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details and Treatments
2.2. Meteorological Conditions and Agrochemical Soil Characteristics
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Morphological and Productive Parameters and RUE
3.2. Qualitative Parameters, Protein and Oil Yield
3.3. Correlation between Studied Parameters
4. Discussion
4.1. Genotype Affected Quantitative and Qualitative Parameters and RUE
4.2. The Climatic Condition Affected Quantitative and Qualitative Parameters and RUE
4.3. N Applications Affected Quantitative and Qualitative Parameters and RUE
4.4. Interaction of Factors Affected Quantitative and Qualitative Parameters and RUE and Correlation between Studied Parameters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Qiu, L.J.; Chang, R.Z. The origin and history of soybean. In The Soybean Botany, Production and Uses, 1st ed.; Singh, G., Ed.; CAB International: Wallingford, UK, 2010; pp. 1–23. [Google Scholar]
- Hartman, G.L.; West, E.D.; Herman, T.K. Crops that feed the World 2. Soybean: Worldwide production, use, and constraints caused by pathogens and pests. Food Sec. 2011, 3, 5–17. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organisation of the United Nations. 2019. Available online: http://www.fao.org/faostat/en/#data (accessed on 22 March 2020).
- Mandić, V.; Simić, A.; Krnjaja, V.; Bijelić, Z.; Tomić, Z.; Stanojković, A.; Ruzić-Muslić, D. Effect of foliar fertilization on soybean grain yield. Biotechnol. Anim. Husb. 2015, 31, 133–143. [Google Scholar] [CrossRef]
- Mandić, V.; Bijelić, Z.; Krnjaja, V.; Simić, A.; Ružić-Muslić, D.; Dragičević, V.; Petričević, V. The rainfall use efficiency and soybean grain yield under rainfed conditions in Vojvodina. Biotechnol. Anim. Husb. 2017, 33, 475–486. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans—A review. Field Crops Res. 2008, 108, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.; Toshiaki, C.; Tomio, N.; Ohyama, T. Evaluation of N2-fixation and N absorption activity by relative ureide method in field grown soybean plants with deep placement of coated urea. J. Soil Sci. Plant Nutr. 1992, 38, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Albareda, M.; Rodriguez-Navarro, D.N.; Temprano, F.J. Soybean inoculation: Dose, N fertilizer supplementation and rhizobia persistence in soil. Field Crops Res. 2009, 113, 352–356. [Google Scholar] [CrossRef]
- Hoshi, S. Nitrogen fixation, growth and yield of soybean. In Nitrogen Fixation in Root Nodules—For Improvement of Soybean Production; Hattori, T., Baba, T., Ouhira, K., Eds.; Hakuyusha: Tokyo, Japan, 1982; pp. 5–33. [Google Scholar]
- Boroomandan, P.; Khoramivafa, M.; Haghi, Y.; Ebrahimi, A. The effects of nitrogen starter fertilizer and plant density on yield, yield components and oil and protein content of soybean (Glycine max, Merr.). Pak. J. Biol. Sci. 2009, 12, 378–382. [Google Scholar] [CrossRef] [Green Version]
- Salih, S.H.; Hamd, S.A.M.; Dagash, Y.M.I. The effects of Rhizobium, Mycorrhizal inoculations and diammonium phosphate (DAP) on nodulation, growth and yield of soybean. Univ. J. Agric. Res. 2015, 3, 11–14. [Google Scholar]
- Janagard, M.S.; Ebadi-Segherloo, A. Inoculated soybean response to starter nitrogen in conventional cropping system in Moghan. Agron. J. 2016, 15, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Ntambo, M.S.; Chilinda, I.S.; Taruvinga, A.; Hafeez, S.; Anwar, T.; Sharif, R.; Chambi, C.; Kies, L. The effect of rhizobium inoculation with nitrogen fertilizer on growth and yield of soybeans (Glycine max L.). Int. J. Biosci. 2017, 10, 163–172. [Google Scholar]
- Taylor, S.R.; Weaver, B.D.; Wood, C.W.; Van Santen, E. Nitrogen application increases yield and early dry matter accumulation in late-planted soybean. Crop Sci. 2005, 45, 854–858. [Google Scholar] [CrossRef]
- Gai, Z.; Zhang, J.; Li, C. Effects of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis and grain yield. PLoS ONE 2017, 12, e0174841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beard, H.B.; Hoover, R.M. Effect of nitrogen on nodulation and yield of irrigated soybean. Agron. J. 1971, 63, 815–816. [Google Scholar] [CrossRef]
- Walter, H.; Lieth, H. Klimadiagram-Weltatlas; VEB Gustav Fischer Verlag: Jena, Germany, 1967. [Google Scholar]
- IUSS Working Group Wrb. World Reference Base for Soil Resources International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports, 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Soares, I.; de Rezende, P.; Bruzi, A.; Zuffo, A.; Zambiazzi, E.; Fronza, V.; Teixeira, C. Interaction between soybean cultivars and seed density. Am. J. Plant. Sci. 2015, 6, 1425–1434. [Google Scholar] [CrossRef] [Green Version]
- Parente, T.L.; Lazarini, E.; Caioni, S.; Pivetta, R.S.; Souza, L.G.M.; Bossolani, J.W. Adubação nitrogenada em genótipos de soja associada à inoculação em semeadura direta no Cerrado. Rev. Bras. de Ciênc. Agrár. 2015, 10, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Popović, V.; Vidić, M.; Jocković, Đ.; Ikanović, J.; Jakšić, S.; Cvijanović, G. Variability and correlations between yield components of soybean [Glycine max (L.) Merr.]. Genetika 2012, 44, 33–45. [Google Scholar] [CrossRef]
- Kobraee, S.; Shamsi, K. Effect of drought stress on dry matter accumulation and morphological traits in soybean. Int. J. Biosci. 2012, 10, 73–79. [Google Scholar]
- Ghassemi-Golezani, K.; Lotfi, R. Influence of water stress and pod position on oil and protein accumulation in soybean grains. Int. J. Plant Prod. 2013, 4, 2341–2345. [Google Scholar]
- Penalba, O.C.; Bettolli, M.L.; Vargas, W.M. The impact of climate variability on soybean yields in Argentina. Multivariate regression. Meteor. Appl. 2007, 14, 3–14. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; Macdonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mertz-Henning, L.M.; Ferreira, L.C.; Henning, F.A.; Mandarino, J.M.G.; Santos, E.D.; Oliveira, M.C.N.D.; Nepomuceno, A.L.; Farias, J.R.B.; Neumaier, N. Effect of water deficit-induced at vegetative and reproductive stages on protein and oil content in soybean grains. Agronomy 2018, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- FAO (Food outlook). Biannual Report on Food Markets. 2019. Available online: http://www.fao.org/publications (accessed on 20 January 2020).
- Osborne, S.L.; Riede, W.E. Soybean growth response to low rates of nitrogen applied at planting in the Northern Great Plains. J. Plant Nutr. 2006, 29, 985–1002. [Google Scholar] [CrossRef]
- Ohyama, T.; Tewari, K.; Ishikawa, S.; Tanaka, K.; Kamiyama, S.; Ono, Y.; Hatano, S.; Ohtake, N.; Sueyoshi, K.; Hasegawa, H.; et al. Role of nitrogen on growth and seed yield of soybean and a new fertilization technique to promote nitrogen fixation and seed yield, soybean. In Soybean—the Basis of Yield, Biomass and Productivity; Kasai, M., Ed.; IntechOpen Limited: London, UK, 2017; pp. 154–185. [Google Scholar]
- Seneviratne, G.; Van Holm, L.H.J.; Ekanayake, E.M.H.G.S. Agronomic benefits of rhizobial inoculant use over nitrogen fertilizer application in tropical soybean. Field Crops Res. 2000, 68, 199–203. [Google Scholar] [CrossRef]
- Caliskan, S.; Ozkaya, I.; Caliskan, M.E.; Arslan, M. The effects of nitrogen and iron fertilization on growth, yield and fertilizer use efficiency of soybean in a Mediterranean-type soil. Field Crops Res. 2008, 108, 126–132. [Google Scholar] [CrossRef]
- Kumawat, S.M.; Dhakar, L.L.; Maliwal, P.L. Effect of irrigation regimes and nitrogen on yield, oil content and nutrient uptake of soybean (Glycine max). Indian J. Agron. 2000, 45, 361–366. [Google Scholar]
- Cerezini, P.; Harumi, K.B.; Bartosa, D.S.M.; Terassi, F.; Hungaria, M.; Nogueira, M.A. Strategies to promote early nodulation in soybean under drought. Field Crops Res. 2016, 196, 160–167. [Google Scholar] [CrossRef]
- Showkat, M.; Tyagi, S. Correlation and path coefficient analysis of some quantitative traits in soybean (Glycine max L. Merrill). Res. J. Agric. Sci. 2010, 1, 102–106. [Google Scholar]
- Shahkoohmahally, E.; Shahkoohmahally, S. Investigating of N and K fertilizers on yield and components of soybean (Glycine max (L.) Merr.). J. Agric. Sci. 2017, 9, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Pípolo, A.E.; Hungria, M.; Franchini, J.C.; Balbinot, A.A., Jr.; Debiasi, H.; Mandarino, J.M.G. Teores de Óleo e Proteína em Soja: Fatores Envolvidos e Qualidade Para a Indústria; Embrapa Soybean: Londrina, Brazil, 2015; pp. 1–15. [Google Scholar]
- Eskandari, M.M.; Cober, E.R.; Rajcan, I. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor. Appl. Genet. 2013, 126, 1677–1687. [Google Scholar] [CrossRef]
Factor | PH | FPH | NN | NP | SWP | TSW | SY | RUE | |
---|---|---|---|---|---|---|---|---|---|
Year (A) | 2009 | 103.8b | 14.1b | 13.5b | 43.0b | 12.2b | 154.3b | 3.41b | 17.4a |
2010 | 122.6a | 16.3a | 16.0a | 47.0a | 12.7a | 159.0a | 4.41a | 8.5b | |
F test | A | ** | ** | ** | ** | ** | ** | ** | ** |
Genotype (B) | Galina | 112.7b | 15.9a | 14.0b | 42.5b | 12.0b | 154.9b | 3.87b | 12.8b |
Valjevka | 113.7a | 14.5b | 15.5a | 47.5a | 12.8a | 158.4a | 3.95a | 13.1a | |
F test | B | ** | ** | ** | ** | ** | ** | ** | ** |
N rate, kg ha−1 (C) | 0 | 109.5d | 13.5c | 13.7d | 42.8c | 11.1c | 152.3c | 3.58d | 11.9c |
30 | 114.1b | 15.4b | 15.0b | 44.2bc | 13.2a | 153.7c | 3.93c | 13.0b | |
60 | 116.8a | 16.0a | 15.8a | 48.1a | 13.2a | 163.0a | 4.11a | 13.8a | |
90 | 112.4c | 15.9a | 14.4c | 44.9b | 12.2b | 157.6b | 4.03b | 13.2b | |
F test | C | ** | ** | ** | ** | ** | ** | ** | ** |
F test | A ×B | ns | ** | ** | ns | ** | ** | ** | ** |
A × C | ** | ** | ** | ** | ** | ** | ** | ** | |
B × C | ns | ns | ** | ** | ** | ** | ** | ** | |
A × B × C | ns | ns | ** | ** | ** | ns | ns | ns | |
Mean | 113.2 | 15.2 | 14.8 | 45.0 | 12.4 | 156.7 | 3.91 | 13.0 |
Factor | PC | OC | CPY | COY | |
---|---|---|---|---|---|
Year (A) | 2009 | 37.6a | 20.6b | 1.28b | 0.70b |
2010 | 37.4b | 21.3a | 1.65a | 0.94a | |
F test | A | ** | ** | ** | ** |
Genotype (B) | Galina | 37.4 | 20.5b | 1.45b | 0.80b |
Valjevka | 37.5 | 21.3a | 1.48a | 0.84a | |
F test | B | ns | ** | ** | ** |
N rate, kg ha−1 (C) | 0 | 37.3b | 21.4a | 1.34c | 0.77c |
30 | 37.4b | 21.0b | 1.47b | 0.82b | |
60 | 37.4b | 20.8bc | 1.54a | 0.86a | |
90 | 37.7a | 20.7c | 1.52a | 0.83b | |
F test | C | ** | ** | ** | ** |
F test | A × B | ns | ns | ** | ** |
A × C | ** | ** | ** | ** | |
B × C | ns | ns | ** | ** | |
A × B × C | * | ns | ns | ns | |
Mean | 37.5 | 20.9 | 1.47 | 0.82 |
PH | FPH | NN | NP | SWP | TSW | SY | PC | OC | CPY | COY | |
---|---|---|---|---|---|---|---|---|---|---|---|
FPH | 0.65** | ||||||||||
NN | 0.81** | 0.46** | |||||||||
NP | 0.37** | 0.27* | 0.53** | ||||||||
SWP | 0.37** | 0.41** | 0.52** | 0.61** | |||||||
TSW | 0.47** | 0.44** | 0.59** | 0.60** | 0.58** | ||||||
SY | 0.90** | 0.74** | 0.74** | 0.59** | 0.51** | 0.59** | |||||
PC | −0.35** | 0.00ns | −0.21ns | 0.09ns | 0.03ns | −0.05ns | −0.11ns | ||||
OC | 0.47** | −0.16ns | 0.49** | 0.36** | 0.08ns | 0.18ns | 0.40** | −0.24ns | |||
CPY | 0.88** | 0.74** | 0.73** | 0.60** | 0.51** | 0.59** | 1.00** | −0.05ns | 0.39** | ||
COY | 0.91** | 0.64** | 0.77** | 0.60** | 0.48** | 0.57** | 1.00** | −0.15ns | 0.56** | 0.98** | |
RUE | −0.88** | −0.51** | −0.59** | −0.25* | −0.09ns | −0.19ns | −0.80** | 0.38** | −0.55** | −0.79** | −0.84** |
Parameter | Regression Equation | R² | Parameter | Regression Equation | R² |
---|---|---|---|---|---|
SY | PH | ||||
PH | y = 16.71x + 47.8 | 0.808 | FPH | y = 0.110x + 2.696 | 0.414 |
FPH | y = 2.363x + 5.957 | 0.548 | NN | y = 0.146x − 1.847 | 0.650 |
NN | y = 2.493x + 4.973 | 0.545 | NN | ||
NP | y = 5.553x + 23.29 | 0.343 | NP | y = 1.476x + 23.27 | 0.276 |
SWP | y = 1.045x + 8.343 | 0.256 | SWP | y = 0.315x + 7.793 | 0.265 |
TSW | y = 7.173x + 128.6 | 0.346 | TSW | y = 2.111x + 125.5 | 0.342 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandić, V.; Đorđević, S.; Bijelić, Z.; Krnjaja, V.; Pantelić, V.; Simić, A.; Dragičević, V. Agronomic Responses of Soybean Genotypes to Starter Nitrogen Fertilizer Rate. Agronomy 2020, 10, 535. https://doi.org/10.3390/agronomy10040535
Mandić V, Đorđević S, Bijelić Z, Krnjaja V, Pantelić V, Simić A, Dragičević V. Agronomic Responses of Soybean Genotypes to Starter Nitrogen Fertilizer Rate. Agronomy. 2020; 10(4):535. https://doi.org/10.3390/agronomy10040535
Chicago/Turabian StyleMandić, Violeta, Snežana Đorđević, Zorica Bijelić, Vesna Krnjaja, Vlada Pantelić, Aleksandar Simić, and Vesna Dragičević. 2020. "Agronomic Responses of Soybean Genotypes to Starter Nitrogen Fertilizer Rate" Agronomy 10, no. 4: 535. https://doi.org/10.3390/agronomy10040535
APA StyleMandić, V., Đorđević, S., Bijelić, Z., Krnjaja, V., Pantelić, V., Simić, A., & Dragičević, V. (2020). Agronomic Responses of Soybean Genotypes to Starter Nitrogen Fertilizer Rate. Agronomy, 10(4), 535. https://doi.org/10.3390/agronomy10040535