Establishment of a Cultivation Mode of Glycine soja, the Bridge of Phytoremediation and Industrial Utilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Planting Method
2.3. Soil and Plant Sampling
2.4. Measurement of Na+, K+, Ca2+, and Mg2+ Concentration
2.5. Soluble Salt Content Measurement
2.6. Bioaccumulation and Translocation Factor Calculation
2.7. Statistical Analysis
3. Results
3.1. Growth, Yield, and Biomass Estimation of Wild Soybean with Artificial Facilities
3.2. Relationships of Na+, K+, Ca2+, and Mg2+ in Soil and Wild Soybean Organs under Saline Soil
3.3. K–Na Ratio in Wild Soybean Different Organs
3.4. Ion Translocation Capacity in Wild Soybean Organs
3.5. Total Content of Soluble Salt in Soils and Wild Soybean Organs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hymowitz, T. Speciation and cytogenetics. In Soybeans: Improvement, Production, and Uses, 3rd ed.; Boerma, H.R., Specht, J.E., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 2004; pp. 97–136. [Google Scholar]
- Carter, J.T.E.; Nelson, R.; Sneller, C.H.; Cui, Z. Genetic diversity in soybean. In Soybeans: Improvement, Production, and Uses, 3rd ed.; Boerma, H.R., Specht, J.E., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 2004; pp. 303–416. [Google Scholar]
- Gai, J. Soybean breeding. In Plant Breeding: Crop Species; Gai, J., Ed.; China Agriculture Press: Beijing, China, 1997; pp. 207–251. [Google Scholar]
- Takahashi, Y.; Li, X.; Tsukamoto, C.; Wang, K. Categories and components of soyasaponin in the Chinese wild soybean (Glycine soja) genetic resource collection. Genet. Resour. Crop Evol. 2017, 62, 2062–2171s. [Google Scholar] [CrossRef]
- Grela, E.R.; Giinter, K.D. Fatty acid composition and tocopherol content of some legume seeds. Anim. Feed Sci. Technol. 1995, 52, 325–331. [Google Scholar] [CrossRef]
- Deshimaru, M.; Hanamoto, R.; Kusano, C.; Yoshimi, S.; Terada, S. Purification and characterization of proteinase inhibitors from wild soja (Glycine soja) seeds. Biosci. Biotechnol. Biochem. 2002, 66, 1897–1903. [Google Scholar] [CrossRef]
- Asekova, S.; Chae, J.-H.; Ha, B.-K.; Dhakal, K.H.; Chung, G.; Shannon, J.G.; Lee, J.-D. Stability of elevated α-linolenic acid derived from wild soybean (Glycine soja Sieb. & Zucc.) across environments. Euphytica 2013, 195, 409–418. [Google Scholar]
- Zhang, Y.; Wang, Z.; Song, P.; Li, Z. Nutritive evaluation of common cultivated forage crop for dairy cattle in Heilongjiang Province. J. Northeast Agric. Univ. 2006, 37, 333–339. [Google Scholar]
- Zhou, S.; Zhou, M.; Zhang, S.; Liu, Z.-T.; Zhao, Y.-J.; TianZhen, Y.; Wang, Y. Isoflavone accumulation in wild soybean under saline conditions and its ecological significance. Chin. J. Plant Ecol. 2007, 31, 7. [Google Scholar]
- Yingshan, D. Advances of research on wild soybean in China. J. Jilin Agric. Univ. 2008, 30, 394–400. [Google Scholar]
- Wong, V.N.L.; Dalal, R.C.; Greene, R. Salinity and sodicity effects on respiration and microbial biomass of soil. Biol. Fertil. Soils 2008, 44, 943–953. [Google Scholar] [CrossRef]
- Shi, S.; Tian, L.; Nasir, F.; Bahadur, A.; Batool, A.; Luo, S.; Yang, F.; Wang, Z.; Tian, C. Response of microbial communities and enzyme activities to amendments in saline-alkaline soils. Appl. Soil Ecol. 2019, 135, 16–24. [Google Scholar] [CrossRef]
- FAO Global Network as Integrated Soil Management for Sustainable Use of Salt-Affected Soils. Available online: http://www.fao.org/ag/agl/agll/spush2000 (accessed on 10 November 2019).
- Bharti, P.; Singh, B.; Bauddh, K.; Dey, R.K.; Korstad, J. Efficiency of bioenergy plant in phytoremediation of saline and sodic soil. Phytoremediat. Potential Bioenergy Plants 2017, 353–369. [Google Scholar] [CrossRef]
- Jing, C.; Xu, Z.; Zou, P.; Tang, Q.; Li, Y.; You, X.; Zhang, C. Coastal halophytes alter properties and microbial community structure of the saline soils in the Yellow River Delta, China. Appl. Soil Ecol. 2019, 134, 1–7. [Google Scholar] [CrossRef]
- Qadir, M.; Oster, J.D. Vegetative bioremediation of calcareous sodic soils: History, mechanisms, and evaluation. Irrig. Sci. 2002, 21, 91–101. [Google Scholar]
- Qadir, M.; Noble, A.D.; Oster, J.D.; Schubert, S.; Ghafoor, A. Driving forces for sodium removal during phytoremediation of calcareous sodic and saline-sodic soils: A review. Soil Use Manag. 2005, 21, 173–180. [Google Scholar] [CrossRef]
- Jesus, J.M.; Danko, A.S.; Fiuza, A.; Borges, M. Phytoremediation of salt-affected soils: A review of processes, applicability, and the impact of climate change. Environ. Sci. Pollut. Res. 2015, 22, 6511–6525. [Google Scholar] [CrossRef]
- Zhao, K.; Fan, H.; Song, J.; Sun, M.; Wang, B.; Zhang, S.; Ungar, I.A. Two Na+ and Cl− hyperaccumulators of the chenopodiaceae. J. Integr. Plant Biol. Former. Acta Bot. Sin. 2005, 47, 311–318. [Google Scholar] [CrossRef]
- Lu, Y.; Lam, H.; Pi, E.; Zhan, Q.; Tsai, S.; Wang, C.; Kwan, Y.W.; Ngai, S. Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring. J. Agric. Food Chem. 2013, 61, 8711–8721. [Google Scholar] [CrossRef]
- Upchurch, R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 2008, 30, 967–977. [Google Scholar] [CrossRef]
- Lam, H.; Xu, X.; Liu, X.; Chen, W.; Yang, G.; Wong, F.; Li, M.; He, W.; Qin, N.; Wang, B.; et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 2010, 42, 1053–1059. [Google Scholar] [CrossRef]
- Liu, H.; Song, J.; Dong, L.; Wang, D.; Zhang, S.; Liu, J. Physiological responses of three soybean species (Glycine soja, G. gracilis, and G. max cv. Melrose) to salinity stress. Plant Res. 2017, 130, 723–733. [Google Scholar] [CrossRef]
- Luo, Q.; Yu, B.; Liu, Y. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. Plant Physiol. 2005, 162, 1003–1012. [Google Scholar] [CrossRef]
- Chen, P.; Yan, K.; Shao, H.; Zhao, S. Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from Yellow River Delta, China: Photosynthesis, osmotic regulation, ion flux and antioxidant capacity. PLoS ONE 2013, 8, e83227. [Google Scholar] [CrossRef] [PubMed]
- LRIO (Land Resource Investigation Office). Dongying Municipality. Soil map of Dongying Municipality Land Resource Investigation Office; Dongying Municipality, China Agriculture Press: Beijing, China, 1986. [Google Scholar]
- Fehr, W.R.; Caviness, C.E. Stages of Soybean Development; Special Report 87, 1-11; Iowa State University: Ames, IA, USA, 1977. [Google Scholar]
- Shao, T.; Gu, X.; Zhu, T.; Pan, X.; Zhu, Y.; Long, X.; Shao, H.; Liu, M.; Rengel, Z. Industrial crop Jerusalem artichoke restored coastal saline soil quality by reducing salt and increasing diversity of bacterial community. Appl. Soil Ecol. 2019, 138, 195–206. [Google Scholar] [CrossRef]
- Aydemir, S.; Sünger, H. Bioreclamation effect and growth of a leguminous forage plant (Lotus corniculatus) in calcareous saline-sodic soil. Afr. J. Biotechnol. 2011, 10, 15571–15577. [Google Scholar] [CrossRef]
- Bao, S.D. Analysis of Agricultural Chemistry in Soil; China Agriculture Press: Beijing, China, 2005. [Google Scholar]
- Mani, D.; Kumar, C.; Patel, N.K. Integrated microbiochemical approach for phytoremediation of cadmium and zinc contaminated soils. Ecotoxicol. Environ. Saf. 2015, 111, 86–95. [Google Scholar] [CrossRef]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.N.V.; Freitas, H. Phytoremediation technology: Hyperaccumulation metals in plants. Water Air Soil Pollut. 2007, 184, 105–126. [Google Scholar]
- Pitman, M.G.; Läuchli, A. Global impact of salinity and agricultural ecosystems. In Salinity: Environment-Plants-Molecules; Läuchli, A., Lüttge, U., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 3–20. [Google Scholar]
- Hack-ten Broeke, M.J.D.; Kroes, J.G.; Bartholomeus, R.P.; van Dam, J.C.; de Wit, A.J.W.; Supit, I.; Walvoort, D.J.J.; van Bakel, P.J.T.; Ruijtenberg, R. Quantification of the impact of hydrology on agricultural production as a result of too dry, too wet or too saline conditions. Soil 2016, 2, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Panagea, I.S.; Daliakopoulos, I.N.; Tsanis, I.K.; Schwilch, G. Evaluation of promising technologies for soil salinity amelioration in Timpaki (Crete): A participatory approach. Solid Earth 2016, 7, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Hu, J.; Long, X.; Liu, Z.; Rengel, Z. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke. Sci. Rep. 2016, 6, 20687. [Google Scholar] [CrossRef]
- Sanchez, D.H.; Pieckenstain, F.L.; Escaray, F.J.; Erban, A.; Kraemer, U.; Udvardi, M.K.; Kopka, J. Comparative ion omics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant Cell Environ. 2011, 34, 605–617. [Google Scholar] [CrossRef] [PubMed]
- Binzel, M.L.; Hess, F.D.; Bressan, R.A.; Hasegawa, P.M. Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol. 1988, 86, 607–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Bhowmik, P.C.; Hossain, M.A.; Rahman, M.M.; Prasad, M.N.V.; Ozturk, M.; Fujita, M. Potential use of halophytes to remediate saline soils. Biomed. Res. Int. 2014, 589341. [Google Scholar] [CrossRef] [PubMed]
- Do, T.; Lal, S.k.; Xu, D.H. Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor. Appl. Genet. 2010, 121, 229–236. [Google Scholar]
- Flowers, T.J. Improving crop salt tolerance. J. Exp. Bot. 2004, 55, 307–319. [Google Scholar] [CrossRef]
- Maathuis, F.J.M.; Amtmann, A. K+ nutrition and Na+ toxicity: The basis for cellular K+/Na+ ratios. Ann. Bot. 1999, 84, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Rezvani, M.; Zaefarian, F. Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. Aust. J. Agric. Eng. 2011, 2, 114–119. [Google Scholar]
- Neves, M.A.; Miguel, M.G.; Marques, C.; Panagopoulos, T.; Beltrao, J. Tetragonia tetragonioides-a potential salt removing species. Response to the combined effects of salts and calcium. Int. Conf. Energy Environ. 2007, 60–64. [Google Scholar]
- Rabhi, M.; Hafsi, C.; Lakhdar, A.; Hajji, S.; Zouhaier, B.; Hamrouni, M.H.; Abdelly, C.; Smaoui, A. Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. Afr. J. Ecol. 2009, 47, 463–468. [Google Scholar] [CrossRef]
- Ravindran, K.C.; Venkatesan, K.; Balakrishnan, V.; Chellappan, K.P.; Balasubramanian, T. Restoration of saline land by halophytes for Indian soils. Soil Biol. Biochem. 2007, 39, 2661–2664. [Google Scholar] [CrossRef]
- Hansi, M.; Weidenhamer, J.D.; Sinkkonen, A. Plant growth responses to inorganic environmental contaminants are density-dependent: Experiments with copper sulfate, barley and lettuce. Environ. Pollut. 2014, 184, 443–448. [Google Scholar] [CrossRef]
- Zhao, K. Halophytes. Chin. Bull. Bot. 1997, 14, 1–12, (In Chinese with English summary). [Google Scholar]
- Dong, Y.; Yang, X.; Liu, J.; Wang, B.; Liu, B.; Wang, Y. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat. Commun. 2014, 5, 3352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Miao, Z.; Cai, C.; Zhang, D.; Zhao, M.; Wu, Y.; Zhang, X.; Swarm, S.A.; Zhou, L.; Zhang, Z.J.; et al. GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat. Genet. 2015, 47, 939–943. [Google Scholar] [CrossRef] [PubMed]
Cultivation Mode | Holes NO. | Plants per Hole | Biomass (Dry Weight, g) | Pods NO. | Average Seeds NO. per Pod | Total Seeds | Thousand Seed Weight (g) | Total Seeds Weight (g) |
---|---|---|---|---|---|---|---|---|
Artificial facilities | 1 | 3 | 309.44 | 1862 | 3.06 | 5698 | 13.61 | 77.55 |
2 | 3 | 319.32 | 1639 | 3.42 | 5605 | 14.59 | 81.78 | |
3 | 2 | 184.05 | 1150 | 3.20 | 3680 | 12.92 | 47.55 | |
4 | 2 | 219.40 | 1240 | 3.20 | 3968 | 15.13 | 60.02 | |
5 | 3 | 272.88 | 1590 | 3.28 | 5215 | 12.51 | 65.24 | |
6 | 2 | 176.14 | 1120 | 3.08 | 3450 | 12.59 | 43.43 | |
Average | 2.50 | 246.87 | 1433.50 | 3.21 | 4603 | 13.56 | 62.59 | |
Control conditions | 1 | 3 | 151.99 | 817 | 3.23 | 2635 | 12.00 | 31.62 |
2 | 2 | 168.92 | 985 | 3.07 | 3024 | 12.88 | 38.95 | |
3 | 3 | 111.47 | 788 | 3.15 | 2479 | 12.35 | 30.62 | |
4 | 3 | 155.49 | 976 | 3.25 | 3168 | 13.30 | 42.13 | |
5 | 2 | 140.88 | 1334 | 3.20 | 4264 | 12.48 | 53.21 | |
Average | 2.60 | 145.75 | 980.10 | 3.18 | 3104 | 12.60 | 39.11 |
Cultivation Mode | Biomass (Dry Weight, kg/ha) | Total Seeds Weight (kg/ha) |
---|---|---|
Wild conditions (control) | 6075.76 | 1629.74 |
Artificial facility | 10,286.40 | 2608.10 |
Ion Content (mg g−1) | Na+ | K+ | Ca2+ | Mg2+ |
---|---|---|---|---|
Bulk soil | 10.34 ± 0.97 a | 10.47 ± 0.46 a | 17.51 ± 2.31 a | 11.63 ± 0.40 a |
Rhizosphere soil | 8.96 ± 0.19 b | 10.81 ± 0.28 a | 18.48 ± 1.65 a | 11.53 ± 0.19 a |
Root | 13.08 ± 1.68 c | 5.63 ± 0.82 b | 10.12 ± 1.25 b | 1.89 ± 0.09 b |
Leaf | 1.38 ± 0.27 d | 16.26 ± 3.76 c | 14.24 ± 2.58 c | 10.04 ± 2.44 a |
Shoot | 0.97 ± 0.17 e | 24.70 ± 3.33 d | 5.95 ± 0.77 d | 1.98 ± 0.08 b |
Capsule | 0.47 ± 0.11 f | 15.64 ± 1.11 c | 7.26 ± 1.10 e | 0.46 ± 0.04 c |
Seed | 0.17 ± 0.03 g | 27.36 ± 2.96 d | 0.23 ± 0.01 f | 0.66 ± 0.13 c |
Organs | Bioaccumulation Factor (BF) | Translocation Factor (TF) | ||||||
---|---|---|---|---|---|---|---|---|
Na | K | Ca | Mg | Na | K | Ca | Mg | |
Root | 1.46 ± 0.19 a | 0.52 ± 0.09 a | 0.59 ± 0.07 a | 0.16 ± 0.01 a | - | - | - | - |
Leaf | 0.15 ± 0.03 b | 1.50 ± 0.33 b | 1.59 ± 0.29 b | 0.87 ± 0.21 b | 0.11 ± 0.03 a | 2.94 ± 1.02 a | 1.42 ± 0.32 a | 5.18 ± 1.26 a |
Shoot | 0.11 ± 0.02 b | 2.29 ± 0.31 c | 0.55 ± 0.07 a | 0.17 ± 0.01 a | 0.07 ± 0.01 b | 4.58 ± 0.59 b | 0.59 ± 0.06 b | 0.19 ± 0.01 b |
Capsule | 0.05 ± 0.01 c | 1.45 ± 0.11 b | 1.27 ± 0.19 b | 0.04 ± ND c | 0.04 ± 0.01 c | 2.78 ± 0.44 a | 0.71 ± 0.15 b | 0.24 ± 0.02 b |
Seed | 0.02 ± ND c | 2.53 ± 0.25 c | 0.03 ± ND c | 0.06 ± 0.01 c | 0.01 ± ND d | 4.87 ± 1.09 b | 0.02 ± ND c | 1.24 ± 0.23 c |
Samples | Ash Content (% of DW) | Soluble Salt Content (‰ DW) |
---|---|---|
Bulk soil | - | 3.50 ± 0.88 a |
Rhizosphere soil | - | 5.07 ± 0.32 b |
Root | 5.84 ± 0.18 a | 22.24 ± 0.86 c |
Leaf | 5.01 ± 0.13 b | 23.52 ± 1.79 c |
Shoot | 5.18 ± 0.09 b | 22.45 ± 1.41 c |
Capsule | 6.19 ± 0.12 c | 21.36 ± 1.82 c |
Seed | 5.45 ± 0.14 d | 32.51 ± 0.21 d |
Total Plant | 5.39 ± 0.11 d | 25.72 ± 2.11 c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Ren, T.; Marowa, P.; You, X.; Lu, X.; Li, Y.; Zhang, C. Establishment of a Cultivation Mode of Glycine soja, the Bridge of Phytoremediation and Industrial Utilization. Agronomy 2020, 10, 595. https://doi.org/10.3390/agronomy10040595
Xu Z, Ren T, Marowa P, You X, Lu X, Li Y, Zhang C. Establishment of a Cultivation Mode of Glycine soja, the Bridge of Phytoremediation and Industrial Utilization. Agronomy. 2020; 10(4):595. https://doi.org/10.3390/agronomy10040595
Chicago/Turabian StyleXu, Zongchang, Tingting Ren, Prince Marowa, Xiangwei You, Xueli Lu, Yiqiang Li, and Chengsheng Zhang. 2020. "Establishment of a Cultivation Mode of Glycine soja, the Bridge of Phytoremediation and Industrial Utilization" Agronomy 10, no. 4: 595. https://doi.org/10.3390/agronomy10040595
APA StyleXu, Z., Ren, T., Marowa, P., You, X., Lu, X., Li, Y., & Zhang, C. (2020). Establishment of a Cultivation Mode of Glycine soja, the Bridge of Phytoremediation and Industrial Utilization. Agronomy, 10(4), 595. https://doi.org/10.3390/agronomy10040595