Microelement Variability in Plants as an Effect of Sewage Sludge Compost Application Assessed by Different Statistical Methods
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design
2.2. Analysis of Plant Materials
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tripathi, D.K.; Singh, S.; Singh, S.; Mishra, S.; Chauhan, D.K.; Dubey, N.K. Micronutrients and their diverse role in agricultural crops: Advances and future prospective. Acta Physiol. Plant. 2015, 37, 139. [Google Scholar] [CrossRef]
- Dimkpa, Ch.O.; Bindraban, P.S. Fortification of micronutrients for efficient agronomic production: A review. Agron. Sustain. Dev. 2016, 36, 7. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Ding, W.; Chen, Z.; Ziadi, N. Thirty-year amendment of horse manure and chemical fertiliser on the availability of micronutrients at the aggregate scale in black soil. Environ. Sci. Pollut. Res. 2011, 19, 2745–2754. [Google Scholar] [CrossRef]
- Jakubus, M.; Bakinowska, E. Visualization of long-time quantitative changes of micro-elements in soils amended with sewage sludge compost evaluated with two extraction solutions. Commun. Soil Sci. Plant 2018, 49, 1355–1369. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Yoon, Y.R.; Kim, S.Y.; Kim, J.H.; Kim, H.T.; Lee, Y.B. Does long-term application of fertilizers enhance the micronutrient density in soil and crop? Evidence from a field trial conducted on a 47-year-old rice paddy. J. Soils Sediments 2018, 18, 49–62. [Google Scholar] [CrossRef]
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural utilisation of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef]
- Thomas, C.L.; Acquah, G.E.; Whitmore, A.P.; McGrath, S.P.; Haefele, S.M. The effect of different organic fertilizer on yield and soil and crop nutrient concentrations. Agronomy 2019, 9, 776. [Google Scholar] [CrossRef] [Green Version]
- Jakubus, M. Sewage Sludge Origin and Administration, 1st ed.; Poznan University of Life Sciences Press: Poznań, Poland, 2012; pp. 1–56, In Polish. [Google Scholar]
- Council Directive 1999/31/EC of 26 April 1999 on the Landfill Waste Disposal. OJ L 182, 16.7. 1999. p. 1. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31999L0031 (accessed on 21 March 2020).
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Region. Toward A Circular Economy: Zero Waste Program for Europe; COM, 2014; Volume 398, pp. 1–14. Available online: https://ec.europa.eu/environment/circular-economy/pdf/circular-economy-communication.pdf (accessed on 21 March 2020).
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What is sustainable agriculture? A systematic review. Sustainability 2015, 7, 7833–7865. [Google Scholar] [CrossRef] [Green Version]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.F.; Ferrer, A.; Peigne, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Jakubus, M.; Bakinowska, E.; Gałka, B. The quantitative changes of nutrients in two contrasting soils amended with sewage sludge compost evaluated by various statistical tools. Acta Agric. Scand. Sec. B Soil Plant Sci. 2018, 68, 39–49. [Google Scholar] [CrossRef]
- Hernandez, T.; Chocano, C.; Moreno, J.J.; Garcia, C. Use of compost as an alternative to conventional inorganic fertilisers in intensive lettuce (Lactuca sativa L.) crops-effects on soil and plant. Soil Till. Res. 2016, 160, 14–22. [Google Scholar] [CrossRef]
- Rigby, H.B.O.; Clarke, D.L.; Pritchard, B.; Meehan, F.; Beshah, S.; Smith, R.; Porter, N.A. A critical review of nitrogen mineralization in biosolid-amended soil, the associated fertiliser value for crop production and potential for emissions to the environment. Sci. Total Environ. 2016, 541, 1310–1338. [Google Scholar] [CrossRef] [PubMed]
- Rosenani, A.B.; Rovica, R.; Cheah, P.M.; Lim, C.T. Growth performance and nutrient uptake of oil palm seedling in prenursery stage as influenced by oil palm waste compost in growing media. Int. J. Agron. 2016, 2016, 6930735. [Google Scholar] [CrossRef] [Green Version]
- Anwar, Z.; Irshad, M.; Mahmood, Q.; Hafeez, F.; Bilal, M. Nutrient uptake and growth of spinach as affected by cow manure co-composted with popular leaf litter. Int. J. Recycl. Org. Waste Agric. 2017, 6, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Mahdy, A.M. Soil properties and wheat growth and nutrients as affected by compost amendment under saline water irrigation. Pedosphere 2011, 21, 773–781. [Google Scholar] [CrossRef]
- Agegnehu, G.; Nelson, P.N.; Bird, M.I. Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilisation on Nitisols. Soil Till. Res. 2016, 160, 1–13. [Google Scholar] [CrossRef]
- Dada, O.A.; Togun, A.O.; Adediran, J.A.; Nwilene, F.E. Growth, nutrient uptake efficiency and yield of upland rice as influenced by two compost types in tropical rainforest-derived savannah transition zone. Agric. Sci. 2014, 5, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Papafilippaki, A.; Paranychianakis, N.; Nikolaidis, N.P. Effects of soil type and municipal solid waste compost as soil amendment on Chichorium spinosum (spiny chicory) growth. Sci. Hortic. Amst. 2015, 195, 195–205. [Google Scholar] [CrossRef]
- Herencia, J.F.; Garcia-Galavis, P.A.; Ruiz-Dorato, J.A.; Maqueda, C. Comparison of nutritional quality of the crops grown in an organic and conventional fertilized soil. Sci. Hortic. Amst. 2011, 129, 882–888. [Google Scholar] [CrossRef]
- Rady, M.M.; Semida, W.M.; Hemida, K.A.; Abdelhamid, M.T. The effect of compost on growth and yield of Phaseolus vulgaris plants grown under saline soil. Int. J. Recycl. Org. Waste Agric. 2016, 5, 311–321. [Google Scholar] [CrossRef] [Green Version]
- World Reference Base for Soil Resources. World Soil Resources Reports, 106; FAO: Rome, Italy, 2014; Update 2015. [Google Scholar]
- Regulation of the Minister of Agriculture and Rural Development. Journal of Laws 119, item 765.
- ISO-International Organization of Standardization. Soil Quality-Extraction of Trace Elements Soluble in Aqua Regia; ISO 11466; ISO: Geneva, Switzerland, 1995. [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubialka, Z. Methods for Analysis and Evaluation of Soil and Plant Properties, 1st ed.; IOŚ Warszawa: Warszawa, Poland, 1991; pp. 158–167, In Polish. [Google Scholar]
- Ma, B.L.; Zheng, Z. Nutrient uptake of iron, zinc, magnesium and copper in transgenic maize (Zea mays) as affected by rotation systems and N application rates. Nutr. Cycl. Agroecosyst. 2018, 112, 27–43. [Google Scholar] [CrossRef]
- Mukerjee, R.; Wu, C.F.J. A Modern Theory of Factorial Design, 1st ed.; Springer Science+Business Media Inc.: Berlin, Germany, 2006; pp. 85–108. [Google Scholar]
- Cheng, C.S. Theory of Factorial Design. Single and Multi-Stratum Experiments, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016; pp. 51–166. [Google Scholar]
- Shahid, M.; Shukla, A.K.; Bhattacharyya, P.; Tripathi, R.; Mohanty, S.; Kumar, A.; Lal, B.; Gautam, P.; Raja, R.; Panda, B.B.; et al. Micronutrients (Fe, Mn, Zn and Cu) balance under long-term application of fertilizer and manure in a tropical rice-rice system. J. Soils Sediments 2016, 16, 737–747. [Google Scholar] [CrossRef]
- Kamboj, N.; Malik, R.S.; Dhanker, P.; Kumar, A. Importance of nickel in crops. J. Pharmacogn. Phytochem. 2018, 7, 3470–3475. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Biogeochemia Pierwiastków Śladowych, 1st ed.; PWN: Warszawa, Poland, 1999; pp. 291–315, In Polish. [Google Scholar]
- Santoro, A.; Held, A.; Linsinger, T.P.J.; Perez, A.; Ricci, M. Comparison of total and aqua regia extractability of heavy metals in sewage sludge: The case study of a certified reference material. Trends Anal. Chem. 2017, 89, 34–40. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Li, Y.C. The role of nutrient efficient plants in improving crop yields in the twenty first century. J. Plant Nutr. 2008, 31, 1121–1157. [Google Scholar] [CrossRef]
- Wendling, M.; Büchi, L.; Amossé, C.; Sinaj, S.; Walter, A.; Charles, R. Influence of root and leaf traits on the uptake of nutrients in cover crops. Plant Soil 2016, 409, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Jakubus, M.; Graczyk, M. Effect of composted sewage sludge on the rate of C, N and P mineralization in sandy soil. Electron. J. Pol. Agric. Univ. 2016, 19, 1–13. [Google Scholar]
- Al-Bataina, B.; Young, T.M.; Ranieri. E. Effects of compost age on the release of nutrients. Int. Soil Water Conserv. Res. 2016, 4, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Shi, R.; Zhang, Y.; Chen, X.; Sun, Q.; Zhang, F.; Römheld, V.; Zou, C. Influence of long-term nitrogen fertilisation on micronutrient density in grain of winter wheat (Triticum aesticvum L.). J. Cereal Sci. 2010, 51, 165–170. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Li, L.; Cheng, K.; Zheng, J.; Zheng, J.; Shen, M.; Liu, X.; Pan, G. Changes in micronutrient availability and plant uptake under simulated climate change in winter wheat field. J. Soils Sediments 2016, 16, 2666–2675. [Google Scholar] [CrossRef]
- Liñero, O.; Cidad, M.; Carrero, J.A.; Nguyen, C.; de Diego, A. Partitioning of nutrients and non-essential elements in Swiss chards cultivated in open-air plots. J. Food Compos. Anal. 2017, 59, 179–187. [Google Scholar] [CrossRef]
- Manas, P.; de Las Heras, J. Nutrient content in wheat grain and straw using sludge and compost from a wastewater treatment plants as a fertilizer. J. Sci. Food Agric. 2018, 98, 4707–4714. [Google Scholar] [CrossRef] [PubMed]
- Hänsch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, mn, Fe, Ni, Mo, B.; Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar]
- Alloway, B.J. Heavy Metals in Soils Trace Metals and Metalloids in Soils and Their Bioavailability; Alloway, B.J., Ed.; Springer: Berlin/Heidelberg, Germany,, 2013; pp. 195–209. [Google Scholar]
- Järvan, M.; Vettik, R.; Adamson, A. Assessment of plant nutrients dynamic in organically and conventionally managed soils by means of different extraction methods. Acta Agric. Scand. Sec. B Soil Plant Sci. 2017, 67, 191–201. [Google Scholar] [CrossRef]
- Moretti, S.M.L.; Bertoncini, E.I.; Abreu-Junior, Ch. Carbon mineralization in soils irrigated with treated swine wastewater. J. Agric. Sci. 2017, 9, 9–29. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, Y.; Zhu, L.; Cui, H.; Jia, L.; Xie, X.; Li, J.; Wei, Z. Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil. Waste Manag. 2017, 70, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Masowa, M.M.; Kutu, F.R.; Shange, P.L.; Mulidzi, R.; Vanassche, F.M.G. The effect of winery solid waste compost application on maize growth, biomass yield, and nutrient content under greenhouse conditions. Arch Agron. Soil Sci. 2016, 62, 1082–1094. [Google Scholar] [CrossRef]
- Brzeskwiniewicz, H.; Krzyszkowska, J. Three-factorial experiments in certain incomplete split-plot designs. Colloq. Biom. 2008, 38, 57–66. [Google Scholar]
- Derejko, A. Response of winter wheat cultivars to the environment and crop management in post-registration multi-environment trials. MAZOWSZE Stud. Reg. 2016, 18, 181–196. [Google Scholar] [CrossRef] [Green Version]
Parameter | Sewage Sludge Compost (SSC) | Light Agronomic Soil Class (LS) | Medium Agronomic Soil Class (MS) |
---|---|---|---|
pH * | 6.8 | 6.5 | 7.0 |
Mn | 346.9 | 38.3 | 261.6 |
Cu | 156.6 | 5.1 | 14.3 |
Zn | 569.9 | 20.3 | 42.3 |
Fe | 10461 | 775.5 | 1335.7 |
Ni | 35.8 | 8.1 | 25.6 |
Zn | Cu | Mn | Fe | Ni | |
---|---|---|---|---|---|
Shoots | |||||
A | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
B | 0.0005 | 0.5931 | 0.0000 | 0.0000 | 0.0062 |
C | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
AxB | 0.8308 | 0.2045 | 0.0002 | 0.2838 | 0.0191 |
AxC | 0.0000 | 0.0000 | 0.0000 | 0.1824 | 0.0759 |
BxC | 0.0001 | 0.0010 | 0.0000 | 0.0001 | 0.0039 |
AxBxC | 0.0000 | 0.0145 | 0.0316 | 0.8341 | 0.2787 |
Grains | |||||
A | 0.0000 | 0.0000 | 0.1693 | 0.0002 | 0.0007 |
B | 0.3881 | 0.7296 | 0.0013 | 0.0000 | 0.3740 |
C | 0.0000 | 0.0000 | 0.0000 | 0.1933 | 0.0000 |
AxB | 0.1425 | 0.0069 | 0.0001 | 0.8848 | 0.0340 |
AxC | 0.0000 | 0.0008 | 0.1626 | 0.0292 | 0.5904 |
BxC | 0.1194 | 0.3204 | 0.0000 | 0.0001 | 0.1567 |
AxBxC | 0.2088 | 0.0007 | 0.0000 | 0.0811 | 0.6024 |
HI | |||||
A | 0.0936 | 0.0034 | 0.0340 | 0.0480 | 0.1181 |
B | 0.1535 | 0.9603 | 0.2310 | 0.2287 | 0.0063 |
C | 0.0000 | 0.0000 | 0.0007 | 0.0035 | 0.0053 |
AxB | 0.5836 | 0.0103 | 0.9646 | 0.4019 | 0.0453 |
AxC | 0.3885 | 0.0000 | 0.0000 | 0.1899 | 0.1918 |
BxC | 0.0035 | 0.7456 | 0.0002 | 0.7261 | 0.0404 |
AxBxC | 0.0001 | 0.0956 | 0.0022 | 0.1783 | 0.0123 |
Relation | Treatment | R2 | b0 | b1 | |
---|---|---|---|---|---|
Shoot | Fe(Mn) | WM LS T0 | 0.998 | 893.6 | −35.60 |
WM LS T1 | 0.828 | 391.2 | −1.84 | ||
WM MS T0 | 0.974 | 506.8 | −8.70 | ||
WM MS T1 | 0.614 | 793.9 | −21.40 | ||
Zn(Mn) | WM LS T0 | 0.929 | −100.8 | 10.30 | |
WM LS T1 | 0.943 | 59.8 | 2.08 | ||
WM MS T0 | 0.942 | −8.6 | 6.30 | ||
WM MS T1 | 0.948 | −728 | 56.80 | ||
Ni(Cu) | WM LS T0 | 0.891 | 0.43 | 0.39 | |
WM LS T1 | 0.972 | −0.43 | 0.75 | ||
WM MS T0 | 0.954 | −5.61 | 1.71 | ||
WM MS T1 | 0.924 | 1.35 | 0.25 | ||
Fe(Zn) | WM MS T0 | 0.809 | 739 | −1.32 | |
WM MS T1 | 0.914 | 494 | −1.40 | ||
Mn(Cu) | WL LS T1 | 0.878 | 69.6 | −11.60 | |
WL MS T1 | 0.901 | 29.1 | −2.07 | ||
Grain | Ni(Mn) | WM MS T0 | 0.941 | 2.37 | −0.14 |
WL LS T0 | 0.926 | 1.98 | −0.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubus, M.; Graczyk, M. Microelement Variability in Plants as an Effect of Sewage Sludge Compost Application Assessed by Different Statistical Methods. Agronomy 2020, 10, 642. https://doi.org/10.3390/agronomy10050642
Jakubus M, Graczyk M. Microelement Variability in Plants as an Effect of Sewage Sludge Compost Application Assessed by Different Statistical Methods. Agronomy. 2020; 10(5):642. https://doi.org/10.3390/agronomy10050642
Chicago/Turabian StyleJakubus, Monika, and Małgorzata Graczyk. 2020. "Microelement Variability in Plants as an Effect of Sewage Sludge Compost Application Assessed by Different Statistical Methods" Agronomy 10, no. 5: 642. https://doi.org/10.3390/agronomy10050642
APA StyleJakubus, M., & Graczyk, M. (2020). Microelement Variability in Plants as an Effect of Sewage Sludge Compost Application Assessed by Different Statistical Methods. Agronomy, 10(5), 642. https://doi.org/10.3390/agronomy10050642