Population Dynamics in Mixed Canopies Composed of Kikuyu-Grass and Tall Fescue
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusion and Implications
Author Contributions
Funding
Conflicts of Interest
References
- Steiner, J.L.; Franzluebbers, A.J. Farming with grass–for people, for profit, for production, for protection. J. Soil Water Conserv. 2009, 64, 75–80. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Stuedemann, J.A.; Seman, D.H. Stocker performance and production in mixed tall fescue–bermudagrass pastures of the Southern Piedmont USA. Renew. Agric. Food Syst. 2012, 28, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Pitman, W.D. Response of a Georgia 5 tall fescue-common bermudagrass mixture to season of nitrogen fertilization on the Coastal Plain. J. Plant Nutr. 1999, 22, 1509–1517. [Google Scholar] [CrossRef]
- Read, J.J.; Lang, D.J.; Aiken, G.E. Seasonal nitrogen effects on nutritive value in binary mixtures of tall fescue and bermudagrass. Grass Forage Sci. 2016, 72, 467–480. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Seman, D.H.; Stuedemann, J.A. Forage dynamics in mixed tall fescue–bermudagrass pastures of the Southern Piedmont USA. Agric. Ecosyst. Environ. 2013, 168, 37–45. [Google Scholar] [CrossRef]
- Bouton, J.H.; Gates, R.N.; Belesky, D.P.; Owsley, M. Yield and persistence of tall fescue in the southeastern coastal-plain after removal of its endophyte. Agron. J. 1993, 85, 52–55. [Google Scholar] [CrossRef]
- Malinowski, D.P.; Belesky, D.P. Adaptations of endophyte-infected cool-season grasses to environmental stresses: Mechanisms of drought and mineral stress tolerance. Crop Sci. 2000, 40, 923–940. [Google Scholar] [CrossRef]
- Morgan, J.A.W.; Bending, G.D.; White, P.J. Biological costs and benefits to plant–microbe interactions in the rhizosphere. J. Exp. Bot. 2005, 56, 1729–1739. [Google Scholar] [CrossRef] [Green Version]
- Duchini, P.G.; Guzatti, G.C.; Echeverria, J.R.; Américo, L.F.; Sbrissia, A.F. Experimental evidence that the perennial grass persistence pathway is linked to plant growth strategy. PLoS ONE 2018, 13, 1–15. [Google Scholar] [CrossRef]
- Santos, G.T. Dinâmica E Compensação Tamanho/Densidade Populacional De Perfilhos Em Pastos De Capim-Quicuio Sob Lotação Intermitente. Doutorado em Ciência Animal, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, Brazil, 2014. [Google Scholar]
- Sbrissia, A.F.; Duchini, P.G.; Zanini, G.D.; Santos, G.T.; Padilha, D.A.; Schmitt, D. Defoliation strategies in pastures submitted to intermittent stocking method: Underlying mechanisms buffering forage accumulation over a range of grazing heights. Crop Sci. 2018, 58, 1–10. [Google Scholar] [CrossRef]
- Casal, J.J.; Deregibus, V.A.; Sánchez, R.A. Variations in tiller dynamics and morphology in lolium multiflorum Lam. Vegetative and reproductive plants as affected by differences in red/far-red irradiation. Ann. Bot. 1985, 56, 553–559. [Google Scholar] [CrossRef]
- Deregibus, V.A.; Sanches, R.A.; Casal, J.J. Effects of light quality on tiller production in lolium spp. Plant Physiol. 1983, 72, 900–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, K.J. Influence of Light and Temperature on the Growth of Ryegrass (Lolium spp.). I. Pattern of Vegetalive Development. Physiol. Plant. 1953, 6, 21–46. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Gildersleeve, R.R.; Ocumpaugh, W.R.; Quesenberry, K.H.; Moore, J.E. Mob-grazing of morphologically different Aeschynomene species. Trop. Grassl. 1987, 21, 123–132. [Google Scholar]
- Saha, D.C.; Jackson, M.A.; Johnson-Cicalese, J.M. A rapid staining method for detection of endophytic fungi in turf and forage grasses. Phytopathology 1988, 78, 237–239. [Google Scholar] [CrossRef]
- Wolfinger, R. Covariance structure selection in general mixed models. Commun. Stat.-Simul. Comput. 1993, 22, 1079–1106. [Google Scholar] [CrossRef]
- Grime, J.P. Evidence for existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 1977, 111, 1194–1669. [Google Scholar] [CrossRef]
- Da Silva, S.C.; Pereira, L.E.T.; Sbrissia, A.F.; Hernandez-garay, A. Carbon and nitrogen reserves in marandu palisade grass subjected to intensities of continuous stocking management. J. Agric. Sci.-Camb. 2014, 153, 1449–1463. [Google Scholar] [CrossRef]
- Grime, J.P. Vegetation classification by reference to strategies. Nature 1974, 250, 26–31. [Google Scholar] [CrossRef]
- Scheneiter, O.; Améndola, C. Tiller demography in tall fescue (Festuca arundinacea) swards as influenced by nitrogen fertilization, sowing method and grazing management. Grass Forage Sci. 2012, 67, 426–436. [Google Scholar] [CrossRef]
- Saxena, P.; Huang, B.; Bonos, S.A.; Meyer, W.A. Photoperiod and temperature effects on rhizome production and tillering rate in tall fescue [Lolium arundinaceum (Schreb.) Darby.]. Crop Sci. 2014, 54, 1205–1210. [Google Scholar] [CrossRef]
- Yeh, R.Y.; Matches, A.G.; Larson, R.L. Endogenous growth regulators and summer tillering of tall fescue. Crop Sci. 1976, 16, 409–413. [Google Scholar] [CrossRef]
- Carvalho, C.A.B.D.; Silva, S.C.D.; Sbrissia, A.F.; Pinto, L.F.D.M.; Carnevalli, R.A.; Fagundes, J.L.; Pedreira, C.G.S. Demografia do perfilhamento e acúmulo de matéria seca em coastcross submetido a pastejo. Pesqui. Agropecu. Bras. 2001, 36, 567–575. [Google Scholar] [CrossRef]
- Sbrissia, A.F.; Da Silva, S.C.; Sarmento, D.O.L.; Molan, L.K.; Andrade, F.M.E.; Gonçalves, A.C.; Lupinacci, A.V. Tillering dynamics in palisadegrass swards continuously stocked by cattle. Plant Ecol. 2010, 206, 349–359. [Google Scholar] [CrossRef]
- Sousa, B.M.D.L.; Rizato, C.A.; Fagundes, J.L.; Pryanka, T.N.F.; Backes, A.A.; Oliveira Junior, L.F.G.; Cruz, N.T.; Nascimento, C.S. Tillering dynamics of digit grass subjected to different defoliation frequencies. Pesqui. Agropecu. Bras. 2019, 54, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Junior, G.; Della, L.H.P.; Zanella, P.G.; Baldissera, T.C.; Pinto, C.E.; Garagorry, F.C.; Sbrissia, A.F. Grazing height management does not change the persistence pathway of Andropogon lateralis in a natural pasture. Pesqui. Agropecu. Bras. 2019, 54, 1–8. [Google Scholar]
Climatic Variables | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2015–2016 | ||||||||||||
Rainfall (mm) | 208.1 | 107.4 | 236.4 | 186.7 | 136.8 | 120.6 | 24.9 | 131.5 | 139.0 | 107.9 | 224.8 | 73.8 |
Sun hours (h) | 79.2 | 179.9 | 152.1 | 180.2 | 131.1 | 95.3 | 158.8 | 189.0 | 153.4 | 188.4 | 129.7 | 203.0 |
Average temperature (°C) | 20.2 | 20.8 | 21.2 | 18.2 | 18.6 | 12.2 | 9.1 | 11.2 | 12.5 | 13.4 | 15.3 | 17.4 |
Frost (number of days) | 0 | 0 | 0 | 0 | 2 | 4 | 5 | 2 | 0 | 0 | 0 | 0 |
2016–2017 | ||||||||||||
Rainfall (mm) | 115.1 | 107.4 | 90.1 | 158.6 | 355.6 | 247.2 | 14.2 | 117.4 | 51.2 | 130.0 | 115.1 | - |
Sun hours (h) | 188.8 | 175.5 | 169.8 | 128.5 | 108.3 | 147.2 | 239.1 | 171.5 | 178.7 | 168.6 | 188.8 | - |
Average temperature (°C) | 21.1 | 21.6 | 19.0 | 15.6 | 14.7 | 12.4 | 12.2 | 13.1 | 17.2 | 15.9 | 21.1 | - |
Frost (number of days) | 0 | 0 | 0 | 1 | 0 | 3 | 4 | 0 | 0 | 0 | 0 | - |
Long-term ↆ | ||||||||||||
Rainfall (mm) | 145.7 | 171.1 | 156.6 | 122.3 | 107.3 | 112 | 114.6 | 132.2 | 123.9 | 163.7 | 180.8 | 138.2 |
Average temperature (°C) | 19.3 | 20.4 | 20.3 | 19.1 | 16.3 | 13.2 | 11.4 | 11 | 12.3 | 13.6 | 15.7 | 17.4 |
Season | 2016 | ||||||
---|---|---|---|---|---|---|---|
Canopy Height (cm) | |||||||
7 | 12 | 17 | 12/7 | 17/7 | Mean | SEM * | |
Tillers/m2 | |||||||
Winter | 1041 | 226 | 213 | 325 | 511 | 471 B | 113 |
Spring | 2373 | 1191 | 244 | 741 | 660 | 1042 A | |
Mean | 1708 a | 730 b | 228 c | 532 b | 585 b | ||
SEM * | 179 | ||||||
Season | 2017 | ||||||
Canopy Height (cm) | |||||||
7 | 12 | 17 | 12/7 | 17/7 | Mean | SEM * | |
Tillers/m2 | |||||||
Summer | 1681 | 1020 | 293 | 690 | 553 | 848 AB | 92 |
Autumn | 2061 | 1058 | 424 | 1034 | 485 | 1012 A | |
Winter | 1074 | 558 | 127 | 493 | 435 | 538 BC | |
Spring | 788 | 546 | 48 | 122 | 87 | 318 C | |
Mean | 1401 a | 796 b | 223 c | 585 bc | 390 bc | ||
SEM * | 103 |
Season | 2016 | ||||||
---|---|---|---|---|---|---|---|
Canopy Height (cm) | |||||||
7 | 12 | 17 | 12/7 | 17/7 | Mean | SEM * | |
Tillers/m2 | |||||||
Winter | 1315 | 1798 | 1796 | 1870 | 1943 | 1744 A | 83 |
Spring | 489 | 315 | 209 | 240 | 180 | 287 B | |
Mean | 902 a | 1057 a | 1002 a | 1055 a | 1061 a | ||
SEM * | 132 | ||||||
Season | 2017 | ||||||
Canopy Height (cm) | |||||||
7 | 12 | 17 | 12/7 | 17/7 | Mean | SEM * | |
Tillers/m2 | |||||||
Summer | 28 | 49 | 65 | 64 | 69 | 55 C | 44 |
Autumn | 79 | 32 | 148 | 69 | 122 | 90 BC | |
Winter | 1449 | 1266 | 1744 | 1472 | 1444 | 1475 A | |
Spring | 323 | 261 | 111 | 225 | 286 | 242 B | |
Mean | 470 a | 402 a | 517 a | 458 a | 480 a | ||
SEM * | 49 |
Season | 2016 | ||||||
---|---|---|---|---|---|---|---|
Canopy Height (cm) | |||||||
7 | 12 | 17 | 12/7 | 17/7 | Mean | SEM * | |
Tillers/m2 | |||||||
Winter | 2713 Ba | 3152 Aa | 2624 Aa | 3670 Aa | 2764 Aa | 2984 | 109 |
Spring | 5233 Aa | 3157 Abc | 2612 Ac | 3925 Ab | 3388 Abc | 3663 | |
Mean | 3973 | 3154 | 2618 | 3797 | 3076 | ||
SEM * | 174 | ||||||
Season | 2017 | ||||||
Canopy Height (cm) | |||||||
7 | 12 | 17 | 12/7 | 17/7 | Mean | SEM * | |
Tillers/m2 | |||||||
Summer | 8474 Aa | 2972 Abc | 2271 Ac | 3586 ABb | 2583 Abc | 2924 | 101 |
Autumn | 5746 Ba | 3299 Abc | 2129 Ac | 3948 ABb | 2341 Ac | 3492 | |
Winter | 3744 Ca | 2911 Aab | 2463 Ab | 2927 Bab | 2577 Aab | 2924 | |
Spring | 4055 Ca | 3728 Aa | 3298 Aa | 4346 Aa | 3416 Aa | 3769 | |
Mean | 5505 | 3227 | 2540 | 3701 | 2729 | ||
SEM * | 112 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miqueloto, T.; Bernardon, A.; Winter, F.L.; Fischer Sbrissia, A. Population Dynamics in Mixed Canopies Composed of Kikuyu-Grass and Tall Fescue. Agronomy 2020, 10, 684. https://doi.org/10.3390/agronomy10050684
Miqueloto T, Bernardon A, Winter FL, Fischer Sbrissia A. Population Dynamics in Mixed Canopies Composed of Kikuyu-Grass and Tall Fescue. Agronomy. 2020; 10(5):684. https://doi.org/10.3390/agronomy10050684
Chicago/Turabian StyleMiqueloto, Tiago, Angela Bernardon, Fábio Luis Winter, and André Fischer Sbrissia. 2020. "Population Dynamics in Mixed Canopies Composed of Kikuyu-Grass and Tall Fescue" Agronomy 10, no. 5: 684. https://doi.org/10.3390/agronomy10050684
APA StyleMiqueloto, T., Bernardon, A., Winter, F. L., & Fischer Sbrissia, A. (2020). Population Dynamics in Mixed Canopies Composed of Kikuyu-Grass and Tall Fescue. Agronomy, 10(5), 684. https://doi.org/10.3390/agronomy10050684