Legume Cover Crop Effects on Temperate Sugarcane Yields and Their Decomposition in Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Alma Plantation Field Study
2.2. Iberia Research Station Field Studies
2.3. Laboratory Incubation
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Agricultural Statistics Service. Quick Stats. 2019. Available online: https://quickstats.nass.usda.gov/ (accessed on 26 March 2020).
- Kornecki, T.S.; Grigg, B.C.; Fouss, J.F.; Southwick, L.M. Polyacrylamide (PAM) application effectiveness in reducing soil erosion from sugarcane fields in southern Louisiana. Appl. Eng. Agric. 2005, 21, 189–196. [Google Scholar] [CrossRef]
- Arceneaux, G.; McKaig, N., Jr.; Stokes, I.W. Studies of soybeans and other green manure crops for sugarcane plantations. J. Amer. Soc. Agron. 1932, 24, 354–363. [Google Scholar] [CrossRef] [Green Version]
- Braunack, M.V.; McGarry, D. Traffic control and tillage strategies for harvesting and planting of sugarcane (Saccharum officinarum) in Australia. Soil Till. Res. 2006, 89, 86–102. [Google Scholar] [CrossRef]
- Wood, A.W. Soil degradation and management under intensive sugarcane cultivation in North Queensland. Soil Use Manag. 1985, 1, 120–124. [Google Scholar] [CrossRef]
- Magarey, R.C. Effect of Pachymetra root rot on sugarcane yield. Plant Dis. 1994, 78, 475–477. [Google Scholar] [CrossRef]
- Hoy, J.W.; Schneider, R.W. Role of Pythium in sugarcane stubble decline: Effects on plant growth in field soil. Phytopathology 1988, 78, 1692–1696. [Google Scholar] [CrossRef]
- Magarey, R.C. Microbial aspects of sugarcane yield decline. Aust. J. Agri. Res. 1996, 47, 307–322. [Google Scholar] [CrossRef]
- Seeruttun, S.; Ismael, F.M.; Ng Cheong, R.; Rivière, V.; Umrit, G. Developing new cropping systems to mitigate sugarcane yield decline in Mauritius. Proc. Int. Soc. Sugar Cane Technol. 2013, 28, 1–10. [Google Scholar]
- Dengia, A.; Lantinga, E. Impact of long-term conventional cropping practices on some soil quality indicators at Ethiopian Wonji sugarcane plantation. Adv. Crop Sci. Technol. 2016, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Stirling, G.R. The impact of farming systems on soil biology and soilborne diseases: Example from the Australian sugar and vegetable industries—The case for better integration of sugar and vegetable production and implications for future research. Australas. Plant Path. 2008, 37, 1–18. [Google Scholar] [CrossRef]
- Dabney, S.M.; Delgado, J.A.; Reeves, D.W. Using winter cover crops to improve soil and water quality. Commun. Soil Sci. Plant Anal. 2001, 32, 1221–1250. [Google Scholar] [CrossRef]
- Espejo-Pérez, A.J.; Rodríguez-Lizana, A.; Ordóñez, R.; Giráldez, J.V. Soil loss and runoff reduction in olive-tree dry-farming with cover crops. Soil Sci. Soc. Am. J. 2013, 77, 2140–2148. [Google Scholar] [CrossRef] [Green Version]
- Mesbah, A.; Nilahyane, A.; Ghimire, B.; Beck, L.; Ghimire, R. Efficacy of cover crops on weed suppression, wheat yield, and water conservation in winter wheat-sorghum-fallow. Crop Sci. 2019, 59, 1745–1752. [Google Scholar] [CrossRef]
- Adler, M.J.; Chase, C.A. Comparison of the allelopathic potential of leguminous summer cover crops: Cowpea, sunn hemp, and velvetbean. HortScience 2007, 42, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Moore, E.B.; Wiedenhoeft, M.H.; Kaspar, T.C.; Cambardella, C.A. Rye cover crop effects on soil quality in no-till corn silage-soybean cropping systems. Soil Sci. Soc. Am. J. 2014, 78, 968–976. [Google Scholar] [CrossRef]
- Hubbard, R.K.; Strickland, T.C.; Phatak, S. Effects of cover crop systems on soil physical properties and carbon/nitrogen relationships in the coastal plain of southeastern USA. Soil Till. Res. 2013, 126, 276–283. [Google Scholar] [CrossRef]
- Thawaro, N.; Toomsan, B.; Kaewpradit, W. Sweet sorghum and upland rice: Alternative preceding crops to ameliorate ethanol production and soil sustainability within the sugarcane cropping system. Sugar Tech. 2017, 19, 64–71. [Google Scholar] [CrossRef]
- Garside, A.L.; Bell, M.J. Growth and yield responses to amendments to the sugarcane monoculture: Effects of crop, pasture and bare fallow breaks and soil fumigation on plant and ratoon crops. Crop Pasture Sci. 2011, 62, 396–412. [Google Scholar] [CrossRef]
- Shoko, M.D.; Pieterse, P.J.; Zhou, M. Effect of soybean (Glycine max) as a breakcrop on the cane and sugar yield of sugarcane. Sugar Tech. 2009, 11, 252–257. [Google Scholar] [CrossRef]
- Viator, H.P.; Tubaña, B. Evaluation of the use of green manure soybean grown in rotation with sugarcane in a sub-tropical environment. J. Am. Soc. Sugar Cane Technol. 2012, 32, 51–61. [Google Scholar]
- White, P.M., Jr.; Viator, R.P.; Richard, E.P., Jr. Sugarcane yield response to soybean double-cropping in Louisiana. Crop Manag. 2011. [Google Scholar] [CrossRef]
- Webber, C.L., III; White, P.M., Jr.; Dalley, C.; Petrie, E.C.; Viator, R.P.; Shrefler, J.W. Kenaf (Hibiscus cannabinus) and cowpea (Vigna unguiculata) as sugarcane cover crops. J. Agri. Sci. 2016, 8, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Gravois, K.A.; Bischoff, K.P.; LaBorde, C.M.; Hoy, J.W.; Reagan, T.E.; Pontiff, M.J.; Kimbeng, C.A.; Hawkins, G.L.; Sexton, D.R.; Fontenot, D.P. Registration of ‘L 01-283’ sugarcane. J. Plant Reg. 2010, 4, 183–188. [Google Scholar] [CrossRef]
- Bischoff, K.P.; Gravois, K.A.; Reagan, T.E.; Hoy, J.W.; Laborde, C.M.; Kimbeng, C.A.; Hawkins, G.L.; Pontiff, M.J. Registration of ‘L 99-226’ sugarcane. J. Plant Reg. 2009, 3, 241–247. [Google Scholar] [CrossRef]
- Johnson, R.M.; Richard, E.P., Jr. Sugarcane yield, sugarcane quality, and soil variability in Louisiana. Agron. J. 2005, 97, 760–771. [Google Scholar] [CrossRef] [Green Version]
- Gravois, K.A.; Bischoff, K.P.; Pontiff, M.J.; LaBorde, C.M.; Hoy, J.W.; Reagan, T.E.; Kimbeng, C.A.; Legendre, B.L.; Hawkins, G.L.; Sexton, D.R.; et al. Registration of ‘L 01-299’ sugarcane. J. Plant Reg. 2011, 5, 191–195. [Google Scholar] [CrossRef]
- Mikha, M.M.; Rice, C.W.; Milikin, G.A. Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biol. Biochem. 2005, 37, 339–347. [Google Scholar] [CrossRef]
- Saxton, A.M. A macro for converting mean separation output to letter groupings in Proc Mixed. In Proceedings of the 23rd SAS Users Group International, SAS Institute, Cary, NC, USA, 22–25 March 1998; pp. 1243–1246. [Google Scholar]
- Gilmour, J.T.; Mauromoustakos, A.; Gale, P.M.; Norman, R.J. Kinetics of crop residue decomposition: Variability among crops and years. Soil Sci. Soc. Am. J. 1998, 62, 750–755. [Google Scholar] [CrossRef]
- Vuyyuru, M.; Sandhu, H.S.; McCray, J.M.; Raid, R.N.; Erickson, J.E.; Ogram, A.V. Amending sugarcane monoculture through rotation breaks and fungicides: Effects on chemical and microbial properties, and sucrose yields. Crop Pasture Sci. 2019, 70, 990–1003. [Google Scholar] [CrossRef]
- Gilbert, R.A.; Morris, D.R.; Rainbolt, C.R.; McCray, J.M.; Perdomo, R.E.; Eiland, B.; Powell, G.; Montes, G. Sugarcane responses to mill mud, fertilizer, and soybean nutrient sources on a sandy soil. Agron. J. 2008, 100, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Gana, A.K.; Busari, L.D. Contribution of green and farm yard manure in the nitrogen nutrition of sugarcane. Sugar Tech. 2006, 8, 175–179. [Google Scholar] [CrossRef]
- Da Silva, R.P.; Fernandes, C. Soil uses during the sugarcane fallow period: Influence on soil chemical and physical properties and on sugarcane productivity. Rev. Bras. Ciência Solo 2014, 38, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Parkhurst, C.E.; Stirling, G.R.; Magarey, M.C.; Blair, B.L.; Holt, J.A.; Bell, M.J.; Garside, A.L. Quantification of the effects of rotation breaks on soil biological properties and their impact on yield decline in sugarcane. Soil Biol. Biochem. 2005, 37, 1121–1130. [Google Scholar] [CrossRef]
- Paungfoo-Lonhienne, C.; Wang, W.; Yeoh, Y.K.; Halpin, N. Legume crop rotation suppressed nitrifying microbial community in a sugarcane cropping soil. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mehlich 3 Extract | KCl ext. | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil Series | Cation Exchange Capacity | pH | Soil Organic Matter | S | K | P | Ca | Mg | Na | B | Fe | Mn | Zn | NH4-N | NO3-N |
cmolc/kg | 1:1 | % | mg/kg | ||||||||||||
Baldwin silty clay loam | 33.7 | 5.73 | 3.76 | 9.0 | 212 | 22 | 45 | 943 | 49 | 0.4 | 304 | 36 | 1.9 | ND * | ND |
Cancienne silty clay loam | 18.7 | 5.08 | 1.82 | 7.0 | 51 | 19 | 37 | 264 | 36 | 0.4 | 254 | 83 | 1.7 | 13.4 | 1.1 |
Commerce silt loam soil | 12.5 | 6.95 | 1.19 | 8.5 | 101 | 9 | 64 | 402 | 38 | 0.3 | 275 | 37 | 1.2 | ND | ND |
Fallow | Cowpea | |||
---|---|---|---|---|
Nitrogen rate (kg/ha) | 0 | 112 | 0 | 112 |
Stalk counts (/ha) | 128,215 a * | 137,181 a | 130,905 a | 132,250 a |
Stalk weight (kg) | 0.84 a | 0.90 a | 1.03 a | 0.95 a |
Cane yield (t/ha) | 107.5 a | 124.5 a | 135.8 a | 125.1 a |
Stalk sucrose (g/kg) | 120.4 b | 124.6 b | 133.0 a | 119.9 b |
Sucrose yield (kg/ha) | 12,970 b | 15,430 ab | 17,990 a | 14,950 ab |
Fallow | Sunn Hemp | |||||
---|---|---|---|---|---|---|
Nitrogen rate (kg/ha) | 0 | 45 | 90 | 0 | 45 | 90 |
Cane yield (t/ha) | 94.0 ab * | 88.3 ab | 89.7 ab | 83.4 b | 101.0 a | 97.1 ab |
Stalk sucrose (g/kg) | 124.7 a | 122.5 a | 119.5 a | 123.5 a | 129.5 a | 118.6 a |
Sucrose yield (kg/ha) | 11,750 ab | 11,090 ab | 10,940 b | 10,290 b | 13,090 a | 11,460 ab |
Fallow | Sunn Hemp | |||||||
---|---|---|---|---|---|---|---|---|
Nitrogen rate (kg/ha) | 0 | 45 | 90 | Mean | 0 | 45 | 90 | Mean |
Cane yield (t/ha) | 107.0 | 111.8 | 105.5 | 108.1 a * | 93.9 | 95.9 | 95.3 | 95.1 b |
Stalk sucrose (g/kg) | 105.7 | 108.9 | 105.9 | 106.9 a | 109.9 | 115.9 | 109.6 | 111.8 a |
Sucrose yield (kg/ha) | 11,330 | 12,310 | 11,190 | 11,610 a | 10,350 | 11,120 | 10,480 | 10,650 a |
Fallow | Cowpea | |||||||
---|---|---|---|---|---|---|---|---|
Nitrogen rate (kg/ha) | 0 | 45 | 90 | Mean | 0 | 45 | 90 | Mean |
Cane yield (t/ha) | 70.3 | 87.2 | 98.6 | 85.4 b * | 90.8 | 94.4 | 97.6 | 94.3 a |
Stalk sucrose (g/kg) | 119.5 | 122.0 | 120.0 | 120.5 a | 119.4 | 122.9 | 121.4 | 121.2 a |
Sucrose yield (kg/ha) | 8410 | 10,680 | 11,840 | 10,310 b | 10,830 | 11,570 | 11,800 | 11,400 a |
TC | TN | C:N Ratio | 11 °C | 25 °C | 32 °C | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g/kg | k | r2 | b | DT50 | k | r2 | b | DT50 | k | r2 | b | DT50 | |||
Cowpea | 391 | 11.8 | 33.2 | 0.0044 | 0.92 | 4.467 | 157 | 0.0081 | 0.88 | 4.346 | 86 | 0.0154 | 0.68 | 4.259 | 45 |
Sorghum | 418 | 9.23 | 45.3 | 0.0039 | 0.89 | 4.457 | 178 | 0.0067 | 0.93 | 4.383 | 103 | 0.0201 | 0.89 | 4.310 | 34 |
Soybean | 420 | 17.9 | 23.5 | 0.0037 | 0.80 | 4.413 | 187 | 0.0082 | 0.91 | 4.270 | 85 | 0.0071 | 0.77 | 4.098 | 98 |
Sunn hemp | 406 | 23.0 | 17.7 | 0.0020 | 0.60 | 4.434 | 347 | 0.0065 | 0.83 | 4.249 | 107 | 0.0139 | 0.69 | 4.260 | 50 |
Sugarcane | 431 | 2.90 | 148 | 0.0020 | 0.91 | 4.575 | 347 | 0.0046 | 0.98 | 4.541 | 151 | 0.0105 | 0.91 | 4.481 | 66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, P.M., Jr.; Williams, G.; Viator, H.P.; Viator, R.P.; Webber, C.L., III. Legume Cover Crop Effects on Temperate Sugarcane Yields and Their Decomposition in Soil. Agronomy 2020, 10, 703. https://doi.org/10.3390/agronomy10050703
White PM Jr., Williams G, Viator HP, Viator RP, Webber CL III. Legume Cover Crop Effects on Temperate Sugarcane Yields and Their Decomposition in Soil. Agronomy. 2020; 10(5):703. https://doi.org/10.3390/agronomy10050703
Chicago/Turabian StyleWhite, Paul M., Jr., Gregory Williams, Howard P. Viator, Ryan P. Viator, and Charles L. Webber, III. 2020. "Legume Cover Crop Effects on Temperate Sugarcane Yields and Their Decomposition in Soil" Agronomy 10, no. 5: 703. https://doi.org/10.3390/agronomy10050703
APA StyleWhite, P. M., Jr., Williams, G., Viator, H. P., Viator, R. P., & Webber, C. L., III. (2020). Legume Cover Crop Effects on Temperate Sugarcane Yields and Their Decomposition in Soil. Agronomy, 10(5), 703. https://doi.org/10.3390/agronomy10050703