Past, Present and Future Perspectives on Groundnut Breeding in Burkina Faso
Abstract
:1. Introduction: The Importance of Groundnut in Burkina Faso
2. History of Groundnut Cultivation in Burkina Faso
3. Groundnut Research in Burkina Faso
4. Research Resources
5. Production Environment
6. Constraints to Groundnut Productivity
6.1. Abiotic Constraints
6.2. Biotic Constraints
7. Suggested Foci for Groundnut Improvement in Burkina Faso
7.1. Elements to Consider in Cultivar Development
7.2. Exploring Novel Industrial Uses of Groundnuts
7.3. Broadening Genetic Base of Breeding Population
8. Modernization Is Needed to Maximise Genetic Gain in Developing Varieties that Meet Stakeholder Demands
8.1. Modern Approaches, Technologies and Tools to Benefit Choice of Parents and Creation of Breeding Populations
8.2. Modern Approaches, Technologies and Tools to Benefit Evaluation and Selection
8.3. Modern Approaches, Technologies and Tools to Support Commercialization and Release of Improved Cultivars
9. Research Challenges in Burkina Faso
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bertioli, D.J.; Jenkins, J.; Clevenger, J.; Dudchenko, O.; Gao, D.; Seijo, G.; Leal-Bertioli, S.C.M.; Ren, L.; Farmer, A.D.; Pandey, M.K.; et al. The genome sequence of segmental allotetraploid peanut arachis hypogaea. Nat. Genet. 2019, 51, 877–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valls, J.F.; Simpson, C.E. New species of arachis (leguminosae) from brazil, paraguay and bolivia. Bonplandia 2005, 14, 35–63. [Google Scholar] [CrossRef] [Green Version]
- Stalker, H.T. Peanut (Arachis hypogaea L.). Field Crops Res. 1997, 53, 205–217. [Google Scholar] [CrossRef]
- FAO Food and Agricultural Commodities Production. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 30 March 2020).
- Tyroler, C. Gender Considerations for Researchers Working in Groundnuts; USAID—Feed The Future: Washington, DC, USA, 2018; p. 32. [Google Scholar]
- Santara, I.; Mas Aparisi, A.; Balié, J. Analyse des Incitations et Pénalisations Pour L’arachide au Burkina Faso; FAO: Rome, Italy, 2013; p. 37. [Google Scholar]
- Varshney, R.K.; Ribaut, J.-M.; Buckler, E.S.; Tuberosa, R.; Rafalski, J.A.; Langridge, P. Can genomics boost productivity of orphan crops? Nat. Biotechnol. 2012, 30, 1172–1176. [Google Scholar] [CrossRef]
- Ndjeunga, J.; Ibro, A.; Cisse, Y.; Ben Ahmed, M.I.; Moutari, A.; Kodio, O.; Echekwu, C. Characterizing Village Economies in Major Groundnut Producing Countries in West Africa: Cases of Mali, Niger and Nigeria; ICRISAT: Hyderabad, India, 2010; p. 89. [Google Scholar]
- Feldstein, H.S.; Butler Flora, C.; Poats, S.V. Gender Variable in Agricultural Research; International Development Research Centre: Ottawa, ON, Canada, 1989. [Google Scholar]
- Subrahmanyam, P.; Bosc, J.P.; Hassane, H.; Smith, D.H.; Mounkaila, A.; Ndunguru, B.J.; Sankara, P. Les maladies de l’arachide au niger et au burkina faso. Oléagineux 1992, 47, 119–133. [Google Scholar]
- Alper, C.M.; Mattes, R.D. Peanut consumption improves indices of cardiovascular disease risk in healthy adults. J. Am. Coll. Nutr. 2003, 22, 133–141. [Google Scholar] [CrossRef]
- Francisco, M.L.D.L.; Resurreccion, A.V.A. Functional components in peanuts. Crit. Rev. Food Sci. Nutr. 2008, 48, 715–746. [Google Scholar] [CrossRef]
- Jibrin, M.; Habu, S.; Echekwu, C.; Abdullahi, U.; Usman, I. Phenotypic and genotypic variance and heritability estimates for oil content and other agronomic traits in groundnut (arachis hypogaea l.). Int. J. Sci. Res. Eng. Stud. 2016, 3, 29–32. [Google Scholar]
- Hamidou, F.; Harou, A.; Achirou, B.; Halilou, O.; Bakasso, Y. Nitrogen fixation by groundnut and cowpea for productivity improvement in drought conditions in the sahel. Tropicultura 2018, 36, 63–79. [Google Scholar]
- Ranganayakulu, G.S.; Chandraobulreddy, P.; Thippeswamy, M.; Veeranagamallaiah, G.; Sudhakar, C. Identification of drought stress-responsive genes from drought-tolerant groundnut cultivar (Arachis hypogaea L. Cv k-134) through analysis of subtracted expressed sequence tags. Acta Physiol. Plant. 2012, 34, 361–377. [Google Scholar] [CrossRef]
- Blummel, M.; Ratnakumar, P.; Vadez, V. Opportunities for exploiting variations in haulm fodder traits of intermittent drought tolerant lines in a reference collection of groundnut (Arachis hypogaea L.). Field Crop. Res. 2012, 126, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Desmae, H.; Sones, K. Groundnut Cropping Guide; Africa Soil Health Consortium: Nairobi, Kenya, 2017. [Google Scholar]
- Njuki, J.; Kaaria, S.; Chamunorwa, A.; Chiuri, W. Linking smallholder farmers to markets, gender and intra-household dynamics: Does the choice of commodity matter? Eur. J. Dev. Res. 2011, 23, 426–443. [Google Scholar] [CrossRef] [Green Version]
- Narh, S.; Boote, K.J.; Naab, J.B.; Abudulai, M.; M’Bi Bertin, Z.; Sankara, P.; Burow, M.D.; Tillman, B.L.; Brandenburg, R.L.; Jordan, D.L. Yield improvement and genotype × environment analyses of peanut cultivars in multilocation trials in west africa. Crop Sci. 2014, 54, 2413–2422. [Google Scholar] [CrossRef]
- USDA. Quick Stats; US Department of Agriculture: Washington, DC, USA, 2019.
- Zongo, A.; Khera, P.; Sawadogo, M.; Shasidhar, Y.; Sriswathi, M.; Vishwakarma, M.K.; Sankara, P.; Ntare, B.R.; Varshney, R.K.; Pandey, M.K.; et al. Ssr markers associated to early leaf spot disease resistance through selective genotyping and single marker analysis in groundnut (Arachis hypogaea L.). Biotechnol. Rep. 2017, 15, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. Development of rainfed agriculture in the sahel: Overview and prospects. In Proceedings of the Fifth Conference of the Club du Sahel, Brussels, Belgium, 26–28 October 1983; Sahel, C.D., Ed.; CILSS: Ouagadougou, Burkina Faso, 1983. [Google Scholar]
- Morris, W.H.M. Production, commercialisation et exportation de l’arachide: Senegal, gambie, mali, burkina faso et niger; Peanut CRSP: Griffins, GA, USA, 2020. Available online: https://pdf.usaid.gov/pdf_docs/PNABM077.pdf (accessed on 13 May 2020).
- MAFAP. Revue des Politiques Agricoles et Alimentaires au Burkina Faso; SPAAA, Ed.; FAO: Rome, Italy, 2013. [Google Scholar]
- Isleib, T.; Wynne, J.; Nigam, S. Groundnut breeding. In The Groundnut Crop; Springer: Berlin/Heidelberg, Germany, 1994; pp. 552–623. [Google Scholar]
- Neya, F.B.; Sanon, E.; Koita, K.; Zagre, B.M.b.; Sankara, P. Diallel analysis of pod yield and 100 seeds weight in peanut (Arachis hypogaea L.) using griffing and hayman methods. J. Appl. Biosci. 2017, 116, 11619–11627. [Google Scholar] [CrossRef] [Green Version]
- Zongo, A.; Konate, A.K.; Koïta, K.; Sawadogo, M.; Sankara, P.; Ntare, B.R.; Desmae, H. Diallel analysis of early leaf spot (cercospora arachidicola hori) disease resistance in groundnut. Agronomy 2019, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Zongo, A.; Nana, A.; Sawadogo, M.; Konate, A.; Sankara, P.; Ntare, B.; Desmae, H. Variability and correlations among groundnut populations for early leaf spot, pod yield, and agronomic traits. Agronomy 2017, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- CRSP, P. Annual Report of the Peanut Collaborative Research Support Program (Crsp); University of Georgia: Athens, GA, USA, 1983; p. 231. [Google Scholar]
- Gapasin, D.; Cherry, J.; Gilbert, J.; Gibbons, R.; Hildebrand, G.; Nelson, D.; Valentine, H.; Williamson, H. The Peanut Collaborative Research Support Program (Crsp); University of Georgia: Athens, GA, USA, 2005; p. 359. [Google Scholar]
- Dalton, T.J.; Cardwell, K.; Katsvairo, T. The Peanut Collaborative Research Support Program: A Report Submitted to the Bureau of Food Security, Usaid; USAID: Washington, DC, USA, 2012; p. 56. [Google Scholar]
- Swindell, K. Serawoollies, tillibunkas and strange farmers: The development of migrant groundnut farming along the gambia river, 1848–1895. J. Afr. Hist. 1980, 21, 93–104. [Google Scholar] [CrossRef]
- Brooks, G.E. Peanuts and colonialism: Consequences of the commercialization of peanuts in west africa, 1830–1870. J. Afr. Hist. 1975, 16, 29–54. [Google Scholar] [CrossRef]
- Anonymous. L’économie de la Haute Volta. Available online: https://clubjosephkizerbo.blog4ever.com/l-economie-de-la-haute-volta (accessed on 17 July 2019).
- Anonymous. Histoire du Burkina du 19e Siècle à Nos Jours; Eurêka: Brussels, Belgium, 1996; p. 20. [Google Scholar]
- IRHO. L’arachide: Principaux Resultats Obtenus en Experimentation; Institut de Recherches Pour les Huiles et Oleagineux (IRHO): Station de Niangoloko, Haute-Volta, 1964; p. 13. [Google Scholar]
- Gbikpi, P. L’agriculture Burkinabe; Ministère de L’agriculture et des Ressources Animales: Luanda, Angola, 1996.
- Stads, G.-J.; Boro, S.I. Indicateurs relatifs aux sciences et technologies agricoles, Burkina Faso. In Abrégé l’ASTI; INERA-IFPRI, Ed.; IFPRI: Washington, DC, USA, 2004; p. 10. [Google Scholar]
- Umeh, V.; Youm, O.; Waliyar, F. Soil pests of groundnut in sub-Saharan Africa—A review. Int. J. Trop. Insect Sci. 2001, 21, 23–32. [Google Scholar] [CrossRef]
- Barandao, A. Étude de Faisabilité Technico-Economique Pour L’implantation D’une Unité de Production de Plumpy’nut à Kongoussi. Ph.D. Thesis, EIER-ETSHER, Ouagadougou, Burkina Faso, 2006. [Google Scholar]
- Volper, S.; Bichat, H. Des jardins d’essai au cirad: Une épopée scientifique française. In Un Parcours Dans les Mondes de la Recherche Agronomique. L’Inra et le Cirad; CNRS: Paris, France, 2014; Volume 3, pp. 113–124. [Google Scholar]
- Tourte, R. Histoire de la Recherche Agricole en Afrique Tropicale Francophone; Organisation des Nations Unies pour L’alimentation et L’agriculture: Rome, Italy, 2005. [Google Scholar]
- Surre, C. L’institut de Recherches Pour les Huiles et Oléagineux: 1942–1984; CIRAD: Paris, France, 1993. [Google Scholar]
- Sauger, L.; Catherinet, M.; Durand, Y. Contribution a l’etude de la rosette chlorotique de l’arachide. Bull. Agron. Minist. Fr. Outremer 1954, 13, 163–180. [Google Scholar]
- Nigam, S.; Dwivedi, S.; Gibbons, R. Groundnut breeding: Constraints, achievements and future possibilities. In Plant Breeding Abstracts; CAB International: Wallingford, UK, 1991; pp. 1127–1136. [Google Scholar]
- Matlon, P.; Cantrell, R.; King, D.; Benoit-Cattin, M. Coming Full Circle: Farmers’ Participation in the Development of Technology; IDRC: Ottawa, ON, Canada, 1984. [Google Scholar]
- Desmae, H.; Janila, P.; Okori, P.; Pandey, M.K.; Motagi, B.N.; Monyo, E.; Mponda, O.; Okello, D.; Sako, D.; Echeckwu, C.; et al. Genetics, genomics and breeding of groundnut (Arachis hypogaea L.). Plant Breed. 2019, 138, 425–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, P.; Singh, K.; Dwivedi, S.; Rao, V. Sources of resistance to the jassid (empoasca kerri pruthi), thrips (frankliniella schultzei (trybom)) and termites (odontotermes sp.) in groundnut (Arachis hypogaea L.). Peanut Sci. 1985, 12, 58–60. [Google Scholar] [CrossRef] [Green Version]
- ICRISAT. Resistance to Soil-borne Diseases of Legumes. In Proceedings of the Consultants’ Group Discussion on the Resistance to Soil-Borne Diseases of Legumes, Patancheru, India, 8–11 January 1979; Nene, Y.L., Ed.; ICRISAT: Patancheru, India, 1979; p. 180. [Google Scholar]
- Upadhyaya, H.D.; Nigam, S.N.; Mehan, V.K.; Lenne, J.M. Aflatoxin contamination of groundnut: Prospects for a genetic solution through conventional breeding. In Proceedings of the First Asia Working Group Meeting, Hanoi, Vietnam, 27–29 May 1996; Mehan, V.K., Gowda, C.L.L., Eds.; International Crops Research Institute for the Semi-Arid Tropics: Hanoi, Vietnam, 1997; pp. 81–85. [Google Scholar]
- Upadhyaya, H.; Nigam, S.; Thakur, R. Genetic Enhancement for Resistance to Aflatoxin Contamination in Groundnut. In Summary proceedings of the Seventh ICRISAT Regional Groundnut Meeting for Western and Central Africa; ICRISAT: Cotonu, Benin, 2002; pp. 29–36. [Google Scholar]
- Waliyar, F.; Bockelee-Morvan, A. Resistance of groundnut varieties to aspergillus flavus in senegal. In International Workshop on Aflatoxin Contamination of Groundnut, Patancheru, Andhra Pradesh, India, 1989; Hall, S.D., Ed.; ICRISAT: Andhra Pradesh, India, 1989; p. 426. [Google Scholar]
- Nigam, S.N.; Waliyar, F.; Aruna, R.; Reddy, S.V.; Kumar, P.L.; Craufurd, P.Q.; Diallo, A.T.; Ntare, B.R.; Upadhyaya, H.D. Breeding peanut for resistance to aflatoxin contamination at icrisat. Peanut Sci. 2009, 36, 42–49. [Google Scholar] [CrossRef]
- World-Bank. Upper Volta—Agricultural Issues Study; 3296; World Bank: Washington, DC, USA, 1982; p. 267. [Google Scholar]
- Ndjeunga, J.; Mausch, K.; Simtowe, F. Assessing the effectiveness of agricultural r&d for groundnut, pearl millet, pigeonpea, and sorghum in west and central africa and east and southern africa. In Crop Improvement, Adoption, and Impact of Improved Varieties in Food Crops in Sub-Saharan Africa; Walker, T.S., Alwang, J., Eds.; CGIAR and CAB international: Wallingford, UK, 2015; chapter 7; pp. 123–147. [Google Scholar]
- INERA. Productions Scientifiques et Techniques des Chercheurs de L’inera (1990–2012); INERA: Ouagadougou, Burkina Faso, 2012; p. 97. [Google Scholar]
- Germani, G. Etude Nématologique de Deux Affections de L’arachide en Haute-Volta: La Chlorose et le Clump; Office de la Recherche Scientifique et Technique D’outre—Mer (ORSTOM): Abidjan, Adiopodoumé, 1973; p. 31. [Google Scholar]
- Picasso, C. Evolution des rendements et de ses composantes pour l’arachide et quelques cultures en rotation dans le sud du burkina faso. Oléagineux 1987, 42, 469–474. [Google Scholar]
- Gillier, P.; Silvestre, P. L’arachide; Maisonneuve et Larose: Paris, France, 1969. [Google Scholar]
- CNS. Catalogue National des Especes et Varietes Agricoles du Burkina Faso; Semences, C.N.S., Ed.; CNS: Ouagadougou, Burkina Faso, 2014; p. 81. [Google Scholar]
- Mayeux, A.H.; F, W.; R, N.B. Groundnut Germplasm Project; ICRISAT: Andhra Pradesh, India, 2003; p. 78. [Google Scholar]
- Anonymous. Catalogue Régional des Espèces et Variétés Végétqles Cedeao-Uemoa-Cilss: Variétés Homologuées 2016–2018; CORAF, Ed.; CORAF: Dakar, Senegal, 2019. [Google Scholar]
- ASTI. Cgiar’s Diiva Project; A Consolidated Database of Crop Varietal Releases, Adoption, and Research Capacity in Africa South of the Sahara; CGIAR: Montpellier, France, 2017. [Google Scholar]
- Hollinger, F.; Staatz, J.M. Croissance Agricole en Afrique de L’ouest: Facteurs Déterminants de Marché et de Politique; L’organisation des Nations Unies Pour L’alimentation et L’agriculture: Rome, Italy, 2015. [Google Scholar]
- Stads, G.-J.; Kaboré, S.S. Burkina Faso: Évaluation de la Recherche Agricole; IFPRI: Roma, Italy, 2010. [Google Scholar]
- INERA. Institut de L’environement et de Recherches Agricoles: Bilan de 10 Annees de Recherche 1988–1998; CNRST/INERA: Stockholm, Sweden, 2000; p. 122. [Google Scholar]
- Miningou, A.; Sawadogo, E.; Barry, S.; Traore, S.A. Final Narrative Report on Groundnut 2018 TL III/Burkina Faso; INERA: Stockholm, Sweden, 2019; p. 28. [Google Scholar]
- Cobb, J.N.; Juma, R.U.; Biswas, P.S.; Arbelaez, J.D.; Rutkoski, J.; Atlin, G.; Hagen, T.; Quinn, M.; Ng, E.H. Enhancing the rate of genetic gain in public-sector plant breeding programs: Lessons from the breeder’s equation. Theor. Appl. Genet. 2019, 132, 627–645. [Google Scholar] [CrossRef] [Green Version]
- Abady, S.; Shimelis, H.; Janila, P.; Mashilo, J. Groundnut (Arachis hypogaea L.) improvement in sub-saharan africa: A review. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 528–545. [Google Scholar] [CrossRef]
- Janila, P.; Variath, M.T.; Pandey, M.K.; Desmae, H.; Motagi, B.N.; Okori, P.; Manohar, S.S.; Rathnakumar, A.L.; Radhakrishnan, T.; Liao, B.; et al. Genomic tools in groundnut breeding program: Status and perspectives. Front. Plant Sci. 2016, 7, 289. [Google Scholar] [CrossRef] [Green Version]
- Mumm, R.; Danquah, E. The state of soybean in africa: The african plant breeders of tomorrow. Farmdoc Daily 2019, 9, 15116–15120. [Google Scholar]
- Mumm, R.H.; Howard-Yana, S.; Danquah, E.Y.; Van Deynze, A.; Edema, R.; Achigan-Dako, E.G.; Suza, W.P.; Madakadze, R.M. Aiming for excellence in training and sustaining african plant breeders. In Plant and Animal Genome Meeting XXVIII; PAG XXVIII: San Diego, CA, USA, 2020. [Google Scholar]
- Kindo, Y.; Mas Aparisi, A. Analyse des Incitations Par les Prix Pour Arachide au Burkina Faso Pour la Période 2005–2013; FAO: Rome, Italy, 2015. [Google Scholar]
- World-Bank. Burkina Faso. Le Défi de la Diversification des Exportations Dans un Pays Enclavé: Étude Diagnostique sur L’intégration Commerciale Pour le Programme du Cadre Intégré 43134; World Bank: Washington, DC, USA, 2007; p. 172. [Google Scholar]
- FAO. Worldwide Regulations for Mycotoxins in Food and Feed in 2003; 92-5-105162-3; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2004. [Google Scholar]
- CCIB. Donnees Ccib 2018; Chambre de Commerce et d’Industrie du Burkina Faso: Ouagadougou, Burkina Faso, 2018. [Google Scholar]
- van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance—A review. Field Crop. Res. 2013, 143, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Cassman, K.G.; Field, C.B. Crop yield gaps: Their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 2009, 34, 179–204. [Google Scholar] [CrossRef] [Green Version]
- KPR, V.; Sankar, G.M.; HP, S.; Balaguravaiah, D.; Padmalatha, Y. Modeling sustainability of crop yield in rainfed groundnut based on rainfall and land degradation. Indian J. Dryland Agric. Res. Dev. 2003, 13, 7–13. [Google Scholar]
- Camberlin, P.; Diop, M. Inter-relationships between groundnut yield in senegal, interannual rainfall variability and sea-surface temperatures. Theor. Appl. Climatol. 1999, 63, 163–181. [Google Scholar] [CrossRef]
- Janila, P.; Nigam, S.N. Phenotyping for groundnut (Arachis hypogaea L.) improvement. In Phenotyping for Plant Breeding: Applications of Phenotyping Methods for Crop Improvement; Panguluri, S.K., Kumar, A.A., Eds.; Springer: New York, NY, USA, 2013; pp. 129–167. [Google Scholar]
- Stoop, W.A. Variations in soil properties along three toposequences in burkina faso and implications for the development of improved cropping systems. Agric. Ecosyst. Environ. 1987, 19, 241–264. [Google Scholar] [CrossRef]
- Parker, M.B.; Walker, M.E. Soil ph and manganese effects on manganese nutrition of peanut1. Agron. J. 1986, 78, 614–620. [Google Scholar] [CrossRef]
- Coulibaly, P.J.d.A.; Okae-Anti, D.; Ouattara, B.; Sawadogo, J.; Sedogo, M.P. Effect of Dry Cropping Season of Sorghum on Selected Physico-Chemical Properties in West Africa. Int. J. Agric. Innov. Res. 2018, 7, 192–196. [Google Scholar]
- Gibbons, R.; Mertin, J. Abstracts in English and French of the International Workshop on Groundnuts 13–17 October 1980; ICRISAT: Andhra Pradesh, India, 1981. [Google Scholar]
- Bonkoungou, S. Distribution Géographique et Quelques Aspects Ecologiques des Virus du Clump et de la Rosette de L’arachide au Burkina Faso. Ph.D. Thesis, Universite de Dschang, Dschang, Cameroun, 2001. [Google Scholar]
- De Berchoux, C. La rosette de l’arachide en haute-volta comportement des lignées résistantes. Oléagineux 1960, 15, 229–233. [Google Scholar]
- Dubern, J. La Rosette Chlorotique de L’arachide: Contribution à L’étude de la Transmission Par Aphis Craccivora Koch; ORSTOM: Adiopodoume, Cote d’Ivoire, 1977; p. 16. [Google Scholar]
- Naidu, R.; Kimmins, F.; Deom, C.; Subrahmanyam, P.; Chiyembekeza, A.; Van der Merwe, P. Groundnut rossette: A virus disease affecting groundnut production in sub-saharan africa. Plant Dis. 1999, 83, 700–709. [Google Scholar] [CrossRef] [Green Version]
- Nigam, S.; Prasada Rao, R.; Bhatnagar-Mathur, P.; Sharma, K. Genetic management of virus diseases in peanut. Plant Breed. Rev. 2012, 36, 293. [Google Scholar]
- Wightman, J.; Rao, G.R. Groundnut pests. In The Groundnut Crop; Springer: Berlin/Heidelberg, Germany, 1994; pp. 395–479. [Google Scholar]
- Umeh, V. Soil pests of groundnut in west africa–case study of mali, burkina-faso, niger, and nigeria. Int. Arachis Newsl. 1998, 18, 50–52. [Google Scholar]
- Janila, P.; Nigam, S.N.; Pandey, M.K.; Nagesh, P.; Varshney, R. Groundnut improvement: Use of genetic and genomic tools. Front. Plant Sci. 2013, 4, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragot, M.; Bonierbale, M.; Weltzein, E. From Market Demand to Breeding Decisions: A Framework: Working Paper 2; CIP and CGIAR: Lima, Peru, 2018; p. 53. [Google Scholar]
- Persley, G.J.; Anthony, V.M. The Business of Plant Breeding: Market-Led Approaches to New Variety Design in Africa; CABI: Wallingford, UK, 2017. [Google Scholar]
- Dorner, J.W. Management and prevention of mycotoxins in peanuts. Food Addit. Contam. Part A 2008, 25, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Christèle, I.-V.; Laurencia, O.; Sylvie, A.; Hounhouigan, J.; Polycarpe, K.; Waliou, A.; Hama, F.B. Traditional Recipes of Millet, Sorghum-and Maize-Based Dishes and Related Sauces Frequently Consumed by Young Children in Burkina Faso and Benin; Wageningen University Publisher: Wageningen, The Netherlands, 2010. [Google Scholar]
- Ayensu, D.A. The Art of West African Cooking, 1st ed.; Doubleday: New York, NY, USA, 1972; p. 145. [Google Scholar]
- Chen, X.; Lu, Q.; Liu, H.; Zhang, J.; Hong, Y.; Lan, H.; Li, H.; Wang, J.; Liu, H.; Li, S.; et al. Sequencing of cultivated peanut, arachis hypogaea, yields insights into genome evolution and oil improvement. Mol. Plant 2019, 12, 920–934. [Google Scholar] [CrossRef] [Green Version]
- Varshney, R.K. Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Sci. 2016, 242, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Bolton, G.E.; Sanders, T.H. Effect of roasting oil composition on the stability of roasted high-oleic peanuts. J. Am. Oil Chem. Soc. 2002, 79, 129–132. [Google Scholar] [CrossRef]
- Vassiliou, E.K.; Gonzalez, A.; Garcia, C.; Tadros, J.H.; Chakraborty, G.; Toney, J.H. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine tnf-α both in vitro and in vivo systems. Lipids Health Dis. 2009, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- O’Byrne, D.J.; Knauft, D.A.; Shireman, R.B. Low fat-monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids 1997, 32, 687–695. [Google Scholar] [CrossRef]
- Rizzo, W.B.; Watkins, P.A.; Phillips, M.W.; Cranin, D.; Campbell, B.; Avigan, J. Adrenoleukodystrophy: Oleic acid lowers fibroblast saturated c22–26 fatty acids. Neurology 1986, 36, 357–361. [Google Scholar] [CrossRef]
- Holbrook, C.C.; Burow, M.D.; Chen, C.Y.; Pandey, M.K.; Liu, L.; Chagoya, J.C.; Chu, Y.; Ozias-Akins, P. Chapter 4—Recent advances in peanut breeding and genetics. In Peanuts; Stalker, H.T., Wilson, R., Eds.; AOCS Press: Urbana, IL, USA, 2016; pp. 111–145. [Google Scholar]
- Rao, V.R.; Murty, U. Botany—Morphology and anatomy. In The Groundnut Crop; Springer: Berlin/Heidelberg, Germany, 1994; pp. 43–95. [Google Scholar]
- Nigam, S.N.; Chandra, S.; Sridevi, K.R.; Bhukta, M.; Reddy, A.G.S.; Rachaputi, N.R.; Wright, G.C.; Reddy, P.V.; Deshmukh, M.P.; Mathur, R.K.; et al. Efficiency of physiological trait-based and empirical selection approaches for drought tolerance in groundnut. Ann. Appl. Biol. 2005, 146, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Ntare, B.R.; Williams, J.H.; Dougbedji, F. Evaluation of groundnut genotypes for heat tolerance under field conditions in a sahelian environment using a simple physiological model for yield. J. Agric. Sci. 2001, 136, 81–88. [Google Scholar] [CrossRef] [Green Version]
- ICRISAT. Smart Food. Available online: https://www.smartfood.org/why-smartfood-2/ (accessed on 25 August 2019).
- Nutriset Plumpy’nut® et le Modèle Cmam: Comment la r&d de Nutriset a Contribué à Transformer le Traitement de la Malnutrition Aiguë Sévère. Available online: https://www.nutriset.fr/articles/fr/plumpynut-et-le-modele-cmam-contribution-de-la-recherche-et-developpement-de-nutriset (accessed on 25 July 2019).
- Tidey, C. Teaming up to Turn the Tide against Malnutrition in Niger; UNICEF: New York, NY, USA, 2012. [Google Scholar]
- Bloemen, S. Des Solutions Locales Pour Répondre à Une Crise Alimentaire Régionale; UNICEF: New York, NY, USA, 2013. [Google Scholar]
- WHO. Worldwide prevalence of anaemia 1993-2005: Who global database of anaemia; World Health Organization: Geneva, Switzerland, 2008; p. 51. [Google Scholar]
- Gödecke, T.; Stein, A.J.; Qaim, M. The global burden of chronic and hidden hunger: Trends and determinants. Glob. Food Secur. 2018, 17, 21–29. [Google Scholar] [CrossRef]
- von Grebmer, K.; Saltzman, A.; Birol, E.; Wiesman, D.; Prasai, N.; Yin, S.; Yohannes, Y.; Menon, P.; Thompson, J.; Sonntag, A. 2014 Global Hunger Index: The Challenge of Hidden Hunger; Welthungerhilfe, IFPRI, Concern Worldwide: Washington, DC, USA, 2014; p. 56. [Google Scholar]
- Janila, P.; Nigam, S.N.; Abhishek, R.; Anil Kumar, V.; Manohar, S.S.; Venuprasad, R. Iron and zinc concentrations in peanut (Arachis hypogaea L.) seeds and their relationship with other nutritional and yield parameters. J. Agric. Sci. 2014, 153, 975–994. [Google Scholar] [CrossRef]
- Cook, B.; Crosthwaite, I. Utilization of arachis species as forage. In The Groundnut Crop; Springer: Berlin/Heidelberg, Germany, 1994; pp. 624–663. [Google Scholar]
- Orsini, F.; Kahane, R.; Nono-Womdim, R.; Gianquinto, G. Urban agriculture in the developing world: A review. Agron. Sustain. Dev. 2013, 33, 695–720. [Google Scholar] [CrossRef] [Green Version]
- Ayantunde, A.A.; Blummel, M.; Grings, E.; Duncan, A.J. Price and quality of livestock feeds in suburban markets of west africa’s sahel: Case study from bamako, mali. Revue D’elevage Medecine Veterinaire Pays Tropicaux 2014, 67, 13–21. [Google Scholar] [CrossRef]
- Moretzsohn, M.C.; Gouvea, E.G.; Inglis, P.W.; Leal-Bertioli, S.C.; Valls, J.F.; Bertioli, D.J. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann. Bot. 2012, 111, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Stalker, H.T.; Tallury, S.P.; Seijo, G.R.; Leal-Bertioli, S.C. Chapter 2—Biology, speciation, and utilization of peanut species. In Peanuts; Stalker, H.T., Wilson, R., Eds.; AOCS Press: Urbana, IL, USA, 2016; pp. 27–66. [Google Scholar]
- Foncéka, D.; Hodo-Abalo, T.; Rivallan, R.; Faye, I.; Sall, M.N.; Ndoye, O.; Fávero, A.P.; Bertioli, D.J.; Glaszmann, J.-C.; Courtois, B.; et al. Genetic mapping of wild introgressions into cultivated peanut: A way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol. 2009, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Knauft, D.A.; Wynne, J.C. Peanut breeding and genetics. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 1995; Volume 55, pp. 393–445. [Google Scholar]
- Abdou, Y.A.-M.; Gregory, W.C.; Cooper, W.E. Sources and nature of resistance to cercospora arachidicola hori and cercosporidium personatum (beck & curtis) deighton in arachis species. Peanut Sci. 1974, 1, 6–11. [Google Scholar]
- Mallikarjuna, N.; Senthilvel, S.; Hoisington, D. Development of new sources of tetraploid arachis to broaden the genetic base of cultivated groundnut (Arachis hypogaea L.). Genet. Resour. Crop Evol. 2011, 58, 889–907. [Google Scholar] [CrossRef] [Green Version]
- Janila, P.; Ramaiah, V.; Rathore, A.; Rupakula, A.; Reddy, R.K.; Waliyar, F.; Nigam, S.N. Genetic analysis of resistance to late leaf spot in interspecific groundnuts. Euphytica 2013, 193, 13–25. [Google Scholar]
- Correa, C.M. Considerations on the standard material transfer agreement under the fao treaty on plant genetic resources for food and agriculture. J. World Intellect. Prop. 2006, 9, 137–165. [Google Scholar] [CrossRef]
- Moose, S.P.; Mumm, R.H. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 2008, 147, 969–977. [Google Scholar] [CrossRef] [Green Version]
- Lush, J.L. Animal Breeding Plans; Read Books Ltd.: Redditch, UK, 1937. [Google Scholar]
- Eberhart, S. Factors effecting efficiencies of breeding methods. Afr. Soils 1970, 15, 655–680. [Google Scholar]
- Heffner, E.L.; Lorenz, A.J.; Jannink, J.-L.; Sorrells, M.E. Plant breeding with genomic selection: Gain per unit time and cost. Crop Sci. 2010, 50, 1681–1690. [Google Scholar] [CrossRef]
- Bera, S.; Bhatt, O. In vitro callogenesis and plant regeneration from anther culture in groundnut (Arachis hypogaea L.). J. Plant Genet. Resour. 2007, 20, 118–121. [Google Scholar]
- Maluszynski, M.; Kasha, K.J.; Szarejko, I. Published doubled haploid protocols in plant species. In Doubled Haploid Production in Crop Plants: A Manual; Maluszynski, M., Kasha, K.J., Forster, B.P., Szarejko, I., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 309–335. [Google Scholar]
- Gunasekaran, A.; Pavadai, P. Studies on induced physical and chemical mutagenesis in groundnut (Arachis hypogia). Int. Lett. Nat. Sci. 2015, 8, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Knoll, J.E.; Ramos, M.L.; Zeng, Y.; Holbrook, C.C.; Chow, M.; Chen, S.; Maleki, S.; Bhattacharya, A.; Ozias-Akins, P. Tilling for allergen reduction and improvement of quality traits in peanut (Arachis hypogaea L.). BMC Plant Biol. 2011, 11, 81. [Google Scholar] [CrossRef] [Green Version]
- Mensah, J.; Obadoni, B. Effects of sodium azide on yield parameters of groundnut (Arachis hypogaea L.). Afr. J. Biotechnol. 2007, 6, 668–671. [Google Scholar]
- Busolo-Bulafu, C.M. Mutation Breeding of Groundnuts (Arachis hypogaea L.) in Uganda; IAEA: Vienna, Austria, 1991. [Google Scholar]
- Tshilenge-Lukanda, L.; Kalonji-Mbuyi, A.; Nkongolo, K.; Kizungu, R. Effect of gamma irradiation on morpho-agronomic characteristics of groundnut (Arachis hypogaea L.). Am. J. Plant Sci. 2013, 4, 2186–2192. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Badigannavar, A. A narrow leaf groundnut mutant, TMV2-NLM has a g to a mutation in AHFAD2A gene for high oleate trait. Indian J. Genet. Plant Breed. 2013, 73, 105–109. [Google Scholar] [CrossRef]
- Tshilenge-Lukanda, L.; Funny-Biola, C.; Tshiyoyi-Mpunga, A.; Mudibu, J.; Ngoie-Lubwika, M.; Mukendi-Tshibingu, R.; Kalonji-Mbuyi, A. Radio-sensitivity of some groundnut (Arachis hypogaea L.) genotypes to gamma irradiation: Indices for use as improvement. Br. J. Biotechnol. 2012, 3, 169–178. [Google Scholar] [CrossRef]
- Fountain, J.C.; Khera, P.; Yang, L.; Nayak, S.N.; Scully, B.T.; Lee, R.D.; Chen, Z.-Y.; Kemerait, R.C.; Varshney, R.K.; Guo, B. Resistance to aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress, and future perspectives. Crop J. 2015, 3, 229–237. [Google Scholar] [CrossRef]
- Torres, A.M.; Barros, G.G.; Palacios, S.A.; Chulze, S.N.; Battilani, P. Review on pre and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res. Int. 2014, 62, 11–19. [Google Scholar] [CrossRef]
- Ozias-Akins, P.; Yang, H.; Gill, R.; Fan, H.; Lynch, R.E. Reduction of aflatoxin contamination in peanut: A genetic engineering approach. In Crop Biotechnology; American Chemical Society: New York, NY, USA, 2002; Volume 829, pp. 151–160. [Google Scholar]
- Holbrook, C.C.; Ozias-Akins, P.; Chu, Y.; Guo, B. Impact of molecular genetic research on peanut cultivar development. Agronomy 2011, 1, 3–17. [Google Scholar] [CrossRef]
- Bhatnagar-Mathur, P.; Sunkara, S.; Bhatnagar-Panwar, M.; Waliyar, F.; Sharma, K.K. Biotechnological advances for combating aspergillus flavus and aflatoxin contamination in crops. Plant Sci. 2015, 234, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Higgins, C.M.; Dietzgen, R.G. Genetic Transformation, Regeneration and Analysis of Transgenic Peanut; Australian Centre for International Agricultural Research: Canberra, Australia, 2000; p. 90. [Google Scholar]
- Sharma, K.K.; Pothana, A.; Prasad, K.; Shah, D.; Kaur, J.; Bhatnagar, D.; Chen, Z.-Y.; Raruang, Y.; Cary, J.W.; Rajasekaran, K.; et al. Peanuts that keep aflatoxin at bay: A threshold that matters. Plant Biotechnol. J. 2018, 16, 1024–1033. [Google Scholar] [CrossRef] [Green Version]
- van de Wiel, C.C.M.; Schaart, J.G.; Lotz, L.A.P.; Smulders, M.J.M. New traits in crops produced by genome editing techniques based on deletions. Plant Biotechnol. Rep. 2017, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mishra, R.; Zhao, K. Genome editing technologies and their applications in crop improvement. Plant Biotechnol. Rep. 2018, 12, 57–68. [Google Scholar] [CrossRef]
- Kleter, G.A.; Kuiper, H.A.; Kok, E.J. Gene-edited crops: Towards a harmonized safety assessment. Trends Biotechnol. 2019, 37, 443–447. [Google Scholar] [CrossRef]
- Subburaj, S.; Tu, L.; Jin, Y.-T.; Bae, S.; Seo, P.J.; Jung, Y.J.; Lee, G.-J. Targeted genome editing, an alternative tool for trait improvement in horticultural crops. Hortic. Environ. Biotechnol. 2016, 57, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Wolter, F.; Schindele, P.; Puchta, H. Plant breeding at the speed of light: The power of crispr/cas to generate directed genetic diversity at multiple sites. BMC Plant Biol. 2019, 19, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campa, C.C.; Weisbach, N.R.; Santinha, A.J.; Incarnato, D.; Platt, R.J. Multiplexed genome engineering by cas12a and crispr arrays encoded on single transcripts. Nat. Methods 2019, 16, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Zhu, J.; Gong, L.; He, L.; Lee, C.; Han, S.; Chen, C.; He, G. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnol. 2019, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Ezezika, O.; Thomas, F.; Lavery, J.; Daar, A.; Singer, P. A social audit model for agro-biotechnology initiatives in developing countries: Accounting for ethical, social, cultural and commercialization issues. J. Technol. Manag. Innov. 2009, 4, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Savadori, L.; Savio, S.; Nicotra, E.; Rumiati, R.; Finucane, M.; Slovic, A.P. Expert and public perception of risk from biotechnology. Risk Anal. 2004, 24, 1289–1299. [Google Scholar] [CrossRef]
- Assemblée-Nationale, A. Régime de sécurité en matière de biotechnologie au burkina faso; Assemblée-Nationale: Ouagadougou, Burkina Faso, 2006; p. 40. [Google Scholar]
- Hill, R.A. Conceptualizing risk assessment methodology for genetically modified organisms. Environ. Biosaf. Res. 2005, 4, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.L.; Raybould, A.F.; Hudson, M.D.; Poppy, G.M. How does scientific risk assessment of GM crops fit within the wider risk analysis? Trends Plant Sci. 2007, 12, 1–5. [Google Scholar] [CrossRef]
- Potrykus, I. Regulation must be revolutionized. Nature 2010, 466, 561. [Google Scholar] [CrossRef]
- Assemblee Nationale, B.F. Loi no 064–2012/an du 20 Décembre 2012 Portant Régime de Sécurité en Matière de Biotechnologie; Presidence: Ouagadougou, Burkina Faso, 2012. [Google Scholar]
- Sundaram, J.; Kandala, C.V.; Holser, R.A.; Butts, C.L.; Windham, W.R. Determination of in-shell peanut oil and fatty acid composition using near-infrared reflectance spectroscopy. J. Am. Oil Chem. Soc. 2010, 87, 1103–1114. [Google Scholar] [CrossRef]
- Janila, P.; Pandey, M.K.; Shasidhar, Y.; Variath, M.T.; Sriswathi, M.; Khera, P.; Manohar, S.S.; Nagesh, P.; Vishwakarma, M.K.; Mishra, G.P.; et al. Molecular breeding for introgression of fatty acid desaturase mutant alleles (AHFAD2A and AHFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci. 2016, 242, 203–213. [Google Scholar] [CrossRef] [Green Version]
- ICRISAT. Why G.E.M.S? Available online: http://gems.icrisat.org/ (accessed on 27 February 2020).
- Hinkelmann, K.; Kempthorne, O. Design and Analysis of Experiments Volume 2: Advanced Experimental Design; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Naresh, R.; Singh, S.; Misra, A.; Tomar, S.; Kumar, P.; Kumar, V.; Kumar, S. Evaluation of the laser leveled land leveling technology on crop yield and water use productivity in western uttar pradesh. Afr. J. Agric. Res. 2014, 9, 473–478. [Google Scholar]
- Al-Naggar, A.; Abdalla, A.; Gohar, A.; Hafez, E. Breeding values of 254 maize (Zea mays L.) doubled haploid lines under drought conditions at flowering and grain filling. J. Adv. Biol. Biotechnol. 2016, 1–15. [Google Scholar] [CrossRef]
- Yost, M.; Sorensen, B.; Creech, E.; Allen, N.; Larsen, R.; Ramirez, R.; Ransom, C.; Reid, C.; Gale, J.; Kitchen, B. Defense against Drought; Utah State University Extension: Salt Lake City, UT, USA, 2019; p. 8. [Google Scholar]
- Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.-D.; Asyraf Md Hatta, M.; Hinchliffe, A.; Steed, A.; Reynolds, D.; et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 2018, 4, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiurugwi, T.; Kemp, S.; Powell, W.; Hickey, L.T. Speed breeding orphan crops. Theor. Appl. Genet. 2019, 132, 607–616. [Google Scholar] [CrossRef]
- O’Connor, D.J.; Wright, G.C.; Dieters, M.J.; George, D.L.; Hunter, M.N.; Tatnell, J.R.; Fleischfresser, D.B. Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Sci. 2013, 40, 107–114. [Google Scholar] [CrossRef]
- Larkin, D.L.; Lozada, D.N.; Mason, R.E. Genomic selection—Considerations for successful implementation in wheat breeding programs. Agronomy 2019, 9, 479. [Google Scholar] [CrossRef] [Green Version]
- Lado, B.; Barrios, P.G.; Quincke, M.; Silva, P.; Gutiérrez, L. Modeling genotype environment interaction for genomic selection with unbalanced data from a wheat breeding program. Crop Sci. 2016, 56, 2165–2179. [Google Scholar] [CrossRef] [Green Version]
- Bassi, F.M.; Bentley, A.R.; Charmet, G.; Ortiz, R.; Crossa, J. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci. 2016, 242, 23–36. [Google Scholar] [CrossRef]
- Ben Hassen, M.; Bartholomé, J.; Valè, G.; Cao, T.-V.; Ahmadi, N. Genomic prediction accounting for genotype by environment interaction offers an effective framework for breeding simultaneously for adaptation to an abiotic stress and performance under normal cropping conditions in rice. G3 2018, 8, 2319–2332. [Google Scholar] [CrossRef]
- Robertsen, C.D.; Hjortshøj, R.L.; Janss, L.L. Genomic selection in cereal breeding. Agronomy 2019, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Mumm, R.H.; Walters, D.S. Quality control in the development of transgenic crop seed products research supported in part by exygen research, 30158 research drive, state college, PA 16801. Crop Sci. 2001, 41, 1381–1389. [Google Scholar] [CrossRef]
- Bradford, K.J.; Dahal, P.; Bello, P. Using relative humidity indicator paper to measure seed and commodity moisture contents. Agric. Environ. Lett. 2016, 1. [Google Scholar] [CrossRef] [Green Version]
- IBP. Your Partner for Modern Plant Breeding. Available online: https://www.integratedbreeding.net/ (accessed on 27 February 2020).
- Rathore, A.; Singh, V.K.; Pandey, S.K.; Rao, C.S.; Thakur, V.; Pandey, M.K.; Anil Kumar, V.; Das, R.R. Current status and future prospects of next-generation data management and analytical decision support tools for enhancing genetic gains in crops. In Plant Genetics and Molecular Biology; Varshney, R.K., Pandey, M.K., Chitikineni, A., Eds.; Springer: Cham, Switzerland, 2018; pp. 277–292. [Google Scholar]
- Cobb, J.N.; Biswas, P.S.; Platten, J.D. Back to the future: Revisiting mas as a tool for modern plant breeding. Theor. Appl. Genet. 2019, 132, 647–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varshney, R.K.; Singh, V.K.; Hickey, J.M.; Xun, X.; Marshall, D.F.; Wang, J.; Edwards, D.; Ribaut, J.-M. Analytical and decision support tools for genomics-assisted breeding. Trends Plant Sci. 2016, 21, 354–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CYMMIT. CIMMYT Research Software. Available online: https://data.cimmyt.org/dataverse/cimmytswdvn (accessed on 27 February 2020).
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. Gapit: Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, M.K.; Monyo, E.; Ozias-Akins, P.; Liang, X.; Guimarães, P.; Nigam, S.N.; Upadhyaya, H.D.; Janila, P.; Zhang, X.; Guo, B.; et al. Advances in arachis genomics for peanut improvement. Biotechnol. Adv. 2012, 30, 639–651. [Google Scholar] [CrossRef] [Green Version]
- Ojiewo, C.O.; Janila, P.; Bhatnagar-Mathur, P.; Pandey, M.K.; Desmae, H.; Okori, P.; Mwololo, J.; Ajeigbe, H.; Njuguna-Mungai, E.; Muricho, G.; et al. Advances in crop improvement and delivery research for nutritional quality and health benefits of groundnut (Arachis hypogaea L.). Front. Plant Sci. 2020, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Akram, N.A.; Shafiq, F.; Ashraf, M. Peanut (Arachis hypogaea L.): A prospective legume crop to offer multiple health benefits under changing climate. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1325–1338. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.; Wu, C.L.; Holbrook, C.C.; Tillman, B.L.; Person, G.; Ozias-Akins, P. Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 2011, 4, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.N.; Chopra, R.; Baring, M.R.; Selvaraj, M.G.; Simpson, C.E.; Chagoya, J.; Burow, M.D. Advanced backcross quantitative trait loci (qtl) analysis of oil concentration and oil quality traits in peanut (Arachis hypogaea L.). Trop. Plant Biol. 2017, 10, 1–17. [Google Scholar] [CrossRef]
- Ndjeunga, J.; Bantilan, M.C.S. Uptake of improved technologies in the semi-arid tropics of west africa: Why is agricultural transformation lagging behind? Electron. J. Agric. Dev. Econ. 2005, 2, 85–102. [Google Scholar]
- Ruttan, V.W. Changing role of public and private sectors in agricultural research. Science 1982, 216, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Naseem, A.; Spielman, D.J.; Omamo, S.W. Private-sector investment in r&d: A review of policy options to promote its growth in developing-country agriculture. Agribusiness 2010, 26, 143–173. [Google Scholar]
Variety/Line | Pedigree | Botanical Type | Cycle (Days) | Year | Institution/Origin | Reference |
---|---|---|---|---|---|---|
CN 94C | 90 Saria/Tougan 1) F6 | Spanish | 90 | 1966 | IRHO Saria, Burkina Faso | [10,60] |
Te. 3 | Local pop. Burkina | Spanish | 90 | 1958 | IRHO Niangoloko, Burkina Faso | [10,25,58,60,61] |
TS 32-1 | Spanlex/Te. 3, | Spanish | 90 | 1966 | ||
KH 149A | GH 119-7.1II-III/91 Saria | Spanish | 90 | 1964 | ||
KH 241D | GH 1185.2 II/91 Saria | Spanish | 90 | 1964 | ||
QH 243 C | KH 184 A/424 A, F7 | Spanish | 90 | 1971 | ||
RMP 91 | 48–37/Mani Pintar, F9 | Virginia | 135 | 1963 | ||
RMP 12 | 1036/Mani Pintar, F9 | Virginia | 135 | 1960 | ||
SH 67A | QH 243C/ PI 1166 | Spanish | 90 | 1990 | INERA Niangoloko, Burkina Faso | [60] |
SH 470P | Flower 113/ QH 200A, F7 | Spanish | 90 | 1990 | ||
69–101 | 55–455 14/28–206, F5-B3 | Virginia | 120 | 1969 | IRHO/CNRA Bambey, Senegal | [10,25,57,60,61] |
59–426 | NA | Virginia | 120 | 1959 | ||
ICGSE 104 | NA (Segregating material ICRISAT) | Valencia | 75–80 | 1990 | INERA—ICRISAT | [60] |
Fleur 11 | Variety from China | Spanish | 90 | 1990 | CNRA Bambey Senegal | [60,61] |
Nafa 1 (ICGV 01276) | ICGV 92069/ICGV 93184 | Virginia | 110 | 2018 | INERA—ICRISAT | [62] |
Lokre (ICGV 91328) | J11/U4-7-5 | Spanish | 90 | 2018 | ||
Miou Pale (ICGV 93305) | Var 27/U4-7-5 | Valencia | 90 | 2018 | ||
Touinware (ICGV-IS 13806) | ICGV 86124/ICG 7878 | Spanish | 90 | 2018 | ||
Beeda (ICGV-IS 13830) | ICGV 86124/ICG 7878 | Spanish | 90 | 2018 | ||
Soukeba (ICGV-IS 13912) | ICGV 86124/ICG 7878 | Spanish | 90 | 2018 | ||
Kiema 1 | Local pop. Burkina | Spanish | 90 | 2018 |
Rank | Country | Area (ha) | Production (Tonnes) | Yield (kg/ha) |
---|---|---|---|---|
1 | Nigeria | 2,766,845.8 | 3,068,586.8 | 1110.4 |
2 | Sudan | 2,027,954.4 | 1,629,402.2 | 797.8 |
3 | UR * Tanzania | 1,208,903.0 | 1,285,027.0 | 1052.8 |
4 | Senegal | 950,149.6 | 806,165.4 | 843.2 |
5 | Niger | 779,283.6 | 417,776.0 | 537.4 |
6 | Chad | 760,472.6 | 843,546.2 | 1117.1 |
7 | Guinea | 553,012.0 | 469,918.2 | 887.5 |
8 | DRC * | 492,000.0 | 370,447.4 | 753.6 |
9 | Burkina Faso | 480,635.4 | 380,894.2 | 799.8 |
10 | Cameroon | 439,308.4 | 610,196.2 | 1386.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konate, M.; Sanou, J.; Miningou, A.; Okello, D.K.; Desmae, H.; Janila, P.; Mumm, R.H. Past, Present and Future Perspectives on Groundnut Breeding in Burkina Faso. Agronomy 2020, 10, 704. https://doi.org/10.3390/agronomy10050704
Konate M, Sanou J, Miningou A, Okello DK, Desmae H, Janila P, Mumm RH. Past, Present and Future Perspectives on Groundnut Breeding in Burkina Faso. Agronomy. 2020; 10(5):704. https://doi.org/10.3390/agronomy10050704
Chicago/Turabian StyleKonate, Moumouni, Jacob Sanou, Amos Miningou, David Kalule Okello, Haile Desmae, Paspuleti Janila, and Rita H. Mumm. 2020. "Past, Present and Future Perspectives on Groundnut Breeding in Burkina Faso" Agronomy 10, no. 5: 704. https://doi.org/10.3390/agronomy10050704
APA StyleKonate, M., Sanou, J., Miningou, A., Okello, D. K., Desmae, H., Janila, P., & Mumm, R. H. (2020). Past, Present and Future Perspectives on Groundnut Breeding in Burkina Faso. Agronomy, 10(5), 704. https://doi.org/10.3390/agronomy10050704