Modelling Hydrological Processes in Agricultural Areas with Complex Topography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Arbia Stream Basin
2.2. Characteristics of the Arbia Stream Basin
2.3. The ArcSWAT Set-Up
2.4. Model Evaluation and Statistical Analysis
3. Results
3.1. Model Evaluation and Statistical Analysis
3.2. Measured Soil Loss Differences between Steepness Classes
3.3. Validation of Soil Loss Estimates
3.4. Estimation of the Soil Loss within the Basin
4. Discussion
4.1. Water Flow
4.2. Soil Loss
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Napoli, M.; Cecchi, S.; Orlandini, S.; Mugnai, G.; Zanchi, C.A. Simulation of field-measured soil loss in Mediterranean hilly areas (Chianti, Italy) with RUSLE. Catena 2016, 145, 246–256. [Google Scholar] [CrossRef]
- Thornes, J.B. Modelling soil erosion by grazing: Recent developments and new approaches. Geogr. Res. 2007, 45, 13–26. [Google Scholar] [CrossRef]
- Phillips, C.P. The Crete Senesi, Tuscany: A vanishing landscape? Landsc. Urban Plan. 1998, 41, 19–26. [Google Scholar] [CrossRef]
- Torri, D.; Santi, E.; Marignani, M.; Rossi, M.; Borselli, L.; MacCherini, S. The recurring cycles of biancana badlands: Erosion, vegetation and human impact. Catena 2013, 106, 22–30. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Casasnovas, J.A.; Ramos, M.C.; Benites, G. Soil and water assessment tool soil loss simulation at the sub-basin scale in the alt penedès-anoia vineyard region (Ne Spain) in the 2000s. Land. Degrad. Dev. 2016, 27, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Kaffas, K.; Hrissanthou, V.; Sevastas, S. Modeling hydromorphological processes in a mountainous basin using a composite mathematical model and ArcSWAT. Catena 2018, 162, 108–129. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: Texas, TX, USA, 2011. [Google Scholar]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Douglas-Mankin, K.R.; Srinivasan, R.; Arnold, J.G. Soil and water assessment tool (SWAT) model: Current developments and applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Gobin, A.; Jones, R.; Kirkby, M.; Campling, P.; Govers, G.; Kosmas, C.; Gentile, A.R. Indicators for pan-European assessment and monitoring of soil erosion by water. Environ. Sci. Policy 2004, 7, 25–38. [Google Scholar] [CrossRef]
- Prasuhn, V.; Liniger, H.; Gisler, S.; Herweg, K.; Candinas, A.; Clément, J.P. A high-resolution soil erosion risk map of Switzerland as strategic policy support system. Land Use Policy 2013, 32, 281–291. [Google Scholar] [CrossRef]
- Jetten, V.; Govers, G.; Hessel, R. Erosion models: Quality of spatial predictions. Hydrol. Process. 2003, 17, 887–900. [Google Scholar] [CrossRef]
- Raclot, D.; Le Bissonnais, Y.; Louchart, X.; Andrieux, P.; Moussa, R.; Voltz, M. Soil tillage and scale effects on erosion from fields to catchment in a Mediterranean vineyard area. Agric. Ecosyst. Environ. 2009, 134, 201–210. [Google Scholar] [CrossRef]
- Napoli, M.; Cecchi, S.; Orlandini, S.; Zanchi, C.A. Determining potential rainwater harvesting sites using a continuous runoff potential accounting procedure and GIS techniques in central Italy. Agric. Water Manag. 2014, 141, 55–56. [Google Scholar] [CrossRef]
- Napoli, M.; Marta, A.D.; Zanchi, C.A.; Orlandini, S. Assessment of soil and nutrient losses by runoff under different soil management practices in an Italian hilly vineyard. Soil Tillage Res. 2017, 168, 71–80. [Google Scholar] [CrossRef]
- Gardin, L.; Vinci, A. Carta Dei Suoli Della Regione Toscana in Scala 1:250.000. Available online: http://sit.lamma.rete.toscana.it/websuoli/ (accessed on 15 April 2020).
- Bridges, E.M. World Reference Base for Soil Re-Sources: Atlas; Acco press: Leuven, Belgium, 1998. [Google Scholar]
- SIR No Title. Available online: http://www.sir.toscana.it/ricerca-dati (accessed on 2 March 2019).
- Napoli, M.; Massetti, L.; Orlandini, S. Hydrological response to land use and climate changes in a rural hilly basin in Italy. Catena 2017, 157, 1–11. [Google Scholar] [CrossRef]
- USDA NRCS. Chapter 7 Hydrologic Soil Groups in National Engineering Handbook, Part 630–Hydrology; USDA NRCS: Washington, DC, USA, 2009. [Google Scholar]
- SITA No Title. Available online: http://www502.regione.toscana.it/geoscopio/cartoteca.html (accessed on 9 August 2018).
- Winchell, M.; Srinivasan, R.; Di Luzio, M.; Arnold, J.G. Arcswat Interface for SWAT2012: User’s Guide; College Station: Texas, TX, USA, 2013. [Google Scholar]
- Flügel, W. Delineating hydrologic response units by geographical information system analyses for regional hydrological modeling using PRMS/MMS in the drainage basin of the River Brol, Germany. Hydrol. Process. 1995, 9, 423–436. [Google Scholar] [CrossRef]
- Sloan, P.G.; Moore, I.D. Modeling subsurface stormflow on steeply sloping forested watersheds. Water Resour. Res. 1984, 20, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- SCS Section 4, Hydrology. National Engineering Handbook; US Government Printing Office: Washington, DC, USA, 1972; p. 544. [Google Scholar]
- Winnaar, G.; Jewitt, G.P.W.; Horan, M. A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa. Phys. Chem. Earth 2007, 34, 767–775. [Google Scholar] [CrossRef]
- USDA. Chapter 9 Hydrologic Soil-cover Complexes. In National Engineering Handbook; USDA Soil Conservation Service: Washington, DC, USA, 2004. [Google Scholar]
- Wischmeier, W.H.; Johnson, C.B.; Cross, B.V. A soil erodibility nomograph for farmland and construction sites. J. Soil Water Conserv. 1971, 26, 189–193. [Google Scholar]
- Arnold, J.G.; Allen, P.M.; Muttiah, R.; Bernhardt, G. Automated base flow separation and recession analysis techniques. Groundwater 1995, 33, 1010–1018. [Google Scholar] [CrossRef]
- Di Luzio, M.; Srinivasan, R.; Arnold, J.R.; Neitsch, S.L. Arcview Interface for SWAT2000: User’s Guide; College Station: Texas, TX, USA, 2002. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development. Environmental Performance of Agriculture at a Glance; Organisation for Economic Co-operation and Development: Paris, France, 2008. [Google Scholar]
- Gebremariam, S.Y.; Martin, J.F.; DeMarchi, C.; Bosch, N.S.; Confesor, R.; Ludsin, S.A. A comprehensive approach to evaluating watershed models for predicting river flow regimes critical to downstream ecosystem services. Environ. Model. Softw. 2014, 61, 121–134. [Google Scholar] [CrossRef]
- Chu, T.W.; Shirmohammadi, A.; Montas, H.; Sadeghi, A. Evaluation of the SWAT model’s sediment and nutrient components in the piedmont physiographic region of Maryland. Trans. Am. Soc. Agric. Eng. 2004, 47, 1523–1538. [Google Scholar] [CrossRef]
- Wicherek, S. Viticulture and soil erosion in the north of Parisian Basin. Example: The Mid Aisne region. Zeitschrift Für Geomorphol 1991, 83, 115–126. [Google Scholar]
- Novara, A.; Gristina, L.; Saladino, S.S.; Santoro, A.; Cerdà, A. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil Tillage Res. 2011, 117, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Gómez, J.A.; Sobrinho, T.A.; Giráldez, J.V.; Fereres, E. Soil management effects on runoff, erosion and soil properties in an olive grove of Southern Spain. Soil Tillage Res. 2009, 102, 5–13. [Google Scholar] [CrossRef]
- Napoli, M.; Orlandini, S. Evaluating the Arc-SWAT2009 in predicting runoff, sediment, and nutrient yields from a vineyard and an olive orchard in Central Italy. Agric. Water Manag. 2015, 153, 51–62. [Google Scholar] [CrossRef]
- Raglione, M.; Toscano, P.; Angelini, R.; Briccoli-Bati, C.; Spadoni, M.; De Simona, C.; Lorenzini, P. Olive Yield and Soil Loss in Hilly Environment of Calabria (Southern Italy). Influence of Permanent Cover Crop and Ploughing. In Proceedings of the International Meeting on Soils with Mediterranean Type of Climate, University of Barcelona, Barcelona, Spain, 4–9 July 1999. [Google Scholar]
- Romero-DÍaz, A.; Cammeraat, L.H.; Vacca, A.; Kosmas, C. Soil erosion at three experimental sites in the Mediterranean. Earth Surf. Process. Landf. 1999, 24, 1243–1256. [Google Scholar] [CrossRef]
- Porqueddu, C.; Roggero, P.P. Effetto delle tecniche agronomiche di intensificazione foraggera sui fenomeni erosivi dei terreni in pendio in ambiente mediterraneo. Riv. Agron. 1994, 28, 364–370. [Google Scholar]
- Kisić, I.; Basić, F.; Nestroy, O.; Mesić, M.; Butorać, A. Soil erosion under different tillage methods in central Croatia. Bodenkult. Wien Munch. 2002, 53, 199–206. [Google Scholar]
- Cerdan, O.; Poesen, J.; Govers, G.; Saby, N.; Le Bissonnais, Y.; Gobin, A.; Vacca, A.; Quinton, J.; Auerswald, K.; Klik, A.; et al. Sheet and Rill Erosion. In Soil Erosion in Europe; John Wiley and Sons Ltd.: Chichester, UK, 2006; pp. 501–513, ISBN 9780470859209. [Google Scholar]
- Drogue, G.; Humbert, J.; Deraisme, J.; Mahr, N.; Freslon, N. A statistical-topographic model using an omnidirectional parameterization of the relief for mapping orographic rainfall. Int. J. Climatol. 2002, 22, 599–613. [Google Scholar] [CrossRef]
- Tuppad, P.; Douglas-Mankin, K.R.; Koelliker, J.K.; Hutchinson, J.M.S. SWAT discharge response to spatial rainfall variability in a Kansas watershed. Trans. ASABE 2010, 53, 65–74. [Google Scholar] [CrossRef]
- Pulighe, G.; Bonati, G.; Colangeli, M.; Traverso, L.; Lupia, F.; Altobelli, F.; Dalla Marta, A.; Napoli, M. Predicting streamflow and nutrient loadings in a semi-arid mediterranean watershed with ephemeral streams using the swat model. Agronomy 2020, 10, 2. [Google Scholar] [CrossRef] [Green Version]
Crops | Land Cover Class | Crop Code | Number of Fields |
---|---|---|---|
Vineyard | Vineyard | GRAP | 89 |
Olive tree | Olive groves | OLIV | 50 |
Winter wheat, winter barley, oats | Not irrigated field crops | NIFC | 53 |
Sunflower, maize, sorghum | Irrigated field crops | IRFC | 35 |
Deciduous forest and Cultivated tree | Deciduous forest | FRSD | 16 |
Land Cover | Area (%) | CN-II | Source | |||
---|---|---|---|---|---|---|
HSG-A | HSG-B | HSG-C | HSG-D | |||
URBN | 5.7 | 75 | 82 | 87 | 90 | Napoli et al. [16] |
IRFC | 0.5 | 72 | 81 | 88 | 91 | USDA NRCS [29]—Row crop straight row |
NIFC | 41.8 | 67 | 78 | 85 | 89 | Napoli et al. [16] |
VINE | 6.8 | 60 | 70 | 81 | 86 | Napoli et al. [16] |
RNGB | 4.2 | 55 | 72 | 81 | 86 | USDA NRCS [29]—Shrub—Fair |
OLIV | 8.4 | 45 | 67 | 77 | 82 | Napoli et al. [16] |
FRSD | 32 | 36 | 60 | 73 | 79 | USDA NRCS [29]—Woods—Fair |
ALFA | 0.6 | 30 | 58 | 71 | 78 | USDA NRCS [29]—Meadow |
Parameter | Units | FRSD | RNGB | NIFC | IRFC | ALFA | OLIV | VINE | URBN |
---|---|---|---|---|---|---|---|---|---|
Alpha_BF | 0.04 | ||||||||
BFD | 57 | ||||||||
CH_K2 | 33 | ||||||||
CH_N2 | 0.15 | ||||||||
CN2 | Data from Table 2 | ||||||||
cncoeff | 0.87 | ||||||||
EPCO | 0.31 | ||||||||
ESCO | 0.9 | ||||||||
GW_DELAY | d | 17 | |||||||
GWQMN | mm | 552 | |||||||
SOL_AWC | mm | Set at HRU level as function of the soil characteristics | |||||||
SOL_K | mm h−1 | Set at HRU level as function of the soil characteristics | |||||||
SURLAG | 4 | ||||||||
ALAI_MIN | m2·m−2 | 0.03 | 0 | 0 | 0 | 0 | 1.6 | 0.01 | |
BIO_E | kg·ha−1 per MJ·m−2 | 15 | 34 | 30 | 46 | 20 | 8 | 23 | |
BIO_LEAF | Fraction | 0.15 | 0 | 0 | 0 | 0 | 0.01 | 0.3 | |
BLAI | m2·m−2 | 7 | 2 | 4 | 3 | 4 | 2.1 | 2 | |
CHTMX | m | 10 | 1 | 0.9 | 2.5 | 0.9 | 3 | 3 | |
DLAI | 0.99 | 0.35 | 0.5 | 0.62 | 0.9 | 0.9 | 0.92 | ||
FIMP | 0.45 | ||||||||
FCIMP | 0.4 | ||||||||
FRGRW1 | Fraction | 0.1 | 0.05 | 0.05 | 0.15 | 0.15 | 0.1 | 0.08 | |
FRGRW2 | Fraction | 0.5 | 0.35 | 0.45 | 0.5 | 0.5 | 0.5 | 0.5 | |
GSI | m·s−1 | 0.0005 | 0.005 | 0.006 | 0.008 | 0.01 | 0.0056 | 0.0059 | |
HVSTI | kg·ha−1 per kg·ha−1 | 0.76 | 0.9 | 0.5 | 0.3 | 0.9 | 0.5 | 0.2 | |
LAIMX1 | Fraction | 0.1 | 0.1 | 0.05 | 0.01 | 0.01 | 0.5 | 0.08 | |
LAIMX2 | Fraction | 0.95 | 0.7 | 0.95 | 0.95 | 0.95 | 0.85 | 0.85 | |
MAT_YEARS | Years | 15 | 0 | 0 | 0 | 0 | 6 | 3 | |
OV_N | 0.6 | 0.15 | 0.14 | 0.14 | 0.06 | 0.21 | 0.13 | 0.01 | |
RDMX | m | 3 | 2 | 1.3 | 2 | 3 | 0.7 | 1.2 | |
T_BASE | °C | 9 | 12 | 0 | 6 | 4 | 7 | 7 | |
T_OPT | °C | 20 | 25 | 18 | 25 | 20 | 18 | 20 | |
USLE_C | 0.001 | 0.003 | 0.02 | 0.2 | 0.03 | 0.08 | 0.1 | ||
VPDFR | kPa | 4 | 4 | 4 | 4 | 4 | 2 | 1 | |
WAVP | Rate | 10 | 10 | 6 | 32.3 | 10 | 3 | 3 |
Analyzed Period | PBIAS | RSR | NSC | |
---|---|---|---|---|
Year | 2007 | −14.30% | 0.3 | 0.91 |
2008 | −2.50% | 0.21 | 0.96 | |
2009 | −3.90% | 0.22 | 0.95 | |
2010 | −0.80% | 0.23 | 0.95 | |
Average | −3.40% | 0.22 | 0.95 | |
Season | Winter | −0.60% | 0.22 | 0.95 |
Spring | −3.60% | 0.25 | 0.94 | |
Summer | −19.80% | 0.39 | 0.85 | |
Autumn | −2.60% | 0.24 | 0.94 |
Slope Steepness Class | Error Indices | Land Cover | ||||
---|---|---|---|---|---|---|
FRSD | VINE | OLIV | IRFC | NIFC | ||
1 | PBIAS | −12.69% | −5.91% | 6.02% | −5.78% | 7.79% |
RSR | 1.75 | 0.38 | 0.45 | 0.6 | 0.42 | |
NSC | −2.07 | 0.86 | 0.79 | 0.65 | 0.83 | |
2 | PBIAS | −84.20% | −9.03% | 4.97% | −20.88% | −0.18% |
RSR | 3.06 | 0.46 | 0.33 | 0.73 | 0.37 | |
NSC | −8.35 | 0.79 | 0.89 | 0.47 | 0.86 | |
3 | PBIAS | 61.53% | 7.04% | −1.03% | 6.77% | 14.28% |
RSR | 2.04 | 0.35 | 0.36 | 0.51 | 0.47 | |
NSC | −3.14 | 0.88 | 0.87 | 0.74 | 0.78 | |
4 | PBIAS | −3.84% | 14.69% | 6.43% | 2.53% | |
RSR | 0.4 | 0.49 | 0.58 | 0.33 | ||
NSC | 0.84 | 0.76 | 0.67 | 0.89 | ||
5 | PBIAS | −154.00% | −0.75% | −15.70% | 7.75% | |
RSR | 2.19 | 0.37 | 0.31 | 0.3 | ||
NSC | −3.81 | 0.86 | 0.91 | 0.91 |
Land Cover | Average Predicted Soil Loss (t ha−1 y−1) | Maximum Predicted Soil Loss (t ha−1 y−1) | ||||||
---|---|---|---|---|---|---|---|---|
2007 | 2008 | 2009 | 2010 | 2007 | 2008 | 2009 | 2010 | |
VINE | 13.29 | 19.34 | 16.4 | 24.21 | 161.65 | 102.66 | 94.17 | 145.85 |
NIFC | 12.17 | 17.76 | 11.27 | 20.7 | 136.34 | 120.96 | 77.71 | 157.64 |
OLIV | 8.15 | 10.31 | 9.04 | 12.85 | 68.1 | 56.53 | 60.22 | 83.44 |
IRFC | 4.42 | 9.11 | 8.28 | 14.15 | 13.04 | 27.22 | 29.47 | 36.91 |
FRSD | 1.27 | 1.47 | 1.16 | 1.78 | 9.87 | 8.02 | 6.03 | 10.03 |
RNGB | 0.14 | 0.15 | 0.12 | 0.19 | 1.21 | 0.83 | 0.69 | 1.13 |
ALFA | 0.04 | 0.06 | 0.05 | 0.07 | 0.36 | 0.26 | 0.22 | 0.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massetti, L.; Grassi, C.; Orlandini, S.; Napoli, M. Modelling Hydrological Processes in Agricultural Areas with Complex Topography. Agronomy 2020, 10, 750. https://doi.org/10.3390/agronomy10050750
Massetti L, Grassi C, Orlandini S, Napoli M. Modelling Hydrological Processes in Agricultural Areas with Complex Topography. Agronomy. 2020; 10(5):750. https://doi.org/10.3390/agronomy10050750
Chicago/Turabian StyleMassetti, Luciano, Chiara Grassi, Simone Orlandini, and Marco Napoli. 2020. "Modelling Hydrological Processes in Agricultural Areas with Complex Topography" Agronomy 10, no. 5: 750. https://doi.org/10.3390/agronomy10050750
APA StyleMassetti, L., Grassi, C., Orlandini, S., & Napoli, M. (2020). Modelling Hydrological Processes in Agricultural Areas with Complex Topography. Agronomy, 10(5), 750. https://doi.org/10.3390/agronomy10050750