Management Intensification of Hay Meadows and Fruit Orchards Alters Soil Macro- Invertebrate Communities Differently
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonthier, D.J.; Ennis, K.K.; Farinas, S.; Hsieh, H.Y.; Iverson, A.L.; Batáry, P.; Rudolphi, J.; Tscharntke, T.; Cardinale, B.J.; Perfecto, I. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Seibold, S.; Gossner, M.M.; Simons, N.K.; Blüthgen, N.; Müller, J.; Ambarlı, D.; Ammer, C.; Bauhus, J.; Fischer, M.; Habel, J.C.; et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 2019, 574, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Dainese, M.; Martin, E.A.; Aizen, M.A.; Albrecht, M.; Bartomeus, I.; Bommarco, R.; Carvalheiro, L.G.; Chaplin-Kramer, R.; Gagic, V.; Garibaldi, L.A.; et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 2019, 5, 554170. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.U.; Adair, E.C.; Cardinale, B.J.; Byrnes, J.E.K.; Hungate, B.A.; Matulich, K.L.; Gonzalez, A.; Duffy, J.E.; Gamfeldt, L.; Connor, M.I. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 2012, 486, 105–108. [Google Scholar] [CrossRef]
- Tilman, D.; Reich, P.B.; Knops, J.M.H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 2006, 441, 629–632. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Biodiversity for Food and Agriculture; Bélanger, J., Piling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2019; p. 529. [Google Scholar]
- CBD Secretariat. The Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets; Secretariat of the Convention on Biological Diversity: Nagoya, Japan, 2010. [Google Scholar]
- Cunningham, S.A.; Attwood, S.J.; Bawa, K.S.; Benton, T.G.; Broadhurst, L.M.; Didham, R.K.; McIntyre, S.; Perfecto, I.; Samways, M.J.; Tscharntke, T.; et al. To close the yield-gap while saving biodiversity will require multiple locally relevant strategies. Agric. Ecosyst. Environ. 2013, 173, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Bender, S.F.; van der Heijden, M.G.A. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 2015, 52, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Orgiazzi, A.; Bardgett, R.D.; Barrios, E.; Behan-Pelletier, V.; Briones, M.J.I.; Chotte, J.-L.; De Deyn, G.B.; Eggleton, P.; Fierer, N.; Fraser, T.; et al. Global Soil Biodiversity Atlas; European Commission: Luxembourg, 2016; p. 176. [Google Scholar]
- Hedlund, K.; Harris, J. Delivery of soil ecosystem services: From Gaia to genes. In Soil Ecology and Ecosystem Services; Wall, D.H., Bardgett, R.D., Behan-Pelletier, V., Herrick, J.E., Jones, T.H., Ritz, K., Six, J., Strong, D.R., van der Putten, W., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 98–110. [Google Scholar]
- Veresoglou, S.D.; Halley, J.M.; Rillig, M.C. Extinction risk of soil biota. Nat. Commun. 2015, 6, 8862. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, U.N. Soil Fauna Assemblages; Cambridge University Press: Cambridge, UK, 2019; p. 365. [Google Scholar]
- Eggleton, P.; Vanbergen, A.J.; Jones, D.T.; Lambert, M.C.; Rockett, C.; Hammond, P.M.; Beccaloni, J.; Marriott, D.; Ross, E.; Giusti, A. Assemblages of soil macrofauna across a Scottish land-use intensification gradient: Influences of habitat quality, heterogeneity and area. J. Appl. Ecol. 2005, 42, 1153–1164. [Google Scholar] [CrossRef]
- Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; de Ruiter, P.C.; van der Putten, W.H.; Birkhofer, K.; Hemerik, L.; de Vries, F.T.; Bardgett, R.D.; Brady, M.V.; et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 2015, 21, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S.; et al. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Culman, S.W.; Young-Mathews, A.; Hollander, A.D.; Ferris, H.; Sánchez-Moreno, S.; O’Geen, A.T.; Jackson, L.E. Biodiversity is associated with indicators of soil ecosystem functions over a landscape gradient of agricultural intensification. Landsc. Ecol. 2010, 25, 1333–1348. [Google Scholar] [CrossRef]
- De Vries, F.T.; Thebault, E.; Liiri, M.; Birkhofer, K.; Tsiafouli, M.A.; Bjornlund, L.; Bracht Jorgensen, H.; Brady, M.V.; Christensen, S.; de Ruiter, P.C.; et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. USA 2013, 110, 14296–14301. [Google Scholar] [CrossRef] [Green Version]
- Rüdisser, J.; Tasser, E.; Peham, T.; Meyer, E.; Tappeiner, U. The dark side of biodiversity: Spatial application of the biological soil quality indicator (BSQ). Ecol. Indic. 2015, 53, 240–246. [Google Scholar] [CrossRef]
- Birkhofer, K.; Dietrich, C.; John, K.; Schorpp, Q.; Zaitsev, A.S.; Wolters, V. Regional conditions and land-use alter the potential contribution of soil arthropods to ecosystem services in grasslands. Front. Ecol. Evol. 2016, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Parisi, V.; Menta, C.; Gardi, C.; Jacomini, C.; Mozzanica, E. Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agric. Ecosyst. Environ. 2005, 105, 323–333. [Google Scholar] [CrossRef]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.P. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006, 42, 3–15. [Google Scholar] [CrossRef]
- Smith, J.; Potts, S.; Eggleton, P. The value of sown grass margins for enhancing soil macrofaunal biodiversity in arable systems. Agric. Ecosyst. Environ. 2008, 127, 119–125. [Google Scholar] [CrossRef]
- Nuria, R.; Jérôme, M.; Léonide, C.; Christine, R.; Gérard, H.; Etienne, I.; Patrick, L. IBQS: A synthetic index of soil quality based on soil macro-invertebrate communities. Soil Biol. Biochem. 2011, 43, 2032–2045. [Google Scholar] [CrossRef]
- Barrios, E.; Sileshi, G.W.; Shepherd, K.; Sinclair, F. Agroforestry and soil health: Linking trees, soil biota, and ecosystem services. In Soil Ecology and Ecosystem Services; Wall, D.H., Bardgett, R.D., Behan-Pelletier, V., Herrick, J.E., Jones, T.H., Ritz, K., Six, J., Strong, D.R., van der Putten, W., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 315–330. [Google Scholar]
- Kuttner, M.; Essl, F.; Peterseil, J.; Dullinger, S.; Rabitsch, W.; Schindler, S.; Hülber, K.; Gattringer, A.; Moser, D. A new high-resolution habitat distribution map for Austria, Liechtenstein, southern Germany, South Tyrol and Switzerland. J. Protec. Mt. Areas Res. Manag. 2015, 7, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Unterluggauer, P. Traditionell und intensiv bewirtschaftete wiesen in südtirol-ihre vegetation als indikator für die bewirtschaftungsintensität vegetation types as estimates of the management intensity. Tuexenia 2016, 36, 37–62. [Google Scholar]
- Hilpold, A.; Seeber, J.; Fontana, V.; Niedrist, G.; Steinwandter, M.; Tasser, E.; Tappeiner, U. Decline of rare and specialized species across multiple taxonomic groups after grassland intensification and abandonment. Biodivers. Conserv. 2018, 14, 3729–3744. [Google Scholar] [CrossRef]
- Egarter Vigl, L.; Schirpke, U.; Tasser, E.; Tappeiner, U. Linking long-term landscape dynamics to the multiple interactions among ecosystem services in the European Alps. Landsc. Ecol. 2016, 31, 1903–1918. [Google Scholar] [CrossRef] [Green Version]
- Blüthgen, N.; Dormann, C.F.; Prati, D.; Klaus, V.H.; Kleinebecker, T.; Hölzel, N.; Alt, F.; Boch, S.; Gockel, S.; Hemp, A.; et al. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic Appl. Ecol. 2012, 13, 207–220. [Google Scholar] [CrossRef]
- Fischer, M.; Bossdorf, O.; Gockel, S.; Hänsel, F.; Hemp, A.; Hessenmöller, D.; Korte, G.; Nieschulze, J.; Pfeiffer, S.; Prati, D.; et al. Implementing large-scale and long-term functional biodiversity research: The biodiversity exploratories. Basic Appl. Ecol. 2010, 11, 473–485. [Google Scholar] [CrossRef]
- Durner, W.; Iden, S.C.; von Unold, G. The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation. Water Resour. Res. 2017, 53, 33–48. [Google Scholar] [CrossRef]
- Kempson, D.; Lloyd, M.; Ghelardi, R. A new extractor for woodland litter. Pedobiologia 1963, 3, 1–21. [Google Scholar]
- Schaefer, M. Brohmer-Fauna von Deutschland: Ein Bestimmungsbuch Unserer Heimischen Tierwelt; Quelle & Meyer Verlag: Wiebelsheim, Germany, 2017; p. 765. [Google Scholar]
- Klausnitzer, B.; Hannemann, H.-J.; Senglaub, K. Exkursionsfauna von Deutschland: Band 2 Wirbellose: Insekten; Springer: Dresden, Germany, 2011; p. 937. [Google Scholar]
- Hannemann, H.-J.; Klausnitzer, B.; Senglaub, K. Stresemann-Exkursionsfauna von Deutschland. Band 1: Wirbellose (Ohne Insekten); Springer: Dresden, Germany, 2019; p. 673. [Google Scholar]
- Smith, K.G.V. An introduction to the immature stages of British flies: Diptera larvae, with notes on eggs, Puparia and Pupae. Handb. Identif. Br. Insects 1989, 10, 280. [Google Scholar]
- Latella, L.; Gobbi, M. La Fauna del Suolo: Tassonomia, Ecologia e Metodi di Studio dei Principali Gruppi di Invertebrati Terrestri Italiani; Quaderni del Museo delle Scienze: Trento, Italy, 2015; p. 205. [Google Scholar]
- De Jong, Y.; Verbeek, M.; Michelsen, V.; de Bjørn, P.P.; Los, W.; Steeman, F.; Bailly, N.; Basire, C.; Chylarecki, P.; Stloukal, E.; et al. Fauna Europaea-All European animal species on the web. Biodivers. Data J. 2014, 2, e4034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.5–2. Available online: https://CRAN.R-project.org/package=vegan (accessed on 17 April 2020).
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: New York, NY, USA, 2016; p. 260. [Google Scholar]
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. Package “corrplot”. Statistician 2017, 56, 316–324. [Google Scholar]
- Simons, N.K.; Weisser, W.W.; Gossner, M.M. Multi-taxa approach shows consistent shifts in arthropod functional traits along grassland land-use intensity gradient. Ecology 2016, 97, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Mazzia, C.; Pasquet, A.; Caro, G.; Thénard, J.; Cornic, J.F.; Hedde, M.; Capowiez, Y. The impact of management strategies in apple orchards on the structural and functional diversity of epigeal spiders. Ecotoxicology 2015, 24, 616–625. [Google Scholar] [CrossRef]
- Paoletti, M.G.; Schweigl, U.; Favretto, M.R. Soil macroinvertebrates, heavy metals and organochlorines in low and high input apple orchards and a coppiced woodland. Pedobiologia 1995, 39, 20–33. [Google Scholar]
- Dalla Via, J.; Mantinger, H. Die Landwirtschaftliche forschung im obstbau südtirols: Entwicklung und ausblick. Erwerbs-Obstbau 2012, 54, 83–115. [Google Scholar] [CrossRef] [Green Version]
- Gardi, C.; Jeffery, S.; Saltelli, A. An estimate of potential threats levels to soil biodiversity in EU. Glob. Chang. Biol. 2013, 19, 1538–1548. [Google Scholar] [CrossRef]
Dimension | Factor | df. | Chi2 | p |
---|---|---|---|---|
Richness | Management | 1 | 9.85 | 0.002 |
Habitat | 1 | 1.52 | 0.283 | |
Diversity | Management | 1 | 6.03 | 0.014 |
Habitat | 1 | 5.98 | 0.014 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guariento, E.; Colla, F.; Steinwandter, M.; Plunger, J.; Tappeiner, U.; Seeber, J. Management Intensification of Hay Meadows and Fruit Orchards Alters Soil Macro- Invertebrate Communities Differently. Agronomy 2020, 10, 767. https://doi.org/10.3390/agronomy10060767
Guariento E, Colla F, Steinwandter M, Plunger J, Tappeiner U, Seeber J. Management Intensification of Hay Meadows and Fruit Orchards Alters Soil Macro- Invertebrate Communities Differently. Agronomy. 2020; 10(6):767. https://doi.org/10.3390/agronomy10060767
Chicago/Turabian StyleGuariento, Elia, Filippo Colla, Michael Steinwandter, Julia Plunger, Ulrike Tappeiner, and Julia Seeber. 2020. "Management Intensification of Hay Meadows and Fruit Orchards Alters Soil Macro- Invertebrate Communities Differently" Agronomy 10, no. 6: 767. https://doi.org/10.3390/agronomy10060767
APA StyleGuariento, E., Colla, F., Steinwandter, M., Plunger, J., Tappeiner, U., & Seeber, J. (2020). Management Intensification of Hay Meadows and Fruit Orchards Alters Soil Macro- Invertebrate Communities Differently. Agronomy, 10(6), 767. https://doi.org/10.3390/agronomy10060767