Soil Loss Estimation for Conservation Planning in the Welmel Watershed of the Genale Dawa Basin, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Collection and Source
2.3. Interpolation for Precipitation
2.4. Soil Erosion Model Selection Criteria and Erosion Modeling
- A = computed average annual soil loss in tons ha−1 year−1
- R = rainfall-runoff erosivity factor (MJ mm ha−1 h1 year−1)
- K = soil erodibility factor (tons ha h ha−1 MJ−1 mm−1)
- LS = slope length and steepness factor (dimensionless)
- C = cover management factor (dimensionless, ranges from zero to one)
- P = conservation practice factor (dimensionless, ranges from zero to one)
2.4.1. Rainfall Erosivity (R) Factor
2.4.2. Soil Erodibility (K) Factor
2.4.3. Topographic (LS) Factors
2.4.4. Cover (C) Factor
2.4.5. Supporting Conservation Practice Factor (P)
2.5. Soil Loss Potential Map Based on Maps of R, K, LS, C and P-Factor
3. Results
3.1. Rainfall Erosivity (R) Factor
3.2. Soil Erodibility (K) Factor
3.3. Topographic (LS) Factors
3.4. Cover and Management (C) FACTOR
3.5. Supporting Conservation Practice Factor (P)
3.6. Soil Loss Potential
4. Discussion
4.1. Soil Loss Potential
4.2. R, K, LS, C and P-Factor
4.3. Causes of Soil Loss
4.4. Consequences of Soil Loss
5. Conclusions and Future Prospects
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McCarthy, J.J.; Canziani, O.F.; Leary, N.A.; Dokken, D.J.; White, K.S. IPCC Climate Change 2001: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2001; pp. 1–94. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. IPCC Climate change 2013: The physical science basis. In Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1–570. [Google Scholar]
- Hansen, H.S. PSSD-Planning System for Sustainable Development; NERI Technical Report No.351; National Environmental Research Institute: Roskilde, Denmark, 2001; pp. 1–110. [Google Scholar]
- Gebrehiwot, S.G.; Bewket, W.; Gärdenäs, A.I.; Bishop, K. Forest cover change over four decades in the Blue Nile Basin, Ethiopia: Comparison of three watersheds. Reg. Environ. Chang. 2014, 14, 253–266. [Google Scholar] [CrossRef]
- Dotterweich, M.; Stankoviansky, M.; Minár, J.; Koco, Š.; Papčo, P. Human induced soil erosion and gully system development in the Late Holocene and future perspectives on landscape evolution: The Myjava Hill Land, Slovakia. Geomorphology 2013, 201, 227–245. [Google Scholar] [CrossRef]
- Tully, K.; Sullivan, C.; Weil, R.; Sanchez, P. The State of soil degradation in sub-Saharan Africa: Baselines, trajectories, and solutions. Sustainability 2015, 7, 6523–6552. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; Mcnair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; He, Y.; Xu, J.; Van Noordwijk, M.; Lu, X. Spatial and temporal variation in rainfall erosivity in a Himalayan watershed. Catena 2014, 121, 248–259. [Google Scholar] [CrossRef]
- Wynants, M.; Kelly, C.; Mtei, K.; Munishi, L.; Patrick, A.; Rabinovich, A.; Nasseri, M.; Gilvear, D.; Roberts, N.; Boeckx, P.; et al. Drivers of increased soil erosion in East Africa’s agro-pastoral systems: Changing interactions between the social, economic and natural domains. Reg. Environ. Chang. 2019, 19, 1909–1921. [Google Scholar] [CrossRef] [Green Version]
- De Alba, S.; Lindstrom, M.; Schumacher, T.E.; Malo, D.D. Soil landscape evolution due to soil redistribution by tillage: A new conceptual model of soil catena evolution in agricultural landscapes. Catena 2004, 58, 77–100. [Google Scholar] [CrossRef] [Green Version]
- Van Oost, K.; Quine, T.A.; Govers, G.; De Gryze, S.; Six, J.; Harden, J.W.; Ritchie, J.C.; McCarty, G.W.; Heckrath, G.; Kosmas, C.; et al. The impact of agricultural soil erosion on the global carbon cycle. Science 2007, 318, 626–629. [Google Scholar] [CrossRef]
- Dotterweich, M. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation-A global synopsis. Geomorphology 2013, 201, 1–34. [Google Scholar] [CrossRef]
- Bekele, T. Effect of Land Use and Land Cover Changes on Soil Erosion in Ethiopia. Int. J. Agric. Sci. Food Technol. 2019, 5, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Bayramin, İ.; Dengiz, O.; Baskan, O.; Mehmet, P. Soil Erosion Risk Assessment with ICONA Model; Case Study: Beypazarı Area. Turk. J. Agric. For. 2003, 27, 105–116. [Google Scholar]
- Pimentel, D.; Burgess, M. Soil Erosion Threatens Food Production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef] [Green Version]
- Reusing, M.; Schneider, T.; Ammer, U. Modelling soil loss rates in the Ethiopian Highlands by integration of high resolution MOMS-02/D2-stereo-data in a GIS. Int. J. Remote Sens. 2000, 21, 1885–1896. [Google Scholar] [CrossRef]
- Schiettecatte, W.; Gabriels, D.; Cornelis, W.M.; Hofman, G. Enrichment of Organic Carbon in Sediment Transport by Interrill and Rill Erosion Processes. Soil Sci. Soc. Am. J. 2008, 72, 50. [Google Scholar] [CrossRef] [Green Version]
- Nkonya, E.; Johnson, T.; Kwon, H.Y.; Kato, E. Economics of Land Degradation in Sub-Saharan Africa. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Nkonya, E., Mirzabaev, A., von Braun, J., Eds.; Springer: New York, NY, USA, 2016; pp. 215–260. [Google Scholar]
- Usman, S.; Omar, G.; Onokebhagbe, V. Soil problems in dryland environment of sub-Saharan Africa: A review of the impact on soil erosion and desertification. Biol. Environ. Sci. J. Trop. 2017, 14, 1–7. [Google Scholar]
- Eaton, D. The economics of soil erosion: A model of farm decision-making. Int. Inst. Environ. Dev. 1996, 1–48. [Google Scholar] [CrossRef]
- Lower Valley of the Omo. Available online: https://whc.unesco.org/en/list/17/ (accessed on 19 May 2020).
- FAO. Ethiopian Highlands Reclamation Study; Final Report; FAO: Rome, Itay, 1986; Volume 1, pp. 1–334. [Google Scholar]
- FAO. The State of Food and Agriculture Social Protection and Agriculture: Breaking the Cycle of Rural Poverty; FAO: Rome, Italy, 2015; Volume 81, pp. 1–129. [Google Scholar]
- Stewart, Z.P.; Pierzynski, G.M.; Middendorf, B.J.; Prasad, P.V.V. Approaches to improve soil fertility in sub-Saharan Africa. J. Exp. Bot. 2020, 71, 632–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haileslassie, A.; Priess, J.; Veldkamp, E.; Teketay, D.; Lesschen, J.P. Assessment of soil nutrient depletion and its spatial variability on smallholders’ mixed farming systems in Ethiopia using partial versus full nutrient balances. Agric. Ecosyst. Environ. 2005, 108, 1–16. [Google Scholar] [CrossRef]
- Shiferaw, A. Estimating soil loss rates for soil conservation planning in the Borena Woreda of South Wollo Highlands, Ethiopia. J. Sustain. Dev. Afr. 2011, 13, 87–106. [Google Scholar]
- Hurni, H.; Herweg, K.; Portner, B.; Liniger, H. Soil Erosion and Conservation in Global Agriculture. In Land Use and Soil Resources; Braimoh, A.K., Vlek, P.L.G., Eds.; Springer: New York, NY, USA, 2008; pp. 41–71. [Google Scholar]
- Sonneveld, B.G.; Keyzer, M.A.; Albersen, P.J. A Non-Parametric Analysis of Qualitative and Quantitative Data for Erosion Modeling: A Case Study for Ethiopia. In Sustaining the Global Farm, Proceedings of the 10th International Soil Conservation Organization Meeting, West Lafayette, IN, USA, 24–29 May 1999; Stott, D.E., Mohtar, R.H., Steinhardt, G.C., Eds.; Purdue University and the USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1999; pp. 979–993. [Google Scholar]
- Sertu, S. Degraded Soil of Ethiopia and their management. Proceeding of FAO/ISCW expert consultation on management of degraded soils in Southern and East Africa. In Proceedings of the 2nd Network Meeting, Pretoria, South Africa, 18–22 September 2000. [Google Scholar]
- Bewket, W. Soil and water conservation intervention with conventional technologies in northwestern highlands of Ethiopia: Acceptance and adoption by farmers. Land Use Policy 2007, 24, 404–416. [Google Scholar] [CrossRef]
- Desta, L.; Carucci, V.; Wendem-Ageňehu, A.; Abebe, Y. Community Based Participatory Watershed Development: A Guideline; Ministry of Agriculture and Rural Development: Addis Ababa, Ethiopia, 2005; pp. 1–62.
- Adimassu, Z.; Mekonnen, K.; Yirga, C.; Kessler, A. Effect of soil bunds on runoff, soil and nutrient losses, and crop yield in the central highlands of ethiopia. Land Degrad. Dev. 2014, 25, 554–564. [Google Scholar] [CrossRef]
- Baye, T.G. Poverty, peasantry and agriculture in Ethiopia. Ann. Agrar. Sci. 2017, 15, 420–430. [Google Scholar] [CrossRef]
- Tamene, L.; Vlek, P.L.G. Soil erosion studies in Northern Ethiopia. Land Use Soil Resour. 2008, 180, 73–100. [Google Scholar]
- Gebregeorgis, E.G.; Robertson, I.; Koprowski, M.; Zhou, L.P.; Gao, P.; Williams, A.P.; Eshetu, Z.; Wils, T.H.G. Historical droughts recorded in extended Juniperus procera ring-width chronologies from the Ethiopian Highlands. Int. J. Biometeorol. 2020, 64, 739–753. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, K.; Larson, D.F. An African Green Revolution: Finding Ways to Boost Productivity on Small Farms; Springer: New York, NY, USA, 2013; pp. 1–281. [Google Scholar]
- Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Prosen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E.; Folley, A.J.V. The European Soil Erosion Model. (EUROSEM): Documentation and User Guide; Silsoe College, Cranfield University: Silsoe, UK, 1998; pp. 1–30. [Google Scholar]
- Laflen, J.M.; Lane, L.J.; Water, G.R. WEPP A new generation of erosion prediction technology. J. Soil Water Conserv. 1991, 46, 34–38. [Google Scholar]
- Boardman, J.; Favis-Mortlock, D. Modelling Soil Erosion by Water; Springer Verlag: Berlin/Heidelberg, Germany, 1998; Volume 55, pp. 1–6. [Google Scholar]
- Renard, K.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Handbook No. 703; Department of Agriculture, Agriculture: Washington, DC, USA, 1997; pp. 1–384.
- Morgan, R.P.C. Soil Erosion and Conservation, 3rd ed.; Blackwell Publishing Ltd.: Malden, MA, USA; Oxford, UK; Victoria, Australia, 2005; pp. 1–298. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—a Guide to Conservation Planning; USDA, Science and Education Administration: Hyattsville, MD, USA, 1978; Volume 46, pp. 34–38.
- Nearing, M.A. A Single, Continuous Function for Slope Steepness Influence on Soil Loss. Soil Sci. Soc. Am. J. 1997, 61, 917–919. [Google Scholar] [CrossRef]
- Rowlands, L. Erosion and Sediment Control-WSUD During the Construction Phase of Land Development. In Approaches to Water Sensitive Urban Design: Potential, Design, Ecological Health, Urban Greening, Economics, Policies, and Community Perceptions; Sharma, A.K., Gardner, T., Begbie, D., Eds.; Elsevier Inc.: Cambridge, USA, 2018; pp. 163–176.45. [Google Scholar]
- Kinnell, P.I.A. Why the universal soil loss equation and the revised version of it do not predict event erosion well. Hydrol. Process. 2005, 19, 851–854. [Google Scholar] [CrossRef]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Le Bissonnais, Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S.; et al. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Cohen, M.J.; Shepherd, K.D.; Walsh, M.G. Empirical reformulation of the universal soil loss equation for erosion risk assessment in a tropical watershed. Geoderma 2005, 124, 235–252. [Google Scholar] [CrossRef]
- Erol, A.; Koşkan, Ö; Başaran, M.A. Socioeconomic modifications of the universal soil loss equation. Solid Earth 2015, 6, 1025–1035. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Poesen, J.; Tsubo, M.; Borrelli, P.; Panagos, P.; Vanmaercke, M.; Broeckx, J.; Yasuda, H.; et al. Land susceptibility to water and wind erosion risks in the East Africa region. Sci. Total Environ. 2020, 703, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Ganasri, B.P.; Ramesh, H. Assessment of soil erosion by RUSLE model using remote sensing and GIS—A case study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961. [Google Scholar] [CrossRef] [Green Version]
- Phinzi, K.; Ngetar, N.S. The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review. Int. Soil Water Conserv. Res. 2019, 7, 27–46. [Google Scholar] [CrossRef]
- Amsalu, T.; Mengaw, A. GIS Based Soil Loss Estimation Using RUSLE Model: The Case of Jabi Tehinan Woreda. Nat. Resour. 2014, 5, 616–626. [Google Scholar] [CrossRef] [Green Version]
- Bewket, W.; Teferi, E. Assessment of soil erosion hazard and prioritization for treatment at the watershed level: Case study in the Chemoga watershed, Blue Nile basin, Ethiopia. Land. Degrad. Dev. 2009, 20, 609–622. [Google Scholar] [CrossRef]
- Gelagay, H.S.; Minale, A.S. Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. Int. Soil Water Conserv. Res. 2016, 4, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Beskow, S.; Mello, C.R.; Norton, L.D.; Curi, N.; Viola, M.R.; Avanzi, J.C. Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena 2009, 79, 49–59. [Google Scholar] [CrossRef]
- Galdino, S.; Sano, E.E.; Andrade, R.G.; Grego, C.R.; Nogueira, S.F.; Bragantini, C.; Flosi, A.H.G. Large-scale Modeling of Soil Erosion with RUSLE for Conservationist Planning of Degraded Cultivated Brazilian Pastures. Land Degrad. Dev. 2016, 27, 773–784. [Google Scholar] [CrossRef] [Green Version]
- Karaburun, A. Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. Ozean J. Appl. Sci. 2010, 3, 77–85. [Google Scholar]
- Millward, A.A.; Mersey, J.E. Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena 1999, 38, 109–129. [Google Scholar] [CrossRef]
- Naqvi, H.R.; Mallick, J.; Devi, L.M.; Siddiqui, M.A. Multi-temporal annual soil loss risk mapping employing Revised Universal Soil Loss Equation (RUSLE) model in Nun Nadi Watershed, Uttrakhand (India). Arab. J. Geosci. 2013, 6, 4045–4056. [Google Scholar] [CrossRef]
- Shi, Z.H.; Cai, C.F.; Ding, S.W.; Wang, T.W.; Chow, T.L. Soil conservation planning at the small watershed level using RUSLE with GIS: A case study in the Three Gorge Area of China. Catena 2004, 55, 33–48. [Google Scholar] [CrossRef]
- Terranova, O.; Antronico, L.; Coscarelli, R.; Iaquinta, P. Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology 2009, 112, 228–245. [Google Scholar] [CrossRef]
- Ghosal, K.; Das Bhattacharya, S. A Review of RUSLE Model. J. Indian Soc. Remote Sens. 2020, 48, 689–707. [Google Scholar] [CrossRef]
- Renard, K.G.; Simanton, J.R. Application of RUSLE to rangelands. In Watershed Planning and Analysis in Action. In Proceedings of the IR Conference Watershed Mgt/IR Div/; ASCE: Durango, CO, USA, 1990; pp. 164–173. [Google Scholar]
- Spaeth, K.E.; Pierson, F.B.; Weltz, M.A.; Blackburn, W.H. Evaluation of USLE and RUSLE estimated soil loss on rangeland. J. Range Manag. 2003, 56, 234–246. [Google Scholar] [CrossRef]
- Tamene, L.; Le, Q.B. Estimating soil erosion in sub-Saharan Africa based on landscape similarity mapping and using the revised universal soil loss equation (RUSLE). Nutr. Cycl. Agroecosyst. 2015, 102, 17–31. [Google Scholar] [CrossRef]
- Ranzi, R.; Le, T.H.; Rulli, M.C. A RUSLE approach to model suspended sediment load in the Lo river (Vietnam): Effects of reservoirs and land use changes. J. Hydrol. 2012, 422–423, 17–29. [Google Scholar] [CrossRef]
- Hurni, H. An Ecosystem Approach to Soil Conservation. In Soil Erosion and Conservation; Swaify, E.L., Samir, A., Moldenhauer, W.C., Eds.; Soil Conservation Society of America: Ankeny, IA, USA, 1985; Volume 73, pp. 759–771. [Google Scholar]
- Brhane, G.; Mekonen, K. Estimating Soil Loss Using Universal Soil Loss Equation (USLE) for Soil Conservation planning at Medego Watershed, Northern Ethiopia Gebreyesus. J. Am. Sci. 2009, 5, 58–69. [Google Scholar]
- Sisay, A.; Chalie, N.; Girmay, Z.; Takele, G.; Tolera, A. Landscape-scale soil erosion modeling and risk mapping of mountainous areas in eastern escarpment of Wondo Genet Watershed, Ethiopia. Int. Res. J. Agric. Sci. Soil Sci. 2014, 4, 107–116. [Google Scholar] [CrossRef]
- Tadesse, L.; Suryabhagavan, K.V.; Sridhar, G.; Legesse, G. Land use and land cover changes and Soil erosion in Yezat Watershed, North Western Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Haregeweyn, N.; Tsunekawa, A.; Nyssen, J.; Poesen, J.; Tsubo, M.; Tsegaye Meshesha, D.; Schütt, B.; Adgo, E.; Tegegne, F. Soil erosion and conservation in Ethiopia: A review. Prog. Phys. Geogr. 2015, 39, 750–774. [Google Scholar] [CrossRef] [Green Version]
- Danano, D.; Grunder, M.; Hurni, H.; Goshu, K.; Wolde-Aregay, B.; Chadhokar, P.; Zeleke, G. Guidelines for Development Agents on Soil and Water Conservation in Ethiopia, 2nd ed.; Centre for Development and Environment (CDE), University of Bern, with Bern Open Publishing (BOP): Bern, Switzerland, 2016; pp. 1–132. [Google Scholar]
- Degefu, M.A.; Rowell, D.P.; Bewket, W. Teleconnections between Ethiopian rainfall variability and global SSTs: Observations and methods for model evaluation. Meteorol. Atmos. Phys. 2017, 129, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Bayat, B.; Zahraie, B.; Taghavi, F.; Nasseri, M. Evaluation of spatial and spatiotemporal estimation methods in simulation of precipitation variability patterns. Theor. Appl. Climatol. 2013, 113, 429–444. [Google Scholar] [CrossRef]
- Xu, W.; Zou, Y.; Zhang, G.; Linderman, M. A comparison among spatial interpolation techniques for daily rainfall data in Sichuan Province, China. Int. J. Climatol. 2015, 35, 2898–2907. [Google Scholar] [CrossRef]
- Ly, S.; Charles, C.; Degré, A. Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: A review. Biotechnol. Agron. Soc. Env. 2013, 17, 392–406. [Google Scholar]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- FAO Declaration of the World Summit on Food Security. Available online: http://www.fao.org/fileadmin/templates/wsfs/Summit/Docs/FinalDeclaration/WSFS09_Declaration.pdf. (accessed on 12 December 2014).
- Helldén, U. An Assessment of Woody Biomass, Community Forests, Land Use and Soil Erosion in Ethiopia. A Feasibility Study on the Use of Remote Sensing and GIS [Geographical Information System]-Analysis for Planning Purposes in Developing Countries; Lund University Press: Lund, Sweden, 1987; p. 75. [Google Scholar]
- IUSS. World Reference Base for Soil Resources 2014, update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Map; IUSS: Rome, Italy, 2015; p. 75. [Google Scholar]
- Griffin, M.L.; Beasley, D.B.; Fletcher, J.J.; Foster, G.R. Estimating soil loss on topographically nonuniform field and farm units. J. Soil Water Conserv. 1988, 43, 326–331. [Google Scholar]
- ASTER Global Digital Elevation Model (GDEM). Available online: https://ssl.jspacesystems.or.jp/ersdac/GDEM/E/4.html (accessed on 27 May 2020).
- ASTER Global Digital Elevation Map Announcement. Available online: https://asterweb.jpl.nasa.gov/gdem.asp (accessed on 27 May 2020).
- Mitasova, H.; Hofierka, J.; Zlocha, M.; Iverson, L.R. Modelling topographic potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Syst. 1996, 10, 629–641. [Google Scholar] [CrossRef]
- Hexagon Geospatial. Available online: https://www.hexagongeospatial.com (accessed on 27 May 2020).
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 2nd ed.; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1995; pp. 1–318. [Google Scholar]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Sahoo, S. Evaluation of soil loss estimation using the RUSLE model and SCS-CN method in hillslope mining areas. Int. Soil Water Conserv. Res. 2018, 6, 31–42. [Google Scholar] [CrossRef]
- FAO/UNEP. Provisional Methodology for Assessment and Mapping of Desertification; FAO/UNEP: Rome, Italy, 1984. [Google Scholar]
- Kidane, M.; Bezie, A.; Kesete, N.; Tolessa, T. The impact of land use and land cover (LULC) dynamics on soil erosion and sediment yield in Ethiopia. Heliyon 2019, 5, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kijowska-Strugała, M.; Bucała-Hrabia, A.; Demczuk, P. Long-term impact of land use changes on soil erosion in an agricultural catchment (in the Western Polish Carpathians). Land Degrad. Dev. 2018, 29, 1871–1884. [Google Scholar] [CrossRef]
- Sahli, Y.; Mokhtari, E.; Merzouk, B.; Laignel, B.; Vial, C.; Madani, K. Mapping surface water erosion potential in the Soummam watershed in Northeast Algeria with RUSLE model. J. Mt. Sci. 2019, 16, 1606–1615. [Google Scholar] [CrossRef]
- Jafarian, Z.; Beshtar, V.; Kavian, A. Simulation Effects of Improvement and Restoration Operations of Rangeland on Soil Loss using RUSLE Model. Phys. Geogr. Res. Q. 2017, 49, 8–9. [Google Scholar]
- El Aroussi, O.; Mesrar, L.; Lakrim, M.; El Garouani, A.; Jabrane, R. Methodollogicall approach for assessing the potentiall risk of soil erosion using remote sensing and GIS in the Oued Ell Malllleh watershed (Pre-Rif, Morocco). J. Mater. Environ. Sci. 2011, 2, 433–438. [Google Scholar]
- Barriuso-Mediavilla, A.; Del-Bosque-González, I.; Salas-Tovar, E.; Sanz-Cañada, J. GIS Model for Potential Soil Erosion with the Optimization of RUSLE Equation. Case of Study: Olive Oil PDO in Aragón and Andalucía Regions; Agile: Wageningen, The Netherlands, 2017; pp. 9–12. [Google Scholar]
- Pan, J.; Wen, Y. Estimation of soil erosion using RUSLE in Caijiamiao watershed, China. Nat. Hazards 2014, 71, 2187–2205. [Google Scholar] [CrossRef]
- Tang, Q.; Xu, Y.; Bennett, S.J.; Li, Y. Assessment of soil erosion using RUSLE and GIS: A case study of the Yangou watershed in the Loess Plateau, China. Environ. Earth Sci. 2015, 73, 1715–1724. [Google Scholar] [CrossRef] [Green Version]
- Adugna, A.; Abegaz, A.; Cerdà, A. Soil erosion assessment and control in Northeast Wollega, Ethiopia. Solid Earth Discuss. 2015, 7, 3511–3540. [Google Scholar] [CrossRef]
- Hurni, H. Degradation and Conservation of the Resources in the Ethiopian Highlands. Mt. Res. Dev. 1988, 8, 123–130. [Google Scholar] [CrossRef]
- Munro, R.N.; Deckers, J.; Haile, M.; Grove, A.T.; Poesen, J.; Nyssen, J. Soil landscapes, land cover change and erosion features of the Central Plateau region of Tigrai, Ethiopia: Photo-monitoring with an interval of 30 years. Catena 2008, 75, 55–64. [Google Scholar] [CrossRef]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Bahrami, H.A.; Naderi, M.; Dematte, J.A.M. Soil loss prediction by an integrated system using RUSLE, GIS and remote sensing in semi-arid region. Geoderma Reg. 2017, 11, 28–36. [Google Scholar] [CrossRef]
- Amdihun, A.; Gebremariam, E.; Rebelo, L.M.; Zeleke, G. Suitability and scenario modeling to support soil and water conservation interventions in the Blue Nile Basin, Ethiopia. Theor. Chem. Acc. 2014, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Panditharathne, D.L.D.; Abeysingha, N.S.; Nirmanee, K.G.S.; Mallawatantri, A. Application of revised universal soil loss equation (Rusle) model to assess soil erosion in “kalu Ganga” River Basin in Sri Lanka. Appl. Environ. Soil Sci. 2019, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D. Soil erosion: A food and environmental threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Angima, S.D.; Stott, D.E.; O’Neill, M.K.; Ong, C.K.; Weesies, G.A. Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agric. Ecosyst. Environ. 2003, 97, 295–308. [Google Scholar] [CrossRef]
- Bryan, R.B. Soil erodibility and processes of water erosion on hillslope. Geomorphology 2000, 32, 385–415. [Google Scholar] [CrossRef]
- Bekele, W.; Drake, L. Soil and water conservation decision behavior of subsistence farmers in the Eastern Highlands of Ethiopia: A case study of the Hunde-Lafto area. Ecol. Econ. 2003, 46, 437–451. [Google Scholar] [CrossRef]
- Taye, G.; Poesen, J.; Vanmaercke, M.; Van Wesemael, B.; Martens, L.; Teka, D.; Nyssen, J.; Deckers, J.; Vanacker, V.; Haregeweyn, N.; et al. Evolution of the effectiveness of stone bunds and trenches in reducing runoff and soil loss in the semi-arid Ethiopian highlands. Z. Geomorphol. 2015, 59, 477–493. [Google Scholar] [CrossRef]
- Nigussie, Z.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Nohmi, M.; Tsubo, M.; Aklog, D.; Meshesha, D.T.; Abele, S. Farmers’ Perception about Soil Erosion in Ethiopia. Land Degrad. Dev. 2017, 28, 401–411. [Google Scholar] [CrossRef]
Image Captured Month | Year 2016 | |||||
---|---|---|---|---|---|---|
January | Path | Row | Path | Row | Path | Row |
167 | 55 | 167 | 56 | 168 | 55 |
Major Soil Group | Coverage in km2 | Coverage in % | K Value |
---|---|---|---|
Eutric cambisols | 1838 | 13.07 | 0.34 |
Chromic cambisols | 963 | 6.85 | 0.28 |
Leptosols | 877 | 6.24 | 0.2 |
Rendzic leptosols | 3373 | 24 | 0.26 |
Calcic cambisols | 14 | 0.099 | 0.05 |
Chromic luvisols | 2528 | 18 | 0.2 |
Pellic vertisols | 889 | 6.33 | 0.24 |
Chromic vertisols | 3573 | 25 | 0.24 |
Total | 14,055 | 100 |
LULC Classes | Coverage in km2 | Coverage in % | C Value |
---|---|---|---|
Forest | 2317 | 16.49 | 0.01 |
Settlement | 1987 | 14.13 | 0.99 |
Open grassland | 1113 | 7.91 | 0.01 |
Agricultural land | 3318 | 23.61 | 0.15 |
Degraded forest | 1702 | 12.11 | 0.05 |
Open woodland | 2730 | 19.42 | 0.06 |
Bare land | 888 | 6.32 | 0.6 |
Total | 14,055 | 100 | Total |
Land Use Type | Slope (%) | p-Factor |
---|---|---|
Agricultural land | 0–5 | 0.11 |
5–10 | 0.12 | |
10–20 | 0.14 | |
20–30 | 0.22 | |
30–50 | 0.31 | |
50–100 | 0.43 | |
Other land | All | 1.00 |
Soil Loss (Tons ha−1 Year−1) | Severity Class | Priority Class | Area (km2) | Total Area Coverage (%) |
---|---|---|---|---|
0–5 | Low | VII | 9384 | 66.8 |
5–11 | Moderate | VI | 1900 | 13.5 |
11–20 | High | V | 49 | 0.35 |
20–30 | Very high | IV | 165 | 1.17 |
30–45 | Severe | III | 491 | 3.5 |
45–60 | Very severe | II | 403 | 2.9 |
>60 | Extreme severe | I | 1663 | 11.6 |
Total | 14,055 | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tessema, Y.M.; Jasińska, J.; Yadeta, L.T.; Świtoniak, M.; Puchałka, R.; Gebregeorgis, E.G. Soil Loss Estimation for Conservation Planning in the Welmel Watershed of the Genale Dawa Basin, Ethiopia. Agronomy 2020, 10, 777. https://doi.org/10.3390/agronomy10060777
Tessema YM, Jasińska J, Yadeta LT, Świtoniak M, Puchałka R, Gebregeorgis EG. Soil Loss Estimation for Conservation Planning in the Welmel Watershed of the Genale Dawa Basin, Ethiopia. Agronomy. 2020; 10(6):777. https://doi.org/10.3390/agronomy10060777
Chicago/Turabian StyleTessema, Yared Mesfin, Justyna Jasińska, Lemma Tiki Yadeta, Marcin Świtoniak, Radosław Puchałka, and Eyob Gebrehiwot Gebregeorgis. 2020. "Soil Loss Estimation for Conservation Planning in the Welmel Watershed of the Genale Dawa Basin, Ethiopia" Agronomy 10, no. 6: 777. https://doi.org/10.3390/agronomy10060777
APA StyleTessema, Y. M., Jasińska, J., Yadeta, L. T., Świtoniak, M., Puchałka, R., & Gebregeorgis, E. G. (2020). Soil Loss Estimation for Conservation Planning in the Welmel Watershed of the Genale Dawa Basin, Ethiopia. Agronomy, 10(6), 777. https://doi.org/10.3390/agronomy10060777