Responses of Microbiological Soil Properties to Intercropping at Different Planting Densities in an Acidic Andisol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Plant and Soil Sampling
2.3. Plant and Soil Properties
2.4. Counts of Functional Genes by Quantitative PCR (qPCR)
2.5. Statistical Analysis
3. Results
3.1. Soil Nutrients
3.2. Microbiological Soil Properties
3.3. Nutrient Uptake and Grain Yield
3.4. Relative Abundance of Bacterial Functional Genes
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lambers, H.; Clements, J.C.; Nelson, M.N. How a Phosphorus-Acquisition Strategy Based on Carboxylate Exudation Powers the Success and Agronomic Potential of Lupines (Lupinus, Fabaceae). Am. J. Bot. 2013, 100, 263–288. [Google Scholar] [CrossRef] [PubMed]
- Shane, M.W.; Lambers, H. Cluster roots: A curiosity in context. Plant Soil 2005, 274, 101–125. [Google Scholar] [CrossRef]
- Mora, M.D.; Demanet, R.; Acuna, J.J.; Viscardi, S.; Jorquera, M.; Rengel, Z.; Duran, P. Aluminum-tolerant bacteria improve the plant growth and phosphorus content in ryegrass grown in a volcanic soil amended with cattle dung manure. Appl. Soil Ecol. 2017, 115, 19–26. [Google Scholar] [CrossRef]
- Wasaki, J.; Yamamura, T.; Shinano, T.; Osaki, M. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant Soil 2003, 248, 129–136. [Google Scholar] [CrossRef]
- Dissanayaka, D.M.S.B.; Maruyama, H.; Masuda, G.; Wasaki, J. Interspecific facilitation of P acquisition in intercropping of maize with white lupin in two contrasting soils as influenced by different rates and forms of P supply. Plant Soil 2015, 390, 223–236. [Google Scholar] [CrossRef]
- Mora, M.D.; Rosas, A.; Ribera, A.; Rengel, Z. Differential tolerance to Mn toxicity in perennial ryegrass genotypes: Involvement of antioxidative enzymes and root exudation of carboxylates. Plant Soil 2009, 320, 79–89. [Google Scholar] [CrossRef]
- Staff, S.S. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys; US Government Printing Office: Washington, DC, USA, 2006. [Google Scholar]
- Information Resource Portal for Lupin. Available online: lupins.org/lupins (accessed on 16 September 2019).
- Mellado, M. El Trigo en Chile, Colección Libros INIA Nº 21; Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación (CRI) Quilamapu: Chillán, Chile, 2007. [Google Scholar]
- Montalba, R. Cambio Técnico Agrario y Sostenibilidad de los Agroecosistemas. Guía Curso “Agroecología. y Desarrollo Rural Sostenible”. Unidad 1; Universidad de La Frontera: Temuco, Chile, 2009; 93p. [Google Scholar]
- Dijkstra, F.A.; Carrillo, Y.; Pendall, E.; Morgan, J.A. Rhizosphere priming: A nutrient perspective. Front. Microbiol. 2013, 4, 216. [Google Scholar] [CrossRef] [Green Version]
- Dodd, I.C.; Ruiz-Lozano, J.M. Microbial enhancement of crop resource use efficiency. Curr. Opin. Biotechnol. 2012, 23, 236–242. [Google Scholar] [CrossRef]
- Averill, C.; Finzi, A. Plant regulation of microbial enzymes production in situ. Soil Biol. Biochem. 2011, 43, 2457–2460. [Google Scholar] [CrossRef] [Green Version]
- del Pozo, A.; del Canto, P. Áreas Agroclimáticas y Sistemas Productivos en la VII y VIII Regiones; Centro Regional de Investigación Quilamapu: Chillán, Chile, 1999. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1958; 498p. [Google Scholar]
- Watanabe, F.S.; Olsen, S.R. Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO3 Extracts from the Soil. Soil Sci. Soc. Am. J. 1965, 29, 677–678. [Google Scholar] [CrossRef]
- Stockdalea, E.A.; Banningb, N.C.; Murphy, D.V. Rhizosphere effects on functional stability of microbial communities in conventional and organic soils following elevated temperature treatment. Soil Biol. Biochem. 2013, 57, 56–59. [Google Scholar] [CrossRef]
- Anderson, J.P.E.; Domsch, K.H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 1978, 10, 215–221. [Google Scholar] [CrossRef]
- Garcia, C.; Hernandez, T.; Costa, F. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun. Soil Sci. Plant Anal. 1997, 28, 123–134. [Google Scholar] [CrossRef]
- Nannipieri, P.; Ceccanti, B.; Cervelli, S.; Matarese, E. Extraction of phosphatase, urease, proteases, organic-carbon, and nitrogen from soil. Soil Sci. Soc. Am. J. 1980, 44, 1011–1016. [Google Scholar] [CrossRef]
- Tabatabai, M.A. Soil enzymes. In Methods of Soil Analysis; Page, A.L., Miller, E.M., Keeney, D.R., Eds.; ASA and SSSA Inc.: Madison, WI, USA, 1982; pp. 501–538. [Google Scholar]
- Naseby, D.C.; Lynch, J.M. Rhizosphere soil enzymes as indicators of perturbations caused by enzyme substrate addition and inoculation of a genetically modified strain of Pseudomonas fluorescens on wheat seed. Soil Biol. Biochem. 1997, 29, 1353–1362. [Google Scholar] [CrossRef] [Green Version]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Sadzawka, A.; Grez, R.; Carrasco, M.; Mora, M. Métodos de Análisis de Tejidos Vegetales, CNA Comisión de Normalización y Acreditación; Sociedad Chilena de Ciencias del Suelo: Santiago, Chile, 2007. [Google Scholar]
- Shade, A.; McManus, P.S.; Handelsman, J. Unexpected Diversity during Community Succession in the Apple Flower Microbiome. Mbio 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Rilling, J.I.; Acuna, J.J.; Sadowsky, M.J.; Jorquera, M.A. Putative Nitrogen-Fixing Bacteria Associated With the Rhizosphere and Root Endosphere of Wheat Plants Grown in an Andisol From Southern Chile. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Sakurai, M.; Wasaki, J.; Tomizawa, Y.; Shinano, T.; Osaki, M. Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Sci. Plant Nutr. 2008, 54, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Fraser, T.D.; Lynch, D.H.; Gaiero, J.; Khosla, K.; Dunfield, K.E. Quantification of bacterial non-specific acid (phoC) and alkaline (phoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields. Appl. Soil Ecol. 2017, 111, 48–56. [Google Scholar] [CrossRef]
- Li, Z.; Chang, S.; Ye, S.; Chen, M.; Lin, L.; Li, Y.; Li, S.; An, Q. Differentiation of 1-aminocyclopropane-1-carboxylate(ACC) deaminase from its homologs is the key foridentifying bacteria containing ACC deaminase. FEMS Microbiol. Ecol. 2015, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariotti, M.; Masoni, A.; Ercoli, L.; Arduini, I. Above- and below-ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system. Grass Forage Sci. 2009, 64, 401–412. [Google Scholar] [CrossRef]
- Martin-Guay, M.O.; Paquette, A.; Dupras, J.; Rivest, D. The new Green Revolution: Sustainable intensification of agriculture by intercropping. Sci. Total Environ. 2018, 615, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Hinsinger, P.; Betencourt, E.; Bernard, L.; Brauman, A.; Plassard, C.; Shen, J.; Tang, X.; Zhang, F. P for two, sharing a scarce resource: Soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol. 2011, 156, 1078–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watt, M.; Evans, J.R. Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol. 1999, 120, 705–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schröder, D.; Köpke, U. Faba bean (Vicia faba L.) intercropped with oil crops—A strategy to enhance rooting density and to optimize nitrogen use and grain production? Field Crop. Res. 2012, 135, 74–81. [Google Scholar] [CrossRef]
- Xia, H.Y.; Wang, Z.G.; Zhao, J.H.; Sun, J.H.; Bao, X.G.; Christie, P.; Zhang, F.S.; Li, L. Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Field Crop. Res. 2013, 154, 53–64. [Google Scholar] [CrossRef]
- Schulze, J.; Temple, G.; Temple, S.J.; Beschow, H.; Vance, C.P. Nitrogen Fixation by White Lupin under Phosphorus Deficiency. Ann. Bot. 2006, 98, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.G.; Jin, X.; Bao, X.G.; Li, X.F.; Zhao, J.H.; Sun, J.H.; Christie, P.; Li, L. Intercropping Enhances Productivity and Maintains the Most Soil Fertility Properties Relative to Sole Cropping. PLoS ONE 2014, 9, e0113984. [Google Scholar] [CrossRef] [Green Version]
- Fuentes-Ponce, M.; Moreno-Espíndola, I.P.; Sánchez-Rodríguez, L.M.; Ferrara-Guerrero, M.J.; López-Ordaz, R. Dehydrogenase and mycorrhizal colonization: Tools for monitoring agrosystem soil quality. Appl. Soil Ecol. 2016, 100, 144–153. [Google Scholar]
- Mengual, C.; Roldan, A.; Caravaca, F.; Schoebitz, M. Advantages of inoculation with immobilized rhizobacteria versus amendment with olive-mill waste in the afforestation of a semiarid area with Pinus halepensis Mill. Ecol. Eng. 2014, 73, 1–8. [Google Scholar] [CrossRef]
- Fu, Z.D.; Zhou, L.; Chen, P.; Du, Q.; Pang, T.; Song, C.; Wang, X.C.; Liu, W.G.; Yang, W.Y.; Yong, T.W. Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community. J. Integr. Agric. 2019, 18, 2006–2018. [Google Scholar] [CrossRef]
- Dick, W.A.; Cheng, L.; Wang, P. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol. Biochem. 2000, 32, 1915–1919. [Google Scholar] [CrossRef]
- Wasaki, J.; Omura, M.; Ando, M.; Shinano, T.; Osaki, M.; Tadano, T. Secreting portion of acid phosphatase in roots of lupin (Lupinus albus L.) and a key signal for the secretion from the roots. Soil Sci. Plant Nutr. 1999, 45, 937–945. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.Y.; Bernard, L.; Brauman, A.; Daufresne, T.; Deleporte, P.; Desclaux, D.; Souche, G.; Placella, S.A.; Hinsinger, P. Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions. Soil Biol. Biochem. 2014, 75, 86–93. [Google Scholar] [CrossRef]
- Song, Y.N.; Zhang, F.S.; Marschner, P.; Fan, F.L.; Gao, H.M.; Bao, X.G.; Sun, J.H.; Li, L. Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biol. Fert. Soils 2007, 43, 565–574. [Google Scholar] [CrossRef]
- Kunito, T.; Isomura, I.; Sumi, H.; Park, H.D.; Toda, H.; Otsuka, S.; Nagaoka, K.; Saeki, K.; Senoo, K. Aluminum and acidity suppress microbial activity and biomass in acidic forest soils. Soil Biol. Biochem. 2016, 97, 23–30. [Google Scholar] [CrossRef]
- Mei, P.P.; Gui, L.G.; Wang, P.; Huang, J.C.; Long, H.Y.; Christie, P.; Li, L. Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil. Field Crop. Res. 2012, 130, 19–27. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Li, Q.H.; Sun, J.H.; Wei, X.J.; Christie, P.; Zhang, F.S.; Li, L. Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley. Plant Soil 2011, 339, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Ragot, S.A.; Kertesz, M.A.; Bunemann, E.K. phoD Alkaline Phosphatase Gene Diversity in Soil. Appl. Environ. Microb. 2015, 81, 7281–7289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Viveros, O.; Jorquera, M.A.; Crowley, D.E.; Gajardo, G.; Mora, M.L. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. Plant Nutr. 2010, 10, 293–319. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.S.; Singh, A.; Singh, H.B.; Sarma, B.K. Plant genotype, microbial recruitment and nutritional security. Front. Plan Sci. 2015, 6, 608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cropping System | Plant Density (kg ha−1) | pH | NO3 (mg kg−1) | NH4 (mg kg−1) | N Available (mg kg−1) | P Olsen (mg kg−1) | K Available (mg kg−1) |
---|---|---|---|---|---|---|---|
Wheat | L | 5.3 ± 0.0 | 5.2 ± 0.4 ab | 5.6 ± 0.6 ab | 10.8 ± 0.7 ab | 12.0 ± 1.0 cd | 166 ± 11 c |
M | 5.0 ± 0.3 | 4.4 ± 0.4 a | 4.0 ± 0.4 a | 8.4 ± 0.4 a | 11.7 ± 0.7 bcd | 144 ± 26 bc | |
H | 5.3 ± 0.0 | 5.1 ± 0.1 ab | 5.1 ± 0.4 a | 10.1 ± 0.5 ab | 13.2 ± 2.1 d | 165 ± 23 c | |
Lupin | L | 5.4 ± 0.1 | 13.0 ± 0.5 d | 7.8 ±0.7 c | 20.8 ± 0.9 e | 9.8 ± 0.2 abc | 95 ± 15 a |
M | 5.3 ± 0.0 | 10.9 ± 0.9 c | 7.0 ± 1.0 bc | 17.9 ± 1.8 d | 9.0 ± 0.3 ab | 107 ± 8 ab | |
H | 5.3 ± 0.0 | 7.1 ± 1.3 b | 7.3 ± 0.4 bc | 14.4 ± 1.2 c | 9.5 ± 0.5 abc | 83 ± 9 a | |
Wheat + Lupin | L | 5.3 ± 0.1 | 4.8 ± 0.1 a | 5.7 ± 0.3 ab | 10.5 ± 0.6 ab | 8.0 ± 0.4 a | 81 ± 10 a |
M | 5.3 ± 0.0 | 6.6 ± 0.6 ab | 7.2 ± 0.3 bc | 13.8 ± 0.8 c | 8.4 ± 1.0 a | 90 ± 1 a | |
H | 5.4 ± 0.0 | 4.8 ± 0.4 a | 8.0 ± 0.5 c | 12.7 ± 0.6 bc | 8.4 ± 0.3 a | 85 ± 6 a | |
Anova, P values | |||||||
Cropping system | 0.191 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Plant density | 0.265 | 0.003 | 0.340 | 0.130 | 0.661 | 0.971 | |
CS ×PD | 0.785 | 0.001 | 0.053 | 0.001 | 0.845 | 0.557 |
Cropping System | Plant Density (kg ha−1) | Phosphatase (μmol PNP g−1h−1) | Urease (μmol NH4+ g−1h−1) | Protease (μmol NH4+ g−1h−1) | Dehydrogenase (μg INTF g−1) | β-glucosidase (μmol PNP g−1h−1) | Soil Basal Respiration (CO2 h−1 Kg−1) | Microbial Biomass C (mg Kg−1) |
---|---|---|---|---|---|---|---|---|
Wheat | L | 0.5 ± 0.07 a | 2.3 ± 0.10 | 1.1 ± 0.04 | 22 ± 1.0 | 0.36 ± 0.01 | 12.0 ± 0.9 | 1495 ± 192 |
M | 0.3 ± 0.11 a | 1.9 ± 0.04 | 0.9 ± 0.13 | 19 ± 0.9 | 0.30 ± 0.04 | 11.1 ± 0.4 | 1495 ± 141 | |
H | 0.7 ± 0.0 a | 2.1 ± 0.15 | 0.8 ± 0.14 | 22 ± 2.4 | 0.32 ± 0.05 | 11.8 ± 0.6 | 1548 ± 175 | |
Lupin | L | 2.2 ± 0.17 bc | 2.0 ± 0.04 | 0.7 ±0.10 | 23 ± 2.0 | 0.33 ± 0.02 | 12.0 ± 0.8 | 1575 ± 175 |
M | 2.9 ± 0.16 d | 2.0 ± 0.14 | 0.8 ± 0.11 | 23 ± 0.6 | 0.31 ± 0.03 | 13.4 ± 0.2 | 1575 ± 175 | |
H | 2.6 ± 0.29 cd | 2.1 ± 0.11 | 0.9 ± 0.08 | 24 ± 1.6 | 0.30 ± 0.04 | 14.1 ± 0.9 | 1842 ± 46 | |
Wheat + Lupin | L | 2.3 ± 0.21 cd | 2.0 ± 0.19 | 1.0 ± 0.05 | 22 ± 0.8 | 0.33 ± 0.01 | 13.4 ± 1.0 | 1682 ± 45 |
M | 2.6 ± 0.41 cd | 2.1 ± 0.18 | 0.9 ± 0.05 | 22 ± 2.1 | 0.32 ± 0.01 | 12.0 ± 0.6 | 1642 ± 23 | |
H | 1.7 ± 0.23 b | 2.0 ± 0.10 | 0.9 ± 0.10 | 24 ± 1.6 | 0.31 ± 0.03 | 13.3 ± 0.9 | 1782 ± 46 | |
Anova, P values | ||||||||
Cropping system | <0.001 | 0.654 | 0.114 | 0.082 | 0.881 | 0.051 | 0.216 | |
Plant density | 0.125 | 0.698 | 0.435 | 0.323 | 0.428 | 0.313 | 0.336 | |
CS × PD | 0.019 | 0.211 | 0.307 | 0.702 | 0.943 | 0.332 | 0.903 |
Cropping | Plant Densiy | N% | P% | Grain Yield (kg ha−1) | |
---|---|---|---|---|---|
Wheat | L | 1.4 ± 0.2 b | 0.09 ± 0.02 ab | 5331 ± 193 c | |
Monocrop | M | 1.4 ± 0.1 b | 0.10 ± 0.01 b | 6510 ± 329 d | |
H | 1.0 ± 0.1 a | 0.07 ± 0.01 a | 5733 ± 360 cd | ||
L | 1.9 ± 0.1 d | 0.14 ± 0.01 c | 2529 ± 395 b | ||
Intercrop | M | 1.7 ± 0.0 cd | 0.12 ± 0.01 bc | 1593 ± 189 a | |
H | 1.4 ± 0.1 bc | 0.11 ± 0.01 bc | 1522 ± 79 a | ||
Cropping (C) | <0.001 | <0.001 | <0.001 | ||
Plant density (PD) | 0.002 | 0.047 | 0.332 | ||
C × PD | 0.756 | 0.428 | 0.08 | ||
L | 4.2 ± 0.3 | 0.25 ± 0.01 | 4039 ± 215 b | ||
Lupin | Monocrop | M | 4.5 ± 0.1 | 0.27 ± 0.01 | 4630 ± 329 bc |
H | 4.0 ± 0.2 | 0.25 ± 0.0 | 5105 ± 117 c | ||
L | 4.3 ± 0.2 | 0.25 ± 0.01 | 3099 ± 138 a | ||
Intercrop | M | 4.0 ± 0.1 | 0.26 ± 0.01 | 4314 ± 414 bc | |
H | 4.4 ± 0.0 | 0.26 ± 0.0 | 4315 ± 231 bc | ||
Cropping (C) | 0.939 | 0.856 | 0.008 | ||
Plant density (PD) | 0.991 | 0.421 | 0.002 | ||
C × PD | 0.057 | 0.314 | 0.484 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoebitz, M.; Castillo, D.; Jorquera, M.; Roldan, A. Responses of Microbiological Soil Properties to Intercropping at Different Planting Densities in an Acidic Andisol. Agronomy 2020, 10, 781. https://doi.org/10.3390/agronomy10060781
Schoebitz M, Castillo D, Jorquera M, Roldan A. Responses of Microbiological Soil Properties to Intercropping at Different Planting Densities in an Acidic Andisol. Agronomy. 2020; 10(6):781. https://doi.org/10.3390/agronomy10060781
Chicago/Turabian StyleSchoebitz, Mauricio, Dalma Castillo, Milko Jorquera, and Antonio Roldan. 2020. "Responses of Microbiological Soil Properties to Intercropping at Different Planting Densities in an Acidic Andisol" Agronomy 10, no. 6: 781. https://doi.org/10.3390/agronomy10060781
APA StyleSchoebitz, M., Castillo, D., Jorquera, M., & Roldan, A. (2020). Responses of Microbiological Soil Properties to Intercropping at Different Planting Densities in an Acidic Andisol. Agronomy, 10(6), 781. https://doi.org/10.3390/agronomy10060781