Soil Water and Nitrogen Fluxes in Response to Climate Change in a Wheat–Maize Double Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Overview of Experiment
2.2. Data Sources
2.3. Model Choice
2.4. Model Parameters, Evaluation, and Statistical Analyses
2.5. Optimizing Field Management Measures
3. Results
3.1. Growing Season Air Temperature and Precipitation of Climate Scenarios
3.2. Impact of Climate Change on Crops’ Growth Period, Crop Yield, Soil Water, and N Fluxes
4. Discussion
4.1. Crops Growth and Crop Yield Under Baseline and Projected Future Climate Scenarios
4.2. Soil Water and N Fluxes Under Baseline and Projected Future Climate Scenarios
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Soil Layer | Volumetric Weight | θr | θs | α | n | Ks |
---|---|---|---|---|---|---|
(cm) | (g cm−3) | (cm3 cm−3) | (cm3 cm−3) | (cm−1) | (cm d−1) | |
0–25 | 1.45 | 0.030 | 0.453 | 0.0106 | 1.44 | 72.1 |
25–45 | 1.50 | 0.032 | 0.374 | 0.0111 | 1.28 | 62.2 |
45–95 | 1.50 | 0.025 | 0.430 | 0.0120 | 1.29 | 62.5 |
95–115 | 1.51 | 0.025 | 0.430 | 0.0270 | 1.13 | 55.4 |
115–135 | 1.45 | 0.050 | 0.453 | 0.0263 | 1.14 | 55.0 |
135–160 | 1.40 | 0.050 | 0.472 | 0.0179 | 1.09 | 54.0 |
2009–2010 | 2010–2011 | 2011–2012 | ||||
---|---|---|---|---|---|---|
Management Events | Winter Wheat | Summer Maize | Winter Wheat | Summer Maize | Winter Wheat | Summer Maize |
Planting date | 1 October | 15 June | 1 October | 15 June | 1 October | 15 June |
Planting density, plant ha−1 | 2,400,000 | 66,000 | 2,400,000 | 66,000 | 2,400,000 | 66,000 |
Row spacing, m | 0.25 | 0.6 | 0.25 | 0.6 | 0.25 | 0.6 |
Irrigation date and amount, mm | Seedling | Before sowing 75 | Seedling | Before sowing 75 | ||
75 | 75 | |||||
Jointing | Jointing | Jointing | ||||
75 | 75 | 75 | ||||
Flowering | Flowering | Flowering | ||||
75 | 75 | 75 | ||||
Filling | Filling | Filling | ||||
75 | 75 | 75 | ||||
Fertilizer application date and amount, N kg ha−1 | Sowing 84 Jointing 126 | Jointing 210 | Sowing 84 Jointing 126 | Jointing 210 | Sowing 84 Jointing 126 | Jointing 210 |
Parameter | Description | Value |
---|---|---|
Vn (mg L−1 d−1 N) | Maximum nitrification rate | 20 |
Kn (mg L−1 N) | Half-saturation constant for nitrification | 50 |
Kd (-) | Empirical scaling parameter for denitrification | 1 |
Ad (mg mg−1) | Empirical constant for denitrification | 0.1 |
Kv (day−1) | First-order kinetic parameters for ammonia volatilization | 0.02 |
Parameter | Description | Crop | |
---|---|---|---|
Winter Wheat | Summer Maize | ||
Tbase | Minimum temperature for crop growth & development (°C) | 0 | 8 |
Tsum | Accumulated temperature from seedling germination to maturity (°C) | 2000 | 1550 |
Ke | Extinction coefficient (-) | 0.6 | 0.6 |
K_ini | Early-term crop coefficient (-) | 0.65 | 0.65 |
K_mid | Mid-term crop coefficient (-) | 1.05 | 1.35 |
K_end | Late-term crop coefficient (-) | 0.25 | 1.2 |
SLA_max | Maximum specific leaf area (m2 kg−1) | 24 | 30 |
SLA_min | Minimum specific leaf area (m2 kg−1) | 14 | 15 |
AMAX | Maximum assimilation rate (kg hm−2 h−1) | 45 | 60 |
R_max | Maximum root length (cm) | 120 | 80 |
Item | RMSE | E | d |
---|---|---|---|
Soil water content (cm3 cm−3) | 0.038 | 0.37 | 0.80 |
Soil nitrate N content (mg kg−1) | 10.3 | −0.85 | 0.48 |
Leaf area index (m2 m−2) | 0.58 | 0.90 | 0.97 |
Yield (kg ha−1) | 319 | 0.76 | 0.93 |
References
- Marchi, E.C.; Zotarelli, L.; Delgado, J.A.; Rowland, D.L.; Marchi, G. Use of the Nitrogen Index to assess nitrate leaching and water drainage from plastic-mulched horticultural cropping systems of Florida. Int. Soil Water Conserv. Res. 2016, 4, 237–244. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Ying, H.; Yin, Y.; Zheng, H.; Cui, Z. Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Sci. Total. Environ. 2019, 657, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Kasper, M.; Foldal, C.; Kitzler, B.; Haas, E.; Strauss, P.; Eder, A.; Zechmeister-Boltenstern, S.; Amon, B. N2O emissions and NO3− leaching from two contrasting regions in austria and influence of soil, crops and climate: A modelling approach. Nutr. Cycl. Agroecosyst. 2019, 113, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Bai, Z.; Velthof, G.; Wu, Z.; Chadwick, D.; Ma, L. Accumulation and leaching of nitrate in soils in wheat-maize production in China. Agric. Water Manag. 2019, 212, 407–415. [Google Scholar] [CrossRef]
- Sogbedji, J.M.; Van Es, H.M.; Yang, C.L.; Geohring, L.D.; Magdoff, F.R. Nitrate Leaching and Nitrogen Budget as Affected by Maize Nitrogen Rate and Soil Type. J. Environ. Qual. 2000, 29, 1813–1820. [Google Scholar] [CrossRef]
- Wang, F.L.; Alva, A.K. Leaching of Nitrogen from Slow-Release Urea Sources in Sandy Soils. Soil Sci. Soc. Am. J. 1996, 60, 1454–1458. [Google Scholar] [CrossRef]
- Gheysari, M.; Mirlatifi, S.M.; Homaee, M.; Asadi, M.E.; Hoogenboom, G. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agric. Water Manag. 2009, 96, 946–954. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Tong, Y.; Yin, X. A 5-year lysimeter monitoring of nitrate leaching from wheat–maize rotation system: Comparison between optimum N fertilization and conventional farmer N fertilization. Agric. Ecosyst. Environ. 2015, 199, 34–42. [Google Scholar] [CrossRef]
- Gastal, F.; Lemaire, G. N uptake and distribution in crops: An agronomical and ecophysiological perspective. J. Exp. Bot. 2002, 53, 789–799. [Google Scholar] [CrossRef] [Green Version]
- Gungula, D.T.; Kling, J.G.; Togun, A.O. Ceres-maize predictions of maize phenology under nitrogen-stressed conditions in nigeria. Agron. J. 2003, 95, 892–899. [Google Scholar] [CrossRef]
- Nord, E.A.; Lynch, J.P. Plant phenology: A critical controller of soil resource acquisition. J. Exp. Bot. 2009, 60, 1927–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabloun, M.; Schelde, K.; Tao, F.; Olesen, J.E. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark. Eur. J. Agron. 2015, 62, 55–64. [Google Scholar] [CrossRef]
- Van Der Velde, M.; Folberth, C.; Balkovič, J.; Ciais, P.; Fritz, S.; Janssens, I.A.; Obersteiner, M.; See, L.; Skalský, R.; Xiong, W.; et al. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption. Glob. Chang. Boil. 2014, 20, 1278–1288. [Google Scholar] [CrossRef] [PubMed]
- Dirnböck, T.; Kobler, J.; Kraus, D.; Grote, R.; Kiese, R.; Grote, R. Impacts of management and climate change on nitrate leaching in a forested karst area. J. Environ. Manag. 2016, 165, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Kurunc, A.; Ersahin, S.; Uz, B.Y.; Sonmez, N.; Uz, I.; Kaman, H.; Bacalan, G.; Emekli, Y. Identification of nitrate leaching hot spots in a large area with contrasting soil texture and management. Agric. Water Manag. 2011, 98, 1013–1019. [Google Scholar] [CrossRef]
- Poch-Massegú, R.; Jiménez-Martínez, J.; Wallis, K.; De Cartagena, F.R.; Candela, L. Irrigation return flow and nitrate leaching under different crops and irrigation methods in Western Mediterranean weather conditions. Agric. Water Manag. 2014, 134, 1–13. [Google Scholar] [CrossRef]
- Woli, P.; Hoogenboom, G. Simulating weather effects on potato yield, nitrate leaching, and profit margin in the US Pacific Northwest. Agric. Water Manag. 2018, 201, 177–187. [Google Scholar] [CrossRef]
- Gholamhoseini, M.; Aghaalikhani, M.; Sanavy, S.M.; Mirlatifi, S. Interactions of irrigation, weed and nitrogen on corn yield, nitrogen use efficiency and nitrate leaching. Agric. Water Manag. 2013, 126, 9–18. [Google Scholar] [CrossRef]
- Qin, X.; Wang, H.; He, Y.; Li, Y.; Li, Z.; Gao, Q.; Wan, Y.; Qian, B.; McConkey, B.; Depauw, R.; et al. Simulated adaptation strategies for spring wheat to climate change in a northern high latitude environment by DAYCENT model. Eur. J. Agron. 2018, 95, 45–56. [Google Scholar] [CrossRef]
- Rotter, R.; Tao, F.; Höhn, J.G.; Palosuo, T. Use of crop simulation modelling to aid ideotype design of future cereal cultivars. J. Exp. Bot. 2015, 66, 3463–3476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbariyeh, S.; Pena, C.A.G.; Wang, T.; Mohebbi, A.; Bartelt-Hunt, S.; Zhang, J.; Li, Y. Prediction of nitrate accumulation and leaching beneath groundwater irrigated corn fields in the Upper Platte basin under a future climate scenario. Sci. Total. Environ. 2019, 685, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Zarrineh, N.; Abbaspour, K.C.; Holzkämper, A. Integrated assessment of climate change impacts on multiple ecosystem services in Western Switzerland. Sci. Total. Environ. 2020, 708, 135212. [Google Scholar] [CrossRef]
- He, Y.; Liang, H.; Hu, K.; Wang, H.; Hou, L. Modeling nitrogen leaching in a spring maize system under changing climate and genotype scenarios in arid Inner Mongolia, China. Agric. Water Manag. 2018, 210, 316–323. [Google Scholar] [CrossRef]
- Biggs, J.; Thorburn, P.; Crimp, S.; Masters, B.; Attard, S. Interactions between climate change and sugarcane management systems for improving water quality leaving farms in the Mackay Whitsunday region, Australia. Agric. Ecosyst. Environ. 2013, 180, 79–89. [Google Scholar] [CrossRef]
- Lam, S.K.; Chen, D.; Norton, R.; Armstrong, R.; Mosier, A.R. Nitrogen dynamics in grain crop and legume pasture systems under elevated atmospheric carbon dioxide concentration: A meta-analysis. Glob. Chang. Boil. 2012, 18, 2853–2859. [Google Scholar] [CrossRef]
- Liu, H.; Hu, K.; Li, B.; Ren, T. Effects of soil profile basic properties on water and nitrogen movement and crop yield. Agric. Sci. China 2015, 48, 1348–1360. [Google Scholar]
- Peñuelas, J.; Fernández-Martínez, M.; Vallicrosa, H.; Maspons, J.; Zuccarini, P.; Carnicer, J.; Sanders, T.G.M.; Krüger, I.; Obersteiner, M.; Janssens, I.A.; et al. Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Commun. Boil. 2020, 3, 125. [Google Scholar] [CrossRef]
- Li, Z.; Hu, K.; Li, B.; He, M.; Zhang, J. Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach. Agric. Water Manag. 2015, 159, 19–34. [Google Scholar] [CrossRef]
- Liang, H.; Hu, K.; Batchelor, W.D.; Qi, Z.; Li, B. An integrated soil-crop system model for water and nitrogen management in North China. Sci. Rep. 2016, 6, 25755. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Qi, Z.; Hu, K.; Li, B.; Prasher, S.O. Modelling subsurface drainage and nitrogen losses from artificially drained cropland using coupled DRAINMOD and WHCNS models. Agric. Water Manag. 2018, 195, 201–210. [Google Scholar] [CrossRef]
- Liang, H.; Qin, W.; Hu, K.; Tao, H.; Li, B. Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain. Agric. Water Manag. 2019, 213, 732–741. [Google Scholar] [CrossRef]
- SAS, I.I. Sas/Stat 9.2 User’s Guide: Statistics; SAS Institute, Inc.: Cary, NC, USA, 2009. [Google Scholar]
- Wang, Y.; Zhang, L.; Zhou, N.; Xu, L.; Zhu, J.; Tao, H.; Huang, S.; Wang, P. Late harvest and foliar fungicide acted together to minimize climate change effects on summer maize yield in the north china plain during 1954–2015. Agric. Ecosyst. Environ. 2018, 265, 535–543. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Zhao, X.; Yin, X.; Liu, S.-L.; Xue, J.-F.; Wang, M.; Pu, C.; Lal, R.; Chen, F. Challenges and adaptations of farming to climate change in the North China Plain. Clim. Chang. 2015, 129, 213–224. [Google Scholar] [CrossRef]
- Xiao, D.; Qi, Y.; Shen, Y.-J.; Tao, F.; Moiwo, J.P.; Liu, J.; Wang, R.; Zhang, H.; Liu, F. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain. Theor. Appl. Clim. 2015, 124, 653–661. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, S.; Zhang, Z.; Rotter, R. Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift. Glob. Chang. Boil. 2014, 20, 3686–3699. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, Z.; Xue, L.; Bukovsky, M.; Helmers, M.J. Modeling the impacts of climate change on nitrogen losses and crop yield in a subsurface drained field. Clim. Chang. 2015, 129, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M. Shifting plant phenology in response to global change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; Macdonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [Green Version]
- Djaman, K.; Irmak, S.; Rathje, W.R.; Martin, D.L.; Eisenhauer, D.E. Maize Evapotranspiration, Yield Production Functions, Biomass, Grain Yield, Harvest Index, and Yield Response Factors under Full and Limited Irrigation. Trans. ASABE 2013, 56, 373–393. [Google Scholar] [CrossRef]
- Hawkins, E.; Fricker, T.E.; Challinor, A.J.; Ferro, C.A.T.; Ho, C.K.; Osborne, T.M. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Glob. Chang. Boil. 2012, 19, 937–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Congreves, K.; Dutta, B.; Grant, B.; Smith, W.; Desjardins, R.; Wagner-Riddle, C. How does climate variability influence nitrogen loss in temperate agroecosystems under contrasting management systems? Agric. Ecosyst. Environ. 2016, 227, 33–41. [Google Scholar] [CrossRef]
- Patil, R.H.; Laegdsmand, M.; Olesen, J.; Porter, J.R. Effect of soil warming and rainfall patterns on soil N cycling in Northern Europe. Agric. Ecosyst. Environ. 2010, 139, 195–205. [Google Scholar] [CrossRef]
- Dalias, P.; Anderson, J.M.; Bottner, P.; Coûteaux, M.-M. Temperature responses of carbon mineralization in conifer forest soils from different regional climates incubated under standard laboratory conditions. Glob. Chang. Boil. 2001, 7, 181–192. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.; Tan, K.; Lei, Y. Nitrate accumulation and leaching potential is controlled by land-use and extreme precipitation in a headwater catchment in the North China Plain. Sci. Total. Environ. 2020, 707, 136168. [Google Scholar] [CrossRef]
- Bowles, T.M.; Atallah, S.S.; Campbell, E.E.; Gaudin, A.C.M.; Wieder, W.R.; Grandy, A.S. Addressing agricultural nitrogen losses in a changing climate. Nat. Sustain. 2018, 1, 399–408. [Google Scholar] [CrossRef]
- Hansen, S.; Jensen, H.E.; Nielsen, N.E.; Svendsen, H. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Nutr. Cycl. Agroecosyst. 1991, 27, 245–259. [Google Scholar] [CrossRef]
Field Management Stage | Winter Wheat | Summer Maize | ||||
---|---|---|---|---|---|---|
Date (Month/Day) | Fertilization (kg N ha−1) | Irrigation (mm) | Date (Month/Day) | Fertilization (kg N ha−1) | Irrigation (mm) | |
Sowing | 10/10 | 60 | 0 | 6/20 | 25 | 0 |
Seedling | 10/15 | 0 | 60 | 0 | 0 | |
Jointing | 3/30 | 90 | 60 | 7/20 | 125 | 0 |
Flowering | 4/28 | 0 | 60 | 0 | 0 | |
Filling | 5/14 | 0 | 60 | 0 | 0 |
Item | Winter Wheat | Summer Maize | |||||
---|---|---|---|---|---|---|---|
Baseline | RCP4.5 | RCP8.5 | Baseline | RCP4.5 | RCP8.5 | ||
Water balance (mm) | Irrigation | 240 | 240 | 240 | 0 | 0 | 0 |
Precipitation | 190 a | 240 b | 256 b | 496 a | 541 a | 518 a | |
Evaporation | 166 a | 170 a | 174 a | 122 a | 148 b | 153 c | |
Transpiration | 203 a | 208 a | 206 a | 291 a | 245 b | 234 b | |
Evapotranspiration | 369 a | 378 a | 381 a | 413 a | 393 b | 387 b | |
Water drainage | 21 a | 43 b | 40 b | 109 a | 155 b | 153 b | |
Runoff | 0 | 0 | 0 | 13 a | 7 a | 5 a | |
Water balance | 41 a | 59 a | 78 b | −38 a | −14 a | −26 a | |
N balance (kg N ha−1) | N fertilizer | 150 | 150 | 150 | 150 | 150 | 150 |
Straw mulching | 37.5 | 37.5 | 37.5 | 37.5 | 37.5 | 37.5 | |
N in irrigation water | 6.0 | 6.0 | 6.0 | 0 | 0 | 0 | |
N in wet sedimentation | 1.3 a | 1.7 b | 1.8 b | 3.5 a | 3.8 a | 3.6 a | |
Net mineralization | 52.9 a | 25.1 b | 24.2 b | 71.8 a | 25.3 b | 23.1 b | |
Crop N uptake | 189.0 a | 167.2 b | 168.2 b | 205.0 a | 142.6 b | 142.5 b | |
Nitrate leaching | 8.6 a | 9.2 a | 9.3 a | 72.8 a | 36.5 b | 33.5 b | |
Denitrification | 5.5 a | 4.3 a | 4.6 a | 21.1 a | 13.3 b | 13.2 b | |
Ammonia volatilization | 11.2 a | 4.8 b | 5.3 c | 9.5 a | 7.5 b | 7.4 b | |
N balance | 33.3 a | 34.9 a | 33.1 a | −45.6 a | 17.7 b | 17.1 b | |
Growth period (d) | 252 a | 234 b | 229 c | 104 a | 91 b | 88 c | |
Yield (kg ha−1) | 8110 a | 7879 a | 7815 a | 8657 a | 6878 b | 6986 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Shi, Y.; Liang, H.; Hu, K.; Hou, L. Soil Water and Nitrogen Fluxes in Response to Climate Change in a Wheat–Maize Double Cropping System. Agronomy 2020, 10, 786. https://doi.org/10.3390/agronomy10060786
He Y, Shi Y, Liang H, Hu K, Hou L. Soil Water and Nitrogen Fluxes in Response to Climate Change in a Wheat–Maize Double Cropping System. Agronomy. 2020; 10(6):786. https://doi.org/10.3390/agronomy10060786
Chicago/Turabian StyleHe, Yong, Yilin Shi, Hao Liang, Kelin Hu, and Lingling Hou. 2020. "Soil Water and Nitrogen Fluxes in Response to Climate Change in a Wheat–Maize Double Cropping System" Agronomy 10, no. 6: 786. https://doi.org/10.3390/agronomy10060786
APA StyleHe, Y., Shi, Y., Liang, H., Hu, K., & Hou, L. (2020). Soil Water and Nitrogen Fluxes in Response to Climate Change in a Wheat–Maize Double Cropping System. Agronomy, 10(6), 786. https://doi.org/10.3390/agronomy10060786