Effects of ZnO Nanoparticles and Biochar of Rice Straw and Cow Manure on Characteristics of Contaminated Soil and Sunflower Productivity, Oil Quality, and Heavy Metals Uptake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatments, Design, and Plant Material of the Experiments
2.2. Water and Soil analysis
2.3. Measurements
2.3.1. Soil Analysis
2.3.2. Growth and Physiological Characteristics
2.3.3. Yield and Yield Components
2.3.4. Plant Uptake for Trace Elements and Seed Quality at Harvest
2.4. Statistical Analysis
3. Results
3.1. Integrative Effects of NPs, CMB, and RSB on Contaminated Soil Characteristics
3.2. Integrative effects of NPs, CMB, and RSB on HMs Accumulation in Biomass of Sunflowers Grown in Contaminated Soil
3.3. Integrative Effects of NPs, CMB, and RSB on Growth, Physiological, And Yield Properties Of Sunflowers Grown In Contaminated Soil
3.4. Integrative Effects of NPs, CMB, and RSB on Oil Quality Characteristics of Sunflowers Grown in Contaminated Soil
3.5. Simple Correlation Coefficient Aming Different Traits over All Treatments
4. Discussion
4.1. Irrigation Water Analysis
4.2. Integrative Effects of NPs, Plant, and Animal Biochar on Soil Trace Elements, pH, EC, and Organic Matter Postharvest
4.3. Integrative Effects of NPs, Plant, and Animal Biochar on Heavy Metal Accumulation in the Biomass of Sunflowers Grown in Contaminated Soil
4.4. Effect of Different Treatments on Growth, Yield, and Oil Quality Characteristics of Sunflowers
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seleiman, M.F.; Santanen, A.; Stoddard, F.L.; Mäkelä, P. Feedstock quality and growth of bioenergy crops fertilized with sewage sludge. Chemosphere 2012, 89, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Santanen, A.; Jaakkola, S.; Ekholm, P.; Hartikainen, H.; Stoddard, F.L.; Mäkelä, P.S. Biomass yield and quality of bioenergy crops grown with synthetic and organic fertilizers. Biomass Bioenergy 2013, 59, 477–485. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Kheir, A.M. Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere 2018, 204, 514–522. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhong, H.; Liu, G.; Dai, Z.; Brookes, P.C.; Xu, J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019, 252, 846–855. [Google Scholar] [CrossRef]
- Saleem, M.H.; Ali, S.; Seleiman, M.F.; Rizwan, M.; Rehman, M.; Aisha Akram, N.; Liu, L.; Alotaibi, M.; Al-Ashkar, I.; Mubushar, M. Assessing the correlations between cifferent traits in copper-sensitive and copper-resistant varieties of Jute (Corchorus capsularis L.). Plants 2019, 8, 545. [Google Scholar] [CrossRef] [Green Version]
- Seleiman, M.F.; Refay, Y.; Al-Suhaibani, N.; Al-Ashkar, I.; El-Hendawy, S.; Hafez, E.M. Integrative effects of rice-straw biochar and silicon on oil and seed quality, yield and physiological traits of Helianthus annuus L. grown under water deficit stress. Agronomy 2019, 9, 637. [Google Scholar] [CrossRef] [Green Version]
- Seleiman, M.F.; Ali, S.; Refay, Y.; Rizwan, M.; Alhammad, B.A.; El-Hendawy, S.E. Chromium resistant microbes and melatonin reduced Cr uptake and toxicity, improved physio-biochemical traits and yield of wheat in contaminated soil. Chemosphere 2020, 250, 126239. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Santanen, A.; Mäkelä, P.S. Recycling sludge on cropland as fertilizer–Advantages and risks. Resour. Conserv. Recycl. 2020, 155, 104647. [Google Scholar] [CrossRef]
- Shahid, M.J.; Ali, S.; Shabir, G.; Siddique, M.; Rizwan, M.; Seleiman, M.F.; Afzal, M. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water. Chemosphere 2020, 243, 125353. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, H.; Guo, Y.; Liu, Z.; Jiao, W. Immobilization of heavy metals in contaminated soils by modified hydrochar: Efficiency, risk assessment and potential mechanisms. Sci. Total Environ. 2019, 685, 1201–1208. [Google Scholar] [CrossRef]
- Morgan, R. Soil, Heavy Metals, and Human Health. In Soils and Human Health; CRC Press: Boca Raton, LA, USA, 2013; pp. 74–97. [Google Scholar]
- Jolly, Y.N.; Islam, A.; Akbar, S. Transfer of metals from soil to vegetables and possible health risk assessment. SpringerPlus 2013, 2, 385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seleiman, M.F.; Selim, S.; Jaakkola, S.; Mäkelä, P.S. Chemical composition and in vitro digestibility of whole-crop maize fertilized with synthetic fertilizer or digestate and harvested at two maturity stages in Boreal growing conditions. Agric. Food Sci. 2017, 26, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Elbana, T.A.; Bakr, N.; George, B.; Elbana, M.J.W. Assessment of marginal quality water for sustainable irrigation management: Case study of Bahr El-Baqar area, Egypt. Water Air Soil Pollut. 2017, 228, 211–217. [Google Scholar] [CrossRef]
- Wu, W.; Yang, M.; Feng, Q.; McGrouther, K.; Wang, H.; Lu, H.; Chen, Y. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 2012, 47, 268–276. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: London, UK; New York, NY, USA, 2015. [Google Scholar]
- Al-Wabel, M.I.; Hussain, Q.; Usman, A.R.; Ahmad, M.; Abduljabbar, A.; Sallam, A.S.; Ok, Y.S. Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degrad. Dev. 2018, 29, 2124–2161. [Google Scholar] [CrossRef]
- Meng, J.; Tao, M.; Wang, L.; Liu, X.; Xu, J. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Sci. Total Environ. 2018, 633, 300–307. [Google Scholar] [CrossRef]
- O’Connor, D.; Peng, T.; Zhang, J.; Tsang, D.C.; Alessi, D.S.; Shen, Z.; Bolan, N.S.; Hou, D. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci. Total Environ. 2018, 619, 815–826. [Google Scholar]
- Chan, K.Y.; Xu, Z. Biochar: Nutrient properties and their enhancement. In Biochar for Environmental Management; Routledge: Abingdon-on-Thames, UK, 2012; pp. 99–116. [Google Scholar]
- Sikder, S.; Joardar, J. Biochar production from poultry litter as management approach and effects on plant growth. Int. J. Recycl. Org. Waste Agric. 2019, 8, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Ma, L.; Gao, B.; Harris, W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 2009, 43, 3285–3291. [Google Scholar] [CrossRef]
- Cao, X.; Harris, W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 2010, 101, 5222–5228. [Google Scholar] [CrossRef]
- Eissa, M.A. Effect of cow manure biochar on heavy metals uptake and translocation by zucchini (Cucurbita pepo L). Arab. J. Geosci. 2019, 12, 48. [Google Scholar] [CrossRef]
- Hussain, A.; Ali, S.; Rizwan, M.; ur Rehman, M.Z.; Javed, M.R.; Imran, M.; Chatha, S.A.S.; Nazir, R. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ. Pollut. 2018, 242, 1518–1526. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; ur Rehman, M.Z.; Adrees, M.; Arshad, M.; Qayyum, M.F.; Ali, L.; Hussain, A.; Chatha, S.A.S.; Imran, M. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ. Pollut. 2019, 248, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Ali, B.; Adrees, M.; Arshad, M.; Hussain, A.; ur Rehman, M.Z.; Waris, A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 2019, 214, 269–277. [Google Scholar] [CrossRef]
- Seleiman, M.F. Use of Plant Nutrients in Improving Abiotic Stress Tolerance in Wheat. In Wheat Production in Changing Environments; Springer: Berlin/Heidelberg, Germany, 2019; pp. 481–495. [Google Scholar]
- Cakmak, I.; Kutman, U. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Javed, H.; Naeem, A.; Rengel, Z.; Dahlawi, S. Timing of foliar Zn application plays a vital role in minimizing Cd accumulation in wheat. Environ. Sci. Pollut. Res. 2016, 23, 16432–16439. [Google Scholar]
- Gong, X.; Huang, D.; Liu, Y.; Zeng, G.; Wang, R.; Wan, J.; Zhang, C.; Cheng, M.; Qin, X.; Xue, W. Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environ. Sci. Technol. 2017, 51, 11308–11316. [Google Scholar] [CrossRef]
- Venkatachalam, P.; Jayaraj, M.; Manikandan, R.; Geetha, N.; Rene, E.R.; Sharma, N.; Sahi, S.J.P.P. Biochemistry. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis. Plant Physiol. Biochem. 2017, 110, 59–69. [Google Scholar] [CrossRef]
- Wang, M.; Chen, L.; Chen, S.; Ma, Y. Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotoxicol. Environ. Saf. 2012, 79, 48–54. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Singh, V.P.; Prasad, S.M.; Chauhan, D.K.; Dubey, N.K. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol. Biochem. 2015, 96, 189–198. [Google Scholar] [CrossRef]
- Konate, A.; He, X.; Zhang, Z.; Ma, Y.; Zhang, P.; Alugongo, G.M.; Rui, Y. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability 2017, 9, 790. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Food and Agriculture Organization of the United Nations Statistics Division. 2020. Available online: http://faostat.fao.org/site/567/DesktopDefault.aspx (accessed on 14 January 2020).
- Harris, T.M.; Hottle, T.A.; Soratana, K.; Klane, J.; Landis, A.E. Life cycle assessment of sunflower cultivation on abandoned mine land for biodiesel production. J. Clean. Prod. 2016, 112, 182–195. [Google Scholar] [CrossRef]
- Ghobadi, M.; Taherabadi, S.; Ghobadi, M.-E.; Mohammadi, G.-R.; Jalali-Honarmand, S. Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress. Ind. Crop. Prod. 2013, 50, 29–38. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Waste Water; American Public Health Association: Washington, DC, USA, 1999; p. 541. [Google Scholar]
- Jones, J.R. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, LA, USA, 2001. [Google Scholar]
- Meier, U.B.-M. Growth Stages of Mono-and Dicotyledonous Plants, 2nd ed.; Federal Biological Research Centre for Agriculture and Forestry: Berlin, Germany, 2001. [Google Scholar]
- Bates, L.S.; Waldren, R.P.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Pomeranz, Y.; Clifton, E. Food Analysis: Theory and Practice, 3rd ed.; Kluwer Academic Publisher: San Diego, CA, USA, 1994. [Google Scholar]
- Rotunno, T.; Sevi, A.; Di Caterina, R.; Muscio, A. Effects of graded levels of dietary rumen-protected fat on milk characteristics of Comisana ewes. Small Rumin. Res. 1998, 30, 137–145. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water quality for agriculture. Irrigation and drainage paper 29 (Rev.1); Food and Agriculture Organization of the United Nations: Rome, Italy, 1994; Available online: http://www.fao.org/3/T0234E/T0234E00.htm (accessed on 10 April 2020).
- Alloway, B.J. Molybdenum. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability; Alloway, B.J., Ed.; Environ. Pollut.; Springer Science & Business Media: Dordrecht, The Netherlands, 2013; pp. 528–534. [Google Scholar]
- Soil Survey Division Staff. Soil Survey Manual. U.S. Deptment of Agriculture Handbook No. 18; U.S. Government Printing Office: Washington, DC, USA, 1993.
- Xu, X.; Zhao, Y.; Sima, J.; Zhao, L.; Mašek, O.; Cao, X. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresour. Technol. 2017, 241, 887–899. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.; Wang, Y.; Zhang, L.; Huang, Q. Study of the mechanism of remediation of Cd-contaminated soil by novel biochars. Environ. Sci. Pollut. Res. 2017, 24, 24844–24855. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, W.; Yang, Y.; Huang, X.; Wang, S.; Qiu, R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 2012, 46, 854–862. [Google Scholar] [CrossRef]
- Qin, P.; Wang, H.; Yang, X.; He, L.; Müller, K.; Shaheen, S.M.; Xu, S.; Rinklebe, J.; Tsang, D.C.; Ok, Y.S. Bamboo-and pig-derived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils. Chemosphere 2018, 198, 450–459. [Google Scholar] [CrossRef]
- Steiner, C.; Das, K.; Melear, N.; Lakly, D. Reducing nitrogen loss during poultry litter composting using biochar. J. Environ. Qual. 2010, 39, 1236–1242. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Delvaux, B.; Yans, J.; Dufour, N.; Houben, D.; Cornelis, J.T. Phytolith-rich biochar increases cotton biomass and silicon-mineralomass in a highly weathered soil. J. Plant Nutr. Soil Sci. 2018, 181, 537–546. [Google Scholar] [CrossRef]
- Duan, R.; Hu, H.; Fu, Q.; Kou, C. Remediation of Cd/Ni contaminated soil by biochar and oxalic acid activated phosphate rock. Huan Jing Ke Xue Huanjing Kexue 2017, 38, 4836–4843. [Google Scholar] [PubMed]
- Rees, F.; Simonnot, M.-O.; Morel, J.-L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur. J. Soil Sci. 2014, 65, 149–161. [Google Scholar] [CrossRef]
- Dong, X.; Wang, C.; Li, H.; Wu, M.; Liao, S.; Zhang, D.; Pan, B. The sorption of heavy metals on thermally treated sediments with high organic matter content. Bioresour. Technol. 2014, 160, 123–128. [Google Scholar] [CrossRef]
- Tang, J.; Zhu, W.; Kookana, R.; Katayama, A. Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 2013, 116, 653–659. [Google Scholar] [CrossRef]
- Sui, F.; Zuo, J.; Chen, D.; Li, L.; Pan, G.; Crowley, D.E. Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: A 3-year field study. Environ. Sci. Pollut. Res. 2018, 25, 3368–3377. [Google Scholar] [CrossRef]
- Pfister, M.; Saha, S. Effects of biochar and fertilizer management on sunflower (Helianthus annuus L.) feedstock and soil properties. Arch. Agron. Soil Sci. 2017, 63, 651–662. [Google Scholar] [CrossRef]
- Steiner, C.; Glaser, B.; Geraldes Teixeira, W.; Lehmann, J.; Blum, W.E.; Zech, W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J. Plant Nutr. Soil Sci. 2008, 171, 893–899. [Google Scholar] [CrossRef]
- Githinji, L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. [Google Scholar] [CrossRef]
- Qayyum, M.F.; ur Rehman, M.Z.; Ali, S.; Rizwan, M.; Naeem, A.; Maqsood, M.A.; Khalid, H.; Rinklebe, J.; Ok, Y.S. Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field. Chemosphere 2017, 174, 515–523. [Google Scholar] [CrossRef]
- Huang, G.; Ding, C.; Zhou, Z.; Zhang, T.; Wang, X. A tillering application of zinc fertilizer based on basal stabilization reduces Cd accumulation in rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2019, 167, 338–344. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Z.; Zheng, Q.; Lang, Q.; Xia, Y.; Peng, N.; Gai, C. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis. Bioresour. Technol. 2018, 247, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Saletnik, B.; Zaguła, G.; Bajcar, M.; Tarapatskyy, M.; Bobula, G.; Puchalski, C. Biochar as a multifunctional component of the environment—a review. Appl. Sci. 2019, 9, 1139. [Google Scholar] [CrossRef] [Green Version]
- Eslami, M.; Deghanzadeh, H.; Najafi, F. The effect of drought stress on oil percent and yield and the type of sunflower (Helianthus annuus L.) fatty acids. Agric. Sci. Dev. 2015, 4, 1–3. [Google Scholar]
Soil (Season 1) | Soil (Season 2) | Rice Straw Biochar | Cow Manure Biochar | |
---|---|---|---|---|
pH | 7.16 | 7.22 | 8.31 | 8.95 |
EC (dS m−1) | 1.00 | 1.04 | 0.15 | 2.92 |
Total N (g kg−1) | 0.201 | 0.203 | 9.81 | 14.32 |
Total P (g kg−1) | - | - | 2.05 | 11.42 |
Total K (g kg−1) | - | - | 20.26 | 18.34 |
Total carbon (g kg−1) | - | - | 465.97 | 409.32 |
Total magnesium (g kg−1) | - | - | 3.75 | - |
Total Si (g kg−1) | - | - | 6.341 | - |
Total Fe (g kg−1) | 0.071 | 0.077 | - | - |
Available N (mg kg−1) | 26.44 | 26.54 | 122.09 | 242.94 |
Available P (mg kg−1) | 6.80 | 6.97 | - | - |
Available K (mg kg−1) | 45.16 | 45.19 | - | - |
Organic matter (%) | 2.29 | 2.37 | 25.97 | 29.78 |
Specific surface area m2 g−1 | - | - | 24.14 | 30.11 |
Water holding capacity (%) | - | - | 35.01 | 42.29 |
Trace elements (mg kg−1) | ||||
As | 0.04 | 0.04 | nd | nd |
Pb | 14.30 | 14.38 | nd | 0.09 |
Cd | 3.01 | 3.09 | nd | 0.01 |
Cr | 39.46 | 39.44 | 0.02 | 0.08 |
Ni | 40.90 | 40.92 | 0.02 | 0.04 |
Cu | 43.70 | 43.92 | 11.78 | 26.43 |
Zn | 54.07 | 54.69 | 39.86 | 53.29 |
Traits | Stem Diameter (cm) | Plant Height (cm) | Head Diameter (cm) | Number of Seeds Per Head | 100-Seed Weight (g) | Seed Yield (kg ha −1) | |
---|---|---|---|---|---|---|---|
Treatment | |||||||
Season 2017 | |||||||
Control | 2.09 d | 180.1 e | 17.7 c | 953.3 e | 5.07 c | 2075.7 e | |
Zn NPs | 2.17 d | 193.2 d | 18.5 c | 1040.3 d | 5.40 c | 2481.4 d | |
RSB | 2.36 c | 216.9 c | 22.3 b | 1213.9 c | 6.39 b | 2531.0 c | |
CMB | 2.45 b | 220.5 b | 23.1 b | 1336.1 b | 7.15 a | 2652.8 b | |
Combination | 2.70 a | 241.9 a | 28.0 a | 1441.0 a | 7.44 a | 2953.0 a | |
LSD0.05 | 0.08 | 2.2 | 0.9 | 35.2 | 0.34 | 39.8 | |
Significant | * | ** | ** | ** | ** | ** | |
Season 2018 | |||||||
Control | 2.13 d | 182.5 e | 17.3 c | 958.3 e | 5.09 c | 2093.3 e | |
Zn NPs | 2.19 d | 198.2 d | 18.5 c | 1046.3 d | 5.44 c | 2506.6 d | |
RSB | 2.34 c | 214.5 c | 22.1 b | 1205.7 c | 6.37 b | 2545.0 c | |
CMB | 2.43 b | 224.5 b | 23.5 b | 1340.5 b | 7.21 a | 2664.4 b | |
Combination | 2.80 a | 239.7 a | 28.4 a | 1435.0 a | 7.50 a | 2991.2 a | |
LSD0.05 | 0.07 | 2.7 | 1.5 | 39.4 | 0.36 | 32.5 | |
Significant | * | ** | ** | ** | ** | ** |
Traits Treatments | Oil (%) | Oil (kg ha−1) | Oleic Acid (%) | Linoleic Acid (%) | Oleic/Linoleic Ratio |
---|---|---|---|---|---|
Season 2017 | |||||
Control | 32.81 d | 681.0 d | 81.15 c | 8.61 a | 9.43 d |
Zn NPs | 35.56 c | 882.4 c | 82.37 c | 7.94 a | 10.37 c |
RSB | 35.42 c | 896.5 c | 86.18 b | 4.43 b | 19.45 b |
CMB | 37.18 b | 986.3 b | 86.09 b | 4.32 b | 19.93 b |
Combination | 41.10 a | 1213.7 a | 91.20 a | 2.40 c | 38.00 a |
LSD0.05 | 0.92 | 45.3 | 1.32 | 0.93 | 0.72 |
Significant | ** | ** | ** | ** | ** |
Season 2018 | |||||
Control | 32.91 d | 688.9 d | 81.23 c | 8.59 a | 9.46 d |
Zn NPs | 35.54 c | 890.8 c | 82.41 c | 7.86 a | 10.48 c |
RSB | 35.38 c | 900.4 c | 86.20 b | 4.49 b | 19.20 b |
CMB | 37.26 b | 992.8 b | 86.05 b | 4.30 b | 20.01 b |
Combination | 41.12 a | 1230.0 a | 91.28 a | 2.48 c | 36.81 a |
LSD0.05 | 0.89 | 38.2 | 1.34 | 0.90 | 0.83 |
Significant | ** | ** | ** | ** | ** |
Available Heavy Metals in Soil Post-Harvest | Heavy Metals Accumulation in Sunflower | Proline (9) | Leaf Area (10) | Seed Yield ha−1 (11) | Oil % (12) | Oleic Acid (13) | Linoleic Acid (14) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zn (1) | Cu (2) | Cr (3) | Cd (4) | Zn (5) | Cu (6) | Cr (7) | Cd (8) | |||||||
1 | −0.964 ** | −0.980 ** | −0.985 ** | 0.843 | −0.897 * | -0.936 * | −0.883 * | 0.950 * | 0.950 * | 0.890 * | 0.915 * | 0.965 ** | −0.963 ** | |
2 | 0.984 ** | 0.991 ** | −0.760 | 0.860 | 0.889 * | 0.880 * | −0.883 * | −0.907 * | −0.881 * | −0.857 | −0.975 ** | 0.998 ** | ||
3 | 0.992 ** | −0.864 | 0.936 * | 0.933 * | 0.913 * | −0.939 * | −0.968 ** | −0.929 * | −0.932 * | −0.997 ** | 0.981 ** | |||
4 | −0.818 | 0.894 * | 0.939 * | 0.919 * | −0.936 * | −0.939 * | −0.919 * | −0.906 * | −0.979 ** | 0.993 ** | ||||
5 | −0.979 ** | −0.909 * | −0.869 | 0.939 * | 0.960 ** | 0.920 * | 0.982 ** | 0.874 | −0.759 | |||||
6 | 0.922 * | 0.898 * | −0.944 * | −0.990 ** | −0.947 * | −0.986 ** | −0.949 * | 0.855 | ||||||
7 | 0.980 ** | −0.993 ** | −0.944 * | −0.977 ** | −0.968 ** | −0.915 * | 0.904 * | |||||||
8 | −0.954 * | −0.907 * | −0.991 ** | −0.939 * | −0.898 * | 0.900 * | ||||||||
9 | 0.967 ** | 0.964 ** | 0.983 ** | 0.925 * | −0.893 * | |||||||||
10 | 0.945 * | 0.985 ** | 0.973 ** | −0.903 * | ||||||||||
11 | 0.970 ** | 0.924 * | −0.894 * | |||||||||||
12 | 0.933 * | −0.861 | ||||||||||||
13 | −0.968 ** | |||||||||||||
14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seleiman, M.F.; Alotaibi, M.A.; Alhammad, B.A.; Alharbi, B.M.; Refay, Y.; Badawy, S.A. Effects of ZnO Nanoparticles and Biochar of Rice Straw and Cow Manure on Characteristics of Contaminated Soil and Sunflower Productivity, Oil Quality, and Heavy Metals Uptake. Agronomy 2020, 10, 790. https://doi.org/10.3390/agronomy10060790
Seleiman MF, Alotaibi MA, Alhammad BA, Alharbi BM, Refay Y, Badawy SA. Effects of ZnO Nanoparticles and Biochar of Rice Straw and Cow Manure on Characteristics of Contaminated Soil and Sunflower Productivity, Oil Quality, and Heavy Metals Uptake. Agronomy. 2020; 10(6):790. https://doi.org/10.3390/agronomy10060790
Chicago/Turabian StyleSeleiman, Mahmoud F., Majed A. Alotaibi, Bushra Ahmed Alhammad, Basmah M. Alharbi, Yahya Refay, and Shimaa A. Badawy. 2020. "Effects of ZnO Nanoparticles and Biochar of Rice Straw and Cow Manure on Characteristics of Contaminated Soil and Sunflower Productivity, Oil Quality, and Heavy Metals Uptake" Agronomy 10, no. 6: 790. https://doi.org/10.3390/agronomy10060790
APA StyleSeleiman, M. F., Alotaibi, M. A., Alhammad, B. A., Alharbi, B. M., Refay, Y., & Badawy, S. A. (2020). Effects of ZnO Nanoparticles and Biochar of Rice Straw and Cow Manure on Characteristics of Contaminated Soil and Sunflower Productivity, Oil Quality, and Heavy Metals Uptake. Agronomy, 10(6), 790. https://doi.org/10.3390/agronomy10060790