Agronomic Performance of Different Open-Pollinated Beetroot Genotypes Grown Under Organic Farming Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments and Plant Materials
2.2. Agronomic Traits
2.2.1. Total and Marketable Yield
2.2.2. Diameter of Beet and Width of Leaves-Growth-Base
2.2.3. Individual Beet Weight
2.2.4. Beet Evaluation
2.3. Statistical Analysis
3. Results and Discussion
3.1. Total and Marketable Yield
3.2. Beet Diameter and Leaves-Growth-Base Width
3.3. Individual Beet Weight
3.4. Beet Evaluation
3.4.1. Smoothness and Corky Surface of Beet Skin
3.4.2. Root Tail
3.4.3. Scab (Streptomyces Scabies)
3.4.4. Uniformity
3.5. Overall Outcomes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Location | Trial Year | Number of Genotypes | Plot Size (m2) | Field Design | Number of Rows | Number of Columns | Number of Blocks | Number of Replications |
---|---|---|---|---|---|---|---|---|
De Beersche Hoeve (NL) | 2017 | 30 | 9 | row-column | 3 | 10 | 3 | 3 |
2018 | 16 | 9 | randomized complete block | - | - | 3 | 3 | |
Horticulture station Heinze (DE) | 2017 | 30 | 8.75 | randomized complete block | - | - | 3 | 3 |
2018 | 16 | 8.75 | randomized complete block | - | - | 3 | 3 | |
Klein-hohenheim (DE) | 2017 | 40 | 14 | row-column | 4 | 10 | 3 | 3 |
2018 | 36 | 14 | non-resolvable block | - | - | 12 | unequal replication 1 |
References
- Illert, S.; Rampold, C. Die kleine marktstudie: Bio-gemuese. Gemuese 2018, 14, 52–54. [Google Scholar]
- Quetsch, J. Der verzehr monitor: Rote bete. Gemuese 2019, 9, 56. [Google Scholar]
- Statistisches Bundesamt. Anbauflächen und Erntemengen von ökologisch angebautem Gemüse. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Obst-Gemuese-Gartenbau/Tabellen/oekologisches-gemuese.html (accessed on 12 May 2020).
- Kalloo, G.; Bergh, B. Genetic Improvement of Vegetable Crops; Kalloo, G., Bergh, B., Eds.; Pergamon Press Ltd.: Oxford, UK, 1993. [Google Scholar]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The potential benefits of red beetroot supplementation in health and disease. Nutrients 2015, 7, 2801–2822. [Google Scholar] [CrossRef] [PubMed]
- Dikeman, M.; Devine, C. Encyclopedia of Meat Sciences: 3-Volume Set; Academic Press: London, UK, 2014. [Google Scholar] [CrossRef]
- Szopińska, A.A.; Gawęda, M. Comparison of yield and quality of red beet roots cultivated using conventional, integrated and organic method. J. Hortic. Res. 2013, 21, 107–114. [Google Scholar] [CrossRef]
- Zaki, H.E.M.; Takahata, Y.; Yokoi, S. Analysis of the morphological and anatomical characteristics of roots in three radish (Raphanus sativus) cultivars that differ in root shape. J. Hortic. Sci. Biotechnol. 2012, 87, 172–178. [Google Scholar] [CrossRef]
- Iwata, H.; Niikura, S.; Matsuura, S.; Takano, Y.; Ukai, Y. Evaluation of variation of root shape of japanese radish (Raphanus sativus, L.) based on image analysis using elliptic fourier descriptors. Euphytica 1998, 102, 143–149. [Google Scholar] [CrossRef]
- Bavec, M.; Turinek, M.; Grobelnik-Mlakar, S.; Slatnar, A.; Bavec, F. Influence of industrial and alternative farming systems on contents of sugars, organic acids, total phenolic content, and the antioxidant activity of red beet (Beta vulgaris, L. Ssp. vulgaris Rote Kugel). J. Agric. Food Chem. 2010, 58, 11825–11831. [Google Scholar] [CrossRef]
- Worthington, V. Nutritional quality of organic versus conventional fruits, vegetables, and grains. J. Altern. Complement. Med. 2001, 7, 161–173. [Google Scholar] [CrossRef]
- Bourn, D.; Prescott, J. A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods. Crit. Rev. Food Sci. Nutr. 2002, 42, 1–34. [Google Scholar] [CrossRef]
- Rembiałkowska, E. Quality of plant products from organic agriculture. J. Sci. Food Agric. 2007, 87, 2757–2762. [Google Scholar] [CrossRef]
- Velimirov, A.; Huber, M.; Lauridsen, C.; Rembiałkowska, E.; Seidel, K.; Bügel, S. Feeding trials in organic food quality and health research. J. Sci. Food Agric. 2010, 90, 175–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rembialkowska, E. Wholesomeness and Sensory Quality of the Potatoes and Selected Vegetables from the Organic Farms. Ph.D. Thesis, Warsaw Agricultural University, Krakow, Poland, 2000. [Google Scholar]
- Lammerts Van Bueren, E.T.; Struik, P.C.; Tiemens-Hulscher, M.; Jacobsen, E. Concepts of intrinsic value and integrity of plants in organic plant breeding and propagation. Crop Sci. 2003, 43, 1922–1929. [Google Scholar] [CrossRef]
- Goksoy, A.T.; Turkec, A.; Turan, Z.M. Determination of some agronomic characteristics and hybrid vigor of new improved synthetic varieties in sunflower (Helianthus annuus, L.). Helia 2002, 25, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Torricelli, R.; Ciancaleoni, S.; Negri, V. Performance and stability of homogeneous and heterogeneous broccoli (Brassica oleracea, L. Var. italica Plenck) varieties in organic and Low-Input conditions. Euphytica 2014, 199, 385–395. [Google Scholar] [CrossRef]
- Petronienė, O.D. Inheritance of red beetroot yield and morphological features Pdf. Sodinink. Daržinink. 2005, 24, 163–170. [Google Scholar]
- Sahamishirazi, S.; Moehring, J.; Zikeli, S.; Fleck, M.; Claupein, W.; Graeff-Hoenninger, S. Graeff-Hoenninger, S. Agronomic performance of new open pollinated experimental lines of broccoli (Brassica oleracea, L. Var. italica) evaluated under organic farming. PLoS ONE 2018, 13, e0196775. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.U. F1 Hybrid. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Wang, M.; Goldman, I.L. Phenotypic variation in free folic acid content among F1 Hybrids and Open-Pollinated cultivars of red beet. J. Am. Soc. Hortic. Sci. 1996, 121, 1040–1042. [Google Scholar] [CrossRef]
- Piepho, H.P. An algorithm for a Letter-Based representation of All-Pairwise comparisons. J. Comput. Graph. Stat. 2004, 13, 456–466. [Google Scholar] [CrossRef]
- Rubóczki, T.; Raczkó, V.; Takácsné Hájos, M. Evaluation of morphological parameters and bioactive compounds in different varieties of beetroot (Beta vulgaris, L. Ssp. esculenta GURKE Var. rubra L.). Int. J. Hortic. Sci. 2015, 21, 31–35. [Google Scholar] [CrossRef]
- Goldman, I.L. Differential effect of population density on shape and size of cylindrical red beet (Beta vulgaris, L.) genotypes. J. Am. Soc. Hortic. Sci. 1995, 120, 906–908. [Google Scholar] [CrossRef]
- Kikkert, J.R.; Reiners, S.; Gugino, B.K. Row width, population density, and harvest date effects on marketable yield of table beet. Horttechnology 2010, 20, 560–567. [Google Scholar] [CrossRef] [Green Version]
- Feller, C.; Fink, M. Nitrate content, soluble solids content, and yield of table beet as affected by cultivar, sowing date and nitrogen supply. HortScience 2004, 39, 1255–1259. [Google Scholar] [CrossRef] [Green Version]
- El-Tantawy, E.M.; Eisa, G.S.A. Growth, yield, anatomical traits and betanine pigment content of table beet plants as affected by nitrogen sources and spraying of some nutrients. J. Appl. Sci. Res. 2009, 5, 1173–1184. [Google Scholar]
- Stagnari, F.; Galieni, A.; Speca, S.; Pisante, M. Water stress effects on growth, yield and quality traits of red beet. Sci. Hortic. Amst. 2014, 165, 13–22. [Google Scholar] [CrossRef]
- Pfiffner, L.; Niggli, U.; Velimirov, A.; Boltzmann, L.; Balzer, U.; Balzer, F.; Besson, J.M. Effect of three farming systems (Bio-Dynamic, Bio-Organic, Conventional) on yield and quality of beetroot (Beta vulgaris, L. Var. Esculenta, L.) in a seven year crop rotation. In Proceedings of the Workshop on Ecological Aspects of Vegetable Fertilization in Integrated Crop Production in the Field, Waedenswil, Switzerland, 1 August 1993; ISHS Acta Horticulturae 339: Leuven, Belgium, 1993; pp. 11–32. [Google Scholar] [CrossRef]
- Takácsné Hájos, M.; Rubóczki, T. Effects of environmental factors on morphological and quality parameters of table beet root. Int. J. Hortic. Sci. 2012, 18, 139–146. [Google Scholar] [CrossRef]
- Akhiyarov, B.; Ismagilov, R.; Islamgulov, D.; Kuznetsov, I.; Akhiyarova, L.; Abdulvaleev, R.; Alimgafarov, R.; Pavlov, A.; Valitov, A.; Sergeev, V. Yield and quality of table beet depending on cultivation technology elements. J. Eng. Appl. Sci. 2018, 13, 8752–8759. [Google Scholar]
- Wruss, J.; Waldenberger, G.; Huemer, S.; Uygun, P.; Lanzerstorfer, P.; Müller, U.; Höglinger, O.; Weghuber, J. Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in upper Austria. J. Food Compos. Anal. 2015, 42, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Ijoyah, M.; Sophie, V.; Rakotomavo, H. Yield performance of four beetroot (Beta vulgaris, L.) varieties compared with the local variety under open field conditions in seychelles. Agro-Science 2008, 7, 139–142. [Google Scholar] [CrossRef]
- Ugrinovic, K. Effect of nitrogen fertilization on quality and yield of red beet (Beta vulgaris Var Conditiva Alef.). In Proceedings of the International Workshop on Ecological Aspects of Vegetable Fertilization in Integrated Crop Production, Wellesbourne, Warwick, UK, 1 December 1999; ISHS Acta Horticulturae 506: Leuven, Belgium, 1999; pp. 99–104. [Google Scholar] [CrossRef]
- Salter, P.J.; Currah, I.E.; Fellows, J.R. Studies on some sources of variation in carrot root weight. J. Agric. Sci. 1981, 96, 549–556. [Google Scholar] [CrossRef]
- Irving, D.; Boulton, A.; Wade, S. Beetroot Stand Management; New South Wales Department of Primary Industries, Yanco Agricultural Institute, Bathurst Primary Industries Centre, Project Number: VG06117; Horticulture Australia Ltd.: Sydney, Australia, 2000. [Google Scholar]
- Barański, R.; Grzebelus, D.; Frese, L. Estimation of genetic diversity in a collection of the garden beet group. Euphytica 2001, 122, 19–29. [Google Scholar] [CrossRef]
- Watson, J.F.; Goldman, I.L. Inheritance of a gene conditioning blotchy root color in table beet (Beta vulgaris, L.). J. Hered. 1997, 88, 540–543. [Google Scholar] [CrossRef] [Green Version]
- Goldman, I.L.; Navazio, J.P. History and breeding of table beet in the United States. In Plant Breeding Reviews; Janick, U., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; Volume 22, pp. 357–388. [Google Scholar] [CrossRef]
- Da Silva, G.O.; De Souza, V.Q.; Pereira, A.D.S.; De Carvalho, F.I.F.; Neto, R.F. Early generation selection for tuber appearance affects potato yield components. Crop. Breed. Appl. Biotechnol. 2006, 6, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Jacobsohn, R.; Zutra, D.; Dan, H.; Kelman, Y. Studies of carrot cavity spot. J. Hortic. Sci. 1984, 59, 529–535. [Google Scholar] [CrossRef]
- Faraji, M.; Amirian Chakan, A.; Jafarizadeh, M.; Mohammadian, B.A. Soil and nutrient losses due to root crops harvesting: A case study from southwestern Iran. Arch. Agron. Soil Sci. 2017, 63, 1523–1534. [Google Scholar] [CrossRef]
- Iwata, H.; Niikura, S.; Matsuura, S.; Takano, Y.; Ukai, Y. Interaction between genetic effects and soil type in diallel analysis of root shape and size of Japanese radish (Raphanus sativus L.). Breed. Sci. 2004, 54, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Villordon, A.; Carroll, H. Digital image analysis of sweetpotato storage roots in herbicide trials. HortScience 2002, 37, 669–670. [Google Scholar] [CrossRef] [Green Version]
- Stephen Nottingham’s meticulously researched online book, Beetroot. Available online: https://www.academia.edu/21542519/Beetroot (accessed on 7 June 2020).
- Advisory Committee on Vegetable Crops. Beets (Red). Available online: https://www.faa.gov.nl.ca/agrifoods/plants/veg_listing.html (accessed on 25 November 2019).
- Lapwood, D.H.; Adams, M.J.; Crisp, A.F. The susceptibility of red beet cultivars to streptomyces scab. Plant. Pathol. 1976, 25, 31–33. [Google Scholar] [CrossRef]
- Strang, J.; Lentz, A.P.; Smigell, C.; Sigler, P.; Seebold, K.; Slone, D. Beet Variety Evaluation; University of Kentucky: Lexington, KY, USA, 2009. [Google Scholar]
- Wolyn, D.J.; Gabelman, W.H. Selection for betalain pigment concentrations and total dissolved solids in red table beets. J. Am. Soc. Hortic. Sci. 2019, 115, 165–169. [Google Scholar] [CrossRef]
- Khan, A.A.; Peck, N.H.; Taylor, A.G.; Samimy, C. Osmoconditioning of beet seeds to improve emergence and yield in cold soil1. Agron. J. 1983, 75, 788–794. [Google Scholar] [CrossRef]
- Taylor, A.G.; Goffinet, M.C.; Pikuz, S.A.; Shelkovenko, T.A.; Mitchell, M.D.; Chandler, K.M.; Hammer, D.A. Physico-Chemical factors influence beet (Beta vulgaris, L.) seed germination. In The Biology of Seeds: Recent Research Advances; Nicolas, G., Bradford, K.J., Come, D., Pritchard, H.W., Eds.; CABI: Wallingford, UK, 2003; pp. 433–440. [Google Scholar]
- Tanumihardjo, S.A.; Suri, D.; Simon, P.; Goldman, I.L. Vegetables of temperate climates: Carrot, parsnip and beetroot. In Encyclopedia of Food and Health; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; pp. 387–392. [Google Scholar] [CrossRef]
- Griepentrog, H.W.; Olsen, J.M.; Weiner, J.; Vdi, M.E.G. The Influence of row width and seed spacing on uniformity of plant spatial distributions. In Proceedings of the 67th International Conference on Agricultural Engineering (Land-Technik AgEng2009)-Innovations to Meet Future Challenges, Hannover, Germany, 6–7 November 2009; pp. 265–270. [Google Scholar]
Genotype | Beet Color | Shape | Seed Origin |
---|---|---|---|
Akela RZ | red | spherical | Rijk Zwaan |
Betina | red | spherical | Moravo Seeds (CZ) |
Bona | red | spherical | Moravo Seeds (CZ) |
Bordo AS | red | spherical | Seklos (LT) |
BoRu1 | red | spherical | Kultursaat e.V. |
Burpees Golden | yellow | spherical | Bingenheimer S. AG |
Carillon RZ | red | cylindrical | Rijk Zwaan |
Cervena Kulata | red | spherical | Moravo Seeds (CZ) |
Detroit 3 | red | spherical | Caillard |
Jawor | red | spherical | Snówidza (PL) |
Monty RZ F1 1 | red | spherical | Rijk Zwaan |
Nobol | red | spherical | Vilmorin (PL) |
Nochowski | red | spherical | Spójnia (PL) |
Ronjana | red | spherical | Bingenheimer S. AG |
Sniezna Kula | white | spherical | Torseed (PL) |
Scale | Smoothness of Skin | Corky Surface | Root Tail | Scab | Uniformity |
---|---|---|---|---|---|
1 | very rough | no/very little | not detached | no infestation | very low |
3 | rough | little | little detached | little | |
5 | average | average | average | average | average |
7 | smooth | much | detached | many | |
9 | very smooth | very much | very detached | very much | very high |
Genotype | Total Yield (t ha−1) | Marketable Yield (t ha−1) | Beet Diameter (mm) | Leaves-Growth-Base Width (mm) | Individual Beet Weight (g) |
---|---|---|---|---|---|
Akela | 49.56 abc ± 3.34 | 39.37 abc ± 3.50 | 78.40 a ± 0.31 | 27.78 egh ± 1.83 | 252.54 ac ± 17.42 |
Betina | 48.11 ad ± 3.34 | 34.55 cd ± 3.50 | 80.59 a ± 0.31 | 37.78 b ± 1.83 | 266.44 ac ± 17.42 |
Bona | 50.41 abc ± 3.47 | 39.64 abc ± 3.54 | 80.29 a ± 0.31 | 32.49 cde ± 1.86 | 279.01 a ± 17.42 |
Bordo AS | 50.34 abc ± 3.97 | 42.29 ac ± 4.17 | 81.50 a ± 0.31 | 36.10 bc ± 1.83 | 283.33 a ± 17.42 |
BoRu1 | 46.73 ad ± 3.34 | 37.44 ad ± 3.50 | 78.51 a ± 0.31 | 25.22 gh ± 1.83 | 252.56 ac ± 17.42 |
Burpees Golden | 36.06 e ± 3.38 | 27.92 d ± 3.55 | 71.25 b ± 0.31 | 27.52 egh ± 1.83 | 214.71 c ± 17.42 |
Carillon RZ | 53.28 a ± 3.34 | 44.96 a ± 3.50 | 48.54 c ± 0.31 | 23.63 h ± 1.83 | 239.87 ac ± 17.42 |
Cervena Kulata | 44.12 cde ± 3.34 | 32.38 cd ± 3.50 | 79.26 a ± 0.31 | 33.85 bd ± 1.83 | 259.48 ac ± 17.42 |
Detroit 3 | 46.35 ad ± 3.34 | 33.28 cd ± 3.50 | 80.55 a ± 0.31 | 27.83 egh ± 1.83 | 266.90 ab ± 17.42 |
Jawor | 46.02 ad ± 3.34 | 35.98 ad ± 3.50 | 80.04 a ± 0.31 | 32.58 bde ± 1.83 | 258.66 ac ± 17.42 |
Monty RZ F1 | 51.42 ac ± 3.34 | 39.96 abc ± 3.50 | 76.99 ab ± 0.31 | 32.44 cde ± 1.83 | 258.56 ac ± 17.42 |
Nobol | 40.15 de ± 3.34 | 31.16 bd ± 3.50 | 76.31 ab ± 0.31 | 25.78 fgh ± 1.83 | 221.77 bc ± 17.42 |
Nochowski | 43.44 cde ± 3.34 | 32.17 cd ± 3.50 | 79.08 a ± 0.31 | 43.14 a ± 1.40 | 267.27 ab ± 17.42 |
Ronjana | 42.72 bde ± 3.39 | 33.21 cd ± 3.52 | 75.93 ab ± 0.31 | 30.88 def ± 1.40 | 252.89 ac ± 17.42 |
Sniezna Kula | 49.70 abc ± 3.34 | 35.60 ad ± 3.50 | 79.43 a ± 0.31 | 29.21 dg ± 1.41 | 265.87 ac ± 17.42 |
Factor | p-value of the F-test of the corresponding factor | ||||
Location | <0.0001 | <0.0001 | <0.0001 | n.s. 1 | <0.0001 |
Year | n.s. | 0.0259 | <0.0001 | <0.0001 | 0.0034 |
Genotype | 0.0013 | 0.0262 | <0.0001 | <0.0001 | 0.0002 |
Location × year | 0.0005 | <0.0001 | <0.0001 | n.s. | n.s. |
Genotype | Smoothness of Skin | Corky Surface | Root Tail | Scab | Uniformity |
---|---|---|---|---|---|
Akela | 5.66 abcd ± 0.40 | 4.47 bc ± 0.34 | 6.67 ± 0.42 | 3.99 ± 0.34 | 6.16 ab ± 0.38 |
Betina | 4.90 be ± 0.40 | 4.48 bc ± 0.34 | 5.32 ± 0.42 | 3.94 ± 0.34 | 6.28 ac ± 0.38 |
Bona | 5.65 abcd ± 0.40 | 4.43 bc ± 0.34 | 6.18 ± 0.42 | 4.02 ± 0.34 | 5.98 ab ± 0.38 |
Bordo AS | 5.05 ce ± 0.40 | 4.93 bc ± 0.34 | 5.65 ± 0.42 | 3.81 ± 0.34 | 5.35 bc ± 0.38 |
BoRu1 | 5.08 ce ± 0.40 | 4.65 bc ± 0.34 | 6.21 ± 0.42 | 4.09 ± 0.34 | 6.16 ab ± 0.38 |
Burpees Golden | 4.59 de ± 0.40 | 4.90 bc ± 0.34 | 5.23 ± 0.42 | 3.50 ± 0.35 | 5.27 bc ± 0.38 |
Carillon RZ | 6.03 abcd ± 0.40 | 4.52 bc ± 0.34 | 5.00 ± 0.42 | 3.20 ± 0.34 | 6.12 ab ± 0.38 |
Cervena Kulata | 4.67 de ± 0.40 | 5.04 ab ± 0.34 | 5.68 ± 0.42 | 4.12 ± 0.34 | 6.23 ab ± 0.38 |
Detroit 3 | 3.96 e ± 0.40 | 4.34 bc ± 0.34 | 6.45 ± 0.42 | 3.96 ± 0.34 | 5.19 b ± 0.38 |
Jawor | 6.06 ac ± 0.22 | 4.90 bc ± 0.34 | 6.34 ± 0.42 | 3.80 ± 0.34 | 6.03 ab ± 0.38 |
Monty RZ F1 | 6.0 abcd ± 0.22 | 4.46 bc ± 0.34 | 5.78 ± 0.42 | 3.43 ± 0.34 | 6.61 a ± 0.38 |
Nobol | 4.58 de ± 0.22 | 5.97 a ± 0.34 | 6.24 ± 0.42 | 3.87 ± 0.34 | 5.67 ab ± 0.38 |
Nochowski | 5.39 abcd ± 0.22 | 4.08 c ± 0.34 | 5.65 ± 0.42 | 3.72 ± 0.34 | 6.15 ab ± 0.38 |
Ronjana | 5.11 ce ± 0.22 | 4.17 bc ± 0.34 | 6.56 ± 0.42 | 4.65 ± 0.34 | 5.84 ab ± 0.38 |
Sniezna Kula | 6.35 a ± 0.23 | 2.85 d ± 0.34 | 5.50 ± 0.42 | 4.65 ± 0.34 | 6.65 a ± 0.38 |
Factor | p-value of the F-test of the corresponding factor | ||||
Location | <0.0001 | 0.0002 | <0.0001 | n.s. 1 | n.s. |
Year | n.s. | 0.0003 | n.s. | n.s. | n.s. |
Genotype | 0.0024 | 0.0002 | n.s. | n.s. | 0.0292 |
Location × year | <0.0001 | 0.0039 | <0.0001 | n.s. | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasaminshirazi, K.; Hartung, J.; Groenen, R.; Heinze, T.; Fleck, M.; Zikeli, S.; Graeff-Hoenninger, S. Agronomic Performance of Different Open-Pollinated Beetroot Genotypes Grown Under Organic Farming Conditions. Agronomy 2020, 10, 812. https://doi.org/10.3390/agronomy10060812
Yasaminshirazi K, Hartung J, Groenen R, Heinze T, Fleck M, Zikeli S, Graeff-Hoenninger S. Agronomic Performance of Different Open-Pollinated Beetroot Genotypes Grown Under Organic Farming Conditions. Agronomy. 2020; 10(6):812. https://doi.org/10.3390/agronomy10060812
Chicago/Turabian StyleYasaminshirazi, Khadijeh, Jens Hartung, René Groenen, Thomas Heinze, Michael Fleck, Sabine Zikeli, and Simone Graeff-Hoenninger. 2020. "Agronomic Performance of Different Open-Pollinated Beetroot Genotypes Grown Under Organic Farming Conditions" Agronomy 10, no. 6: 812. https://doi.org/10.3390/agronomy10060812
APA StyleYasaminshirazi, K., Hartung, J., Groenen, R., Heinze, T., Fleck, M., Zikeli, S., & Graeff-Hoenninger, S. (2020). Agronomic Performance of Different Open-Pollinated Beetroot Genotypes Grown Under Organic Farming Conditions. Agronomy, 10(6), 812. https://doi.org/10.3390/agronomy10060812