Early Season Foliar Iron Fertilization Increases Fruit Yield and Quality in Pomegranate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Experimental Site and Fertilizer Treatments
2.2. Concentrations of Macro- and Micro-Elements in Leaves
2.3. Fruit Physical Properties
2.4. Fruit Chemical Properties
2.5. Statistical Analysis
3. Results
3.1. Changes in Leaf Elemental Concentrations upon Foliar Fertilization with Iron Compounds
3.2. Changes in Fruit Physical Characteristics upon Foliar Fertilization with Iron Compounds
3.3. Changes in Fruit Chemical Characteristics upon Foliar Fertilization with Iron Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holland, D.; Hatib, K.; Bar-Ya’akov, I. Pomegranate: Botany, horticulture, breeding. Hortic. Rev. 2009, 35, 127–191. [Google Scholar]
- Anonymous. Iran Statistical Year Book, 1st ed.; Ministry of Agriculture-Jahad: Tehran, Iran, 2016; ISBN 978-964-467-082-4. Available online: http://www.maj.ir/Dorsapax/userfiles/Sub65/amarnamehj3-95.pdf (accessed on 24 April 2020).
- Legua, P.; Melgarejo, P.; Abdelmajid, H.; Martínez, J.J.; Martínez, R.; Ilham, H.; Hafida, H.; Hernández, F. Total phenols and antioxidant capacity in 10 Moroccan pomegranate varieties. J. Food Sci. 2012, 71, 115–120. [Google Scholar] [CrossRef]
- Jackson, L.K.; Alva, A.K.; Tucker, D.P.H.; Calvert, D.V. Factors to consider in developing a nutrition program. In Nutrition of Florida Citrus Trees, 3rd ed.; Tucker, D.P.H., Alva, A.K., Jackson, L.K., Wheaton, T.A., Eds.; IFAS University Florida: Gainesville, FL, USA, 1995; pp. 3–11. [Google Scholar]
- Marschner, H. Mineral. Nutrition of Higher Plants; Academic Press Limited., Harcourt Brace and Company Publishers: London, UK, 2012. [Google Scholar]
- Fernández, V.; Sotiropoulos, T.; Brown, P.H. Foliar Fertilization: Scientific Principles and Field Practices, 1st ed.; International Fertilizer Industry Association: Paris, France, 2013; ISBN 979-10-92366-00-6. [Google Scholar]
- Aciksoz, S.B.; Yazici, A.; Ozturk, L.; Cakmak, I. Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant Soil 2011, 349, 215–225. [Google Scholar] [CrossRef]
- El-Jendoubi, H.; Vázquez, S.; Calatayud, A.; Vavpetic, P.; Vogel-Mikuš, K.; Pelicon, P.; Abadía, J.; Abadía, A.; Morales, F. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics. Front. Plant Sci. 2014, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, W.L.; Schwab, A.P. The chemistry of iron in soil and its availability to plants. J. Plant Nutr. 1982, 4, 821–840. [Google Scholar] [CrossRef]
- Abadía, J.; Vázquez, S.; Rellán-Alvarez, R.; El-Jendoubi, H.; Abadía, A.; Álvarez-Fernández, A.; López-Millán, A.F. Towards a knowledge-based correction of iron chlorosis. Plant. Physiol. Biochem. 2011, 49, 471–482. [Google Scholar] [CrossRef] [PubMed]
- López-Rayo, S.; Nadal, P.; Lucena, J.J. Reactivity and effectiveness of traditional and novel ligands for multi-micronutrient fertilization in a calcareous soil. Front. Plant Sci. 2015, 6, 752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Jendoubi, H.; Melgar, J.C.; Álvarez-Fernández, A.; Sanz, M.; Abadía, A.; Abadía, J. Setting good practices to assess the efficiency of iron fertilizers. Plant Physiol. Biochem. 2011, 49, 483–488. [Google Scholar] [CrossRef]
- Larbi, A.; Morales, F.; Abadía, J.; Abadía, A. Effect of branch solid Fe implants on Fe xylem transport in peach and pear: Changes in organic acid and Fe concentrations and pH. J. Plant Physiol. 2003, 160, 1473–1482. [Google Scholar] [CrossRef] [Green Version]
- Davarpanah, S.; Tehranifar, A.; Davarynejad, G.; Abadía, J.; Khorasani, R. Effects of foliar applications of zinc and boron nano-fertilisers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci. Hortic. 2016, 210, 57–64. [Google Scholar]
- Davarpanah, S.; Tehranifar, A.; Davarynejad, G.; Aran, M.; Abadía, J.; Khorasani, R. Effects of Foliar nano-nitrogen and urea fertilizers on the physical and chemical properties of pomegranate (Punica granatum cv. Ardestani) fruits. Hortscience 2017, 52, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Davarpanah, S.; Tehranifar, A.; Abadía, J.; Val, J.; Davarynejad, G.; Aran, M.; Khorassani, R. Foliar calcium fertilization reduces fruit cracking in pomegranate (Punica granatum cv. Ardestani). Sci. Hortic. 2018, 230, 86–91. [Google Scholar] [CrossRef]
- Wetzstein, H.Y.; Ravid, N.; Wilkins, E.; Pinheiro-Martinelli, A. A morphological and histological characterization of bisexual and male flower types in pomegranate. J. Am. Soc. Hortic. Sci. 2011, 136, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Ben-Arie, R.; Segal, N.; Guelfat-Reich, S. The maturation and ripening of the ‘Wonderful’ pomegranate. J. Am. Soc. Hort. Sci. 1984, 109, 898–902. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Water, 1st ed.; University of California: Berkeley, CA, USA, 1961. [Google Scholar]
- Carrasco-Gil, S.; Rios, J.J.; Álvarez-Fernández, A.; Abadía, A.; García-Mina, J.M.; Abadía, J. Effects of individual and combined metal foliar fertilisers on iron- and manganese-deficient Solanum lycopersicum plants. Plant Soil 2016, 402, 27–45. [Google Scholar] [CrossRef] [Green Version]
- Hasani, M.; Zamani, Z.; Savaghebi, G.; Fatahi, R. Effects of zinc and manganese as foliar spray on pomegranate yield, fruit quality and leaf minerals. J. Soil Sci. Plant Nutr. 2012, 12, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Tehranifar, A.; Zarei, M.; Nemati, Z.; Esfandiyari, B.; Vazifeshenas, M.R. Investigation of physico-chemical properties and antioxidant activity of twenty Iranian pomegranate (Punica granatum L.) cultivars. Sci. Hortic. 2010, 126, 180–185. [Google Scholar] [CrossRef]
- El-Shazly, S.M.; Abdel Naseer, G.; Harhsh, M.M. Physiological and biochemical indices in Washington novel orange trees as influenced by iron foliar application. Alex. J. Agric. Res. 2000, 45, 287–306. [Google Scholar]
- Amri, E.; Shahsavar, A.R. Comparative efficacy of citric acid and Fe(II) sulfate in the prevention of chlorosis in orange trees (Citrus sinensis L. cv. Darabi). J. Biol. Environ. Sci. 2009, 3, 61–65. [Google Scholar]
- Hasani, M.; Zamani, Z.; Savaghebi, G.; Sheikh Sofla, H. Effect of foliar and soil application of urea on leaf nutrients concentrations, yield and fruit quality of pomegranate. J. Plant Nutr. 2016, 39, 749–755. [Google Scholar] [CrossRef]
- Morales, F.; Grasa, R.; Abadía, A.; Abadía, J. The iron “chlorosis paradox” in fruit trees. J. Plant Nutr. 1998, 21, 815–825. [Google Scholar] [CrossRef]
- Mengel, K.; Geurtzen, G. Relationship between iron chlorosis and alkalinity in Zea mays. Physiol. Plant. 1988, 72, 460–465. [Google Scholar] [CrossRef]
- Jiménez, S.; Morales, F.; Abadía, A.; Abadía, J.; Moreno, M.A.; Gogorcena, Y. Elemental 2-D mapping and changes in leaf iron and chlorophyll in response to iron re-supply in iron-deficient GF 677 peach-almond hybrid. Plant Soil 2009, 315, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Zareh, M.; Adhami, E.; Owliaie, H.; Ramezanian, A. Effects of foliar applications of iron and zinc on yield, fruit quantitative and qualitative characteristics and mineral composition of pomegranate (Punica granatum L.) leaf. Iran. Hortic. Sci. Technol. 2012, 13, 189–198. (In Persian) [Google Scholar]
- Aboutalebi, A. Effects of nitrogen and iron on sweet lime (Citrus limmetta) fruit quantity and quality in calcareous soils. J. Novel Appl. Sci. 2013, 2, 211–213. [Google Scholar]
- Chen, F.; Lu, J. Effect of iron chelate application on citrus in the three gorges area. Better Crops 2006, 90, 33–35. [Google Scholar]
- Jahanshah, S. Effects of different methods of iron application on yield and leaf and fruit chemical compositions of ‘Lisbon’ lemon cultivar. J. Hortic. Sci. Technol. 2009, 9, 23–34. (In Persian) [Google Scholar]
- Álvarez-Fernández, A.; Paniagua, P.; Abadía, J.; Abadía, A. Effects of Fe deficiency chlorosis on yield and fruit quality in peach (Prunus persica L. Batsch). J. Agric. Food Chem. 2003, 51, 5738–5744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Fernández, A.; Melgar, J.C.; Abadía, J.; Abadía, A. Effects of moderate and severe iron deficiency chlorosis on fruit yield, appearance and composition in pear (Pyrus communis L.) and peach (Prunus persica L. Batsch). Environ. Exp. Bot. 2011, 71, 280–286. [Google Scholar] [CrossRef]
- Pastor, M.; Castro, J.; Hidalgo, J. Corrección de la clorosis férrica en olivar en zonas afectadas. Vida Rural 2001, 129, 42–44. [Google Scholar]
- Chaturvedi, O.P.; Singh, A.K.; Tripathi, V.K.; Dixit, A.K. Effect of zinc and iron on growth, yield and quality of strawberry cv. Chandler. Acta Hortic. 2005, 696, 237–240. [Google Scholar] [CrossRef]
- Rios, J.J.; Carrasco-Gil, S.; Abadía, A.; Abadía, J. Using Perls staining to trace the iron uptake pathway in leaves of a Prunus rootstock treated with iron foliar fertilizers. Front. Plant Sci. 2016, 7, 893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abadía, J.; Tagliavini, M.; Grasa, R.; Belkhodja, R.; Abadía, A.; Sanz, M.; Faria, E.A.; Tsipouridis, C.; Marangoni, B. Using the flower Fe concentration for estimating crop chlorosis status in fruit tree orchards. A summary report. J. Plant Nutr. 2000, 23, 2023–2033. [Google Scholar] [CrossRef]
- Pestana, M.; Correia, P.J.; de Varennes, A.; Abadía, J.; Faria, E.A. Effectiveness of different foliar iron applications to control iron chlorosis in orange trees grown on a calcareous soil. J. Plant Nutr. 2001, 24, 613–622. [Google Scholar] [CrossRef] [Green Version]
- Abdi, G.; Hedayat, M. Yield and fruit physiochemical characteristic of kabkab date palm as affected by methods of iron fertilization. World Appl. Sci. J. 2010, 10, 1328–1333. [Google Scholar]
- Zarei, M.; Azizi, M.; Bashiri-Sadr, Z. Studies on physico-chemical properties and bioactive compounds of six pomegranate cultivars grown in Iran. J. Food Technol. 2010, 8, 112–117. [Google Scholar] [CrossRef]
- Chisaki, N.; Horiguchi, T. Responses of secondary metabolism in plants to nutrient deficiency. Soil Sci. Plant Nutr. 1997, 43, 987–991. [Google Scholar] [CrossRef]
- Weisskopf, L.; Tomasi, N.; Santelia, D.; Martinoia, E.; Langlade, N.B.; Tabacchi, R.; Abou-Mansour, E. Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage. New Phytol. 2006, 171, 657–668. [Google Scholar] [CrossRef] [Green Version]
- Kovacik, J.; Klejdus, B.; Backor, M.; Repcak, M. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Sci. 2007, 172, 393–399. [Google Scholar] [CrossRef]
Treatment | Fe (mg/kg) | Yield (kg Tree−1) | Fruits per Tree | Aril Juice (mL) | ||||
---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | |
Control | 108.3 d | 118.0 c | 12.4 c | 16.2 c | 45.5 c | 55.3 c | 61.3 b | 62.5 b |
nFe1 | 126.4 ab | 141.9 ab | 15.3 a | 18.1 ab | 54.5 ab | 59.5 abc | 62.0 b | 65.3 ab |
nFe2 | 128.8 a | 150.0 a | 16.2 a | 19.5 a | 56.3 a | 64.0 a | 67.4 a | 66.9 a |
cFe1 | 113.0 cd | 130.0 bc | 13.4 bc | 17.7 bc | 48.8 c | 58.3 bc | 61.8 b | 63.0 b |
cFe2 | 119.1 bc | 137.5 ab | 13.8 b | 17.9 b | 50.0 bc | 60.3 ab | 64.9 ab | 63.9 ab |
Treatment | TSS (Brix) | TA (%) | Maturity Index (TSS/TA Ratio) | Total Sugars (g 100 g −1 FW) | Total Phenolics (mg 100 g −1 FW) | Antioxidant Activity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | 2014 | 2015 | |
Control | 16.3 b | 16.8 c | 1.82 a | 1.74 a | 8.95 c | 9.65 d | 14.32 b | 14.18 b | 409.13 a | 405.05 a | 24.23 a | 24.02 a |
nFe1 | 17.5 ab | 17.6 abc | 1.73 a | 1.64 a | 10.11 b | 10.72 b | 15.17 a | 15.11 a | 406.28 bc | 402.67 b | 23.23 ab | 23.44 ab |
nFe2 | 17.9 a | 18.0 a | 1.51 b | 1.54 b | 11.87 a | 11.70 a | 15.20 a | 15.15 a | 404.94 c | 402.60 b | 22.54 b | 22.19 b |
cFe1 | 16.5 b | 17.0 bc | 1.76 a | 1.72 a | 9.35 bc | 9.88 cd | 14.34 b | 14.21 b | 408.28 ab | 404.82 a | 24.13 a | 23.89 a |
cFe2 | 16.7 b | 17.7 ab | 1.75 a | 1.68 a | 9.55 bc | 10.54 bc | 14.84 ab | 14.85 ab | 407.25 abc | 402.79 b | 23.96 a | 22.29 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davarpanah, S.; Tehranifar, A.; Zarei, M.; Aran, M.; Davarynejad, G.; Abadía, J. Early Season Foliar Iron Fertilization Increases Fruit Yield and Quality in Pomegranate. Agronomy 2020, 10, 832. https://doi.org/10.3390/agronomy10060832
Davarpanah S, Tehranifar A, Zarei M, Aran M, Davarynejad G, Abadía J. Early Season Foliar Iron Fertilization Increases Fruit Yield and Quality in Pomegranate. Agronomy. 2020; 10(6):832. https://doi.org/10.3390/agronomy10060832
Chicago/Turabian StyleDavarpanah, Sohrab, Ali Tehranifar, Mahvash Zarei, Mehdi Aran, Gholamhossein Davarynejad, and Javier Abadía. 2020. "Early Season Foliar Iron Fertilization Increases Fruit Yield and Quality in Pomegranate" Agronomy 10, no. 6: 832. https://doi.org/10.3390/agronomy10060832
APA StyleDavarpanah, S., Tehranifar, A., Zarei, M., Aran, M., Davarynejad, G., & Abadía, J. (2020). Early Season Foliar Iron Fertilization Increases Fruit Yield and Quality in Pomegranate. Agronomy, 10(6), 832. https://doi.org/10.3390/agronomy10060832