Clonal Behavior in Response to Soil Water Availability in Tempranillo Grapevine cv: From Plant Growth to Water Use Efficiency
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Experimental Conditions
2.2.1. Growing Conditions and Treatments
2.2.2. Climate Conditions
2.3. Measurements
2.3.1. Plant Water Status
2.3.2. Leaf Gas Exchange Measurements
2.3.3. Plant Growth and Final Biomass
2.4. Statistical Analysis
3. Results
3.1. Plant Growth
3.2. Final Biomass
3.3. Stomatal Conductance, Photosynthesis, and WUEi
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Leeuwen, C.; Darriet, P. The impact of climate change on viticulture and wine quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef] [Green Version]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Future scenarios for viticultural zoning in Europe: Ensemble projections and uncertainties. Int. J. Biometeorol. 2013, 57, 909–925. [Google Scholar] [CrossRef] [PubMed]
- Vivin, P.; Lebon, É.; Dai, Z.; Duchêne, E.; Marguerit, E.; de Cortázar-Atauri, I.G.; Ollat, N. Combining ecophysiological models and genetic analysis: A promising way to dissect complex adaptive traits in grapevine. OENO One 2017, 51, 181–189. [Google Scholar] [CrossRef]
- Medrano, H.; Tortosa, I.; Montes, E.; Pou, A.; Balda, P.; Bota, J.; Escalona, J.M. Genetic improvement of grapevine (Vitis vinifera L.) water use efficiency: Variability among varieties and clones. In Water Scarcity and Sustainable Agriculture in Semiarid Environment; García-Tejero, I.F., Duran, V.H.I., Eds.; Academic Press: London, UK, 2018; pp. 377–401. [Google Scholar]
- Laucou, V.; Launay, A.; Bacilieri, R.; Lacombe, T.; Adam-Blondon, A.F.; Berard, A.; Ibañez, J.; Le Paslier, M.C. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS ONE 2018, 13, e0192540. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, J.; Carreño, J.; Yuste, J.; Martínez-Zapater, J.M. Grapevine breeding and clonal selection programmes in Spain. In Grapevine Breeding Programs for the Wine Industry; Reynolds, A., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 183–209. [Google Scholar]
- Flexas, J.; Galmés, J.; Gallé, A.; Gulías, J.; Pou, A.; Ribas-Carbo, M.; Tomás, M.; Medrano, H. Improving water use efficiency in grapevines: Potential physiological targets for biotechnological improvement. Aust. J. Grape Wine Res. 2010, 16, 106–121. [Google Scholar] [CrossRef]
- Bchir, A.; Escalona, J.M.; Gallé, A.; Hernández-Montes, E.; Tortosa, I.; Braham, M.; Medrano, H. Carbon isotope discrimination (δ13C) as an indicator of vine water status and water use efficiency (WUE): Looking for the most representative sample and sampling time. Agric. Water Manag. 2010, 167, 11–20. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Urretavizcaya, I.; Royo, J.B. Carbon isotope ratio of whole berries as an estimator of plant water status in grapevine (Vitis vinifera L.) cv. ‘Tempranillo’. Sci. Hortic. 2012, 146, 7–13. [Google Scholar] [CrossRef]
- Tomás, M.; Medrano, H.; Escalona, J.M.; Martorell, S.; Pou, A.; Ribas-Carbó, M.; Flexas, J. Variability of water use efficiency in grapevines. Environ. Exp. Bot. 2014, 103, 148–157. [Google Scholar] [CrossRef]
- Escalona, J.M.; Tomàs, M.; Martorell, S.; Medrano, H.; Ribas-Carbo, M.; Flexas, J. Carbon balance in grapevines under different soil water supply: Importance of whole plant respiration. Aust. J. Grape Wine Res. 2012, 18, 308–318. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Flexas, J.; Hernández, E.; Rosselló, J.; Pou, A.; Escalona, J.M.; Bota, J. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop. J. 2015, 3, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Coupel-Ledru, A.; Lebon, E.; Christophe, A.; Gallo, A.; Gago, P.; Pantin, F.; Doligez, A.; Simonneau, T. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc. Natl. Acad. Sci. 2016, 113, 8963–8968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flexas, J.; Bota, J.; Escalona, J.M.; Sampol, B.; Medrano, H. Effects of drought on photosynthesis in grapevines under field conditions: An evaluation of stomatal and mesophyll limitations. Funct. Plant. Biol. 2002, 29, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Medrano, H.; Escalona, J.M.; Bota, J.; Gulías, J.; Flexas, J. Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter. Ann. Bot. 2002, 89, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Merli, M.C.; Gatti, M.; Galbignani, M.; Bernizzoni, F.; Magnanini, E.; Poni, S. Water use efficiency in Sangiovese grapes (Vitis vinifera L.) subjected to water stress before veraison: Different levels of assessment lead to different conclusions. Funct. Plant. Biol. 2015, 42, 198–208. [Google Scholar] [CrossRef]
- Bota, J.; Flexas, J.; Medrano, H. Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Ann. Appl. Biol. 2001, 138, 353–361. [Google Scholar] [CrossRef]
- Tomás, M.; Medrano, H.; Pou, A.; Escalona, J.M.; Martorell, S.; Ribas-Carbó, M.; Flexas, J. Water-use efficiency in grapevine cultivars grown under controlled conditions: Effects of water stress at the leaf and whole-plant level. Aust. J. Grape Wine Res. 2012, 18, 164–172. [Google Scholar] [CrossRef]
- Costa, J.M.; Ortuño, M.F.; Lopes, C.M.; Chaves, M.M. Grapevine varieties exhibiting differences in stomatal response to water deficit. Funct. Plant. Biol. 2012, 39, 179–189. [Google Scholar] [CrossRef]
- Bota, J.; Tomás, M.; Flexas, J.; Medrano, H.; Escalona, J.M. Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress. Agric. Water Manag. 2016, 164, 91–99. [Google Scholar] [CrossRef]
- Morales, F.; Ancín, M.; Fakhet, D.; González-Torralba, J.; Gámez, A.L.; Seminario, A.; Soba, D.; Ben Mariem, S.; Garriga, M.; Aranjuelo, I. Photosynthetic Metabolism under Stressful Growth Conditions as a Bases for Crop Breeding and Yield Improvement. Plants 2020, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Rühl, E.; Konrad, H.; Lindner, B.; Bleser, E. Quality criteria and targets for clonal selection in grapevine. Acta Hortic. 2004, 652, 29–33. [Google Scholar] [CrossRef]
- Hajdu, E.; Korac, N.; Cindric, P.; Ivanisevic, D.; Medic, M. The importance of clonal selection of grapevine and the role of selected clones in production of healthy propagating stocks. Int. J. Hortic. Sci. 2011, 17, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Arrizabalaga, M.; Morales, F.; Oyarzun, M.; Delrot, S.; Gomès, E.; Irigoyen, J.J.; Hilbert, G.; Pascual, I. Tempranillo clones differ in the response of berry sugar and anthocyanin accumulation to elevated temperature. Plant Sci. 2018, 267, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Cervera, M.T.; Cabezas, J.A.; Rodríguez-Torres, I.; Chavez, J.; Cabello, F.; Martínez-Zamboni, M.; Garavani, A.; Gatti, M.; Vercesi, A.; Parisi, M.G.; et al. Vegetative, physiological and nutritional behavior of new grapevine rootstocks in response to different nitrogen supply. Sci. Hortic. 2016, 202, 99–106. [Google Scholar]
- Grimplet, J.; Ibáñez, S.; Baroja, E.; Tello, J.; Ibáñez, J. Phenotypic, hormonal, and genomic variation among Vitis vinifera clones with different cluster compactness and reproductive performance. Front. Plant Sci. 2019, 9, 1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortosa, I.; Escalona, J.M.; Bota, J.; Tomas, M.; Hernandez, E.; Escudero, E.G.; Medrano, H. Exploring the genetic variability in water use efficiency: Evaluation of inter and intra cultivar genetic diversity in grapevines. Plant Sci. 2016, 251, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Tortosa, I.; Douthe, C.; Pou, A.; Balda, P.; Hernandez-Montes, E.; Toro, G.; Escalona, J.M.; Medrano, H. Variability in water use efficiency of grapevine Tempranillo clones and stability over years at field conditions. Agronomy 2019, 9, 701. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Fox, J.; Weisberg, S. Multivariate linear models in R. In An R Companion to Applied Regression; SAGE Publications, Inc.: Los Angeles, CA, USA; Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Lenth, R.; Lenth, M.R. Package ‘lsmeans’. Am. Stat. 2018, 34, 216–221. [Google Scholar]
- Ollat, N.; Van Leeuwen, C.; de Cortazar-Atauri, I.G.; Touzard, J.M. The challenging issue of climate change for sustainable grape and wine production. Int. J. Vine Wine Sci. 2017, 51, 59–60. [Google Scholar]
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Uriarte, D.; Intrigliolo, D.S.; Mancha, L.A.; Picón-Toro, J.; Valdes, E.; Prieto, M.H. Interactive effects of irrigation and crop level on Tempranillo vines in a semiarid climate. Am. J. Enol. Vitic. 2015, 66, 101–111. [Google Scholar] [CrossRef]
- Romero, P.; Pérez-Pérez, J.G.; del Amor, F.M.; Martinez-Cutillas, A.; Dodd, I.C.; Botía, P. Partial root zone drying exerts different physiological responses on field-grown grapevine (Vitis vinifera cv. Monastrell) in comparison to regulated deficit irrigation. Funct. Plant Biol. 2014, 41, 1087–1106. [Google Scholar] [CrossRef]
- de Oliveira, A.F.; Nieddu, G. Deficit irrigation strategies in Vitis vinifera L. cv. Cannonau under Mediterranean climate. Part II-cluster microclimate and anthocyanin accumulation patterns. S. Afr. J. Enol. Vitic. 2013, 34, 184–195. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef] [Green Version]
- Prieto, J.A.; Lebon, É.; Ojeda, H. Stomatal behavior of different grapevine cultivars in response to soil water status and air water vapor pressure deficit. OENO One 2010, 44, 9–20. [Google Scholar] [CrossRef]
- Escalona, J.M.; Tomàs, M.; Ribas-Carbo, M.; Medrano, H.; Bota, J. Genetic variation of plant water status, water use efficiency and grape yield and quality in response to soil water availability in grapevine (Vitis vinifera L.). In Proceedings of the 28th International Horticultural Congress Lisbon, Lisbon, Portugal, 22–27 August 2010; pp. 143–150. [Google Scholar]
- Galbignani, M.; Merli, M.C.; Magnanini, E.; Bernizzoni, F.; Talaverano, I.; Gatti, M.; Pallioti, A.; Poni, S. Gas exchange and water-use efficiency of cv. Sangiovese grafted to rootstocks of varying water-deficit tolerance. Irrig. Sci. 2016, 34, 105–116. [Google Scholar] [CrossRef]
- Zhang, L.; Marguerit, E.; Rossdeutsch, L.; Ollat, N.; Gambetta, G.A. The influence of grapevine rootstocks on scion growth and drought resistance. Exp. Plant Physiol. 2016, 28, 143–157. [Google Scholar] [CrossRef]
- Romero, P.; Botía, P.; Navarro, J.M. Selecting rootstocks to improve vine performance and vineyard sustainability in deficit irrigated Monastrell grapevines under semiarid conditions. Agric. Water Manag. 2018, 209, 73–93. [Google Scholar] [CrossRef]
- Tortosa, I.; Escalona, J.M.; Douthe, C.; Pou, A.; Garcia-Escudero, E.; Toro, G.; Medrano, H. The intra-cultivar variability on water use efficiency at different water status as a target selection in grapevine: Influence of ambient and genotype. Agric. Water Manag. 2019, 223, 105648. [Google Scholar] [CrossRef]
- Koblet, W.; Keller, M.; Carmo Candolfi-Vasconcelos, M. Effects of training system, canopy management practices, crop load and rootstock on grapevine photosynthesis. Act. Hort. 1997, 427, 133–140. [Google Scholar] [CrossRef]
- Morinaga, K.; Imai, S.; Yakushiji, H.; Koshita, Y. Effects of fruit load on partitioning of 15N and 13C, respiration, and growth of grapevine roots at different fruit stages. Sci. Hortic. 2003, 97, 239–253. [Google Scholar] [CrossRef]
- Petrie, P.R.; Trought, M.T.; Howell, G.S. Influence of leaf ageing, leaf area and crop load on photosynthesis, stomatal conductance and senescence of grapevine (Vitis vinifera L. cv. Pinot noir) leaves. Vitis 2000, 39, 31–36. [Google Scholar]
- Vaillant-Gaveau, N.; Wojnarowiez, G.; Petit, A.N.; Jacquens, L.; Panigai, L.; Clement, C.; Fontaine, F. Relationships between carbohydrates and reproductive development in Chardonnay grapevine: Impact of defoliation and fruit removal treatments during four successive growing seasons. OENO One 2014, 48, 219–229. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Interactive effects of deficit irrigation and shoot and cluster thinning on grapevine cv. Tempranillo. Water relations, vine performance and berry and wine composition. Irrig. Sci. 2011, 29, 443–454. [Google Scholar] [CrossRef]
- Petrie, P. Quantifying the advancement and compression of vintage. AWRI 2016, 220, 9–11. [Google Scholar]
ICVV | Bodegas Roda |
---|---|
RJ43 * | 108 |
RJ51 * | 137 |
RJ78 * | 156 |
1048 | 166 |
1052 | 178 |
1078 | 203 |
1084 | 215 |
1371 | 232 |
232 | 243 |
326 | 336 |
360 | |
365 | |
452 |
Effects | Growth | Biomass | Gas Exchange | ||||||
---|---|---|---|---|---|---|---|---|---|
SGR | LAR | Leaves | Shoots | Bunches | Total | Gs | A | WUEi | |
Genotype (Gen) | * | *** | *** | * | *** | * | |||
Year | *** | *** | ** | *** | - | *** | ** | ||
Trat | *** | *** | - | - | - | *** | *** | *** | |
Gen × year | ** | - | - | ||||||
Gen × Treat | - | - | - | . | |||||
Year × Treat | *** | *** | - | - | - | . | *** | *** | *** |
Gen × Year × Treat | * | - | - | - | . |
gs (mol H2O m−2 s−1) | |||||||
---|---|---|---|---|---|---|---|
Genotype | 0.075 | 0.100 | 0.150 | 0.200 | 0.250 | 0.300 | 0.350 |
6 | 17 | 17 | 16 | 13 | 12 | 11 | 11 |
108 | 19 | 19 | 10 | 6 | 6 | 4 | 4 |
137 | 5 | 5 | 8 | 14 | 15 | 16 | 17 |
156 | 2 | 2 | 4 | 16 | 20 | 22 | 21 |
166 | 13 | 11 | 9 | 3 | 5 | 6 | 6 |
178 | 7 | 6 | 6 | 8 | 13 | 13 | 13 |
203 | 15 | 14 | 14 | 10 | 8 | 9 | 9 |
215 | 11 | 12 | 19 | 20 | 21 | 19 | 18 |
232 | 3 | 3 | 3 | 5 | 9 | 12 | 12 |
243 | 21 | 20 | 11 | 4 | 2 | 2 | 1 |
326 | 20 | 21 | 23 | 21 | 17 | 15 | 15 |
336 | 16 | 15 | 15 | 11 | 11 | 10 | 10 |
360 | 23 | 23 | 22 | 17 | 7 | 7 | 7 |
365 | 4 | 4 | 7 | 15 | 16 | 17 | 19 |
452 | 8 | 10 | 12 | 19 | 19 | 18 | 16 |
1048 | 1 | 1 | 2 | 9 | 17 | 21 | 22 |
1052 | 6 | 7 | 13 | 23 | 23 | 23 | 23 |
1078 | 18 | 18 | 17 | 12 | 10 | 8 | 8 |
1084 | 14 | 16 | 20 | 18 | 14 | 14 | 13 |
1371 | 22 | 22 | 18 | 7 | 4 | 3 | 3 |
RJ43 | 12 | 13 | 21 | 22 | 22 | 20 | 20 |
RJ51 | 9 | 8 | 1 | 1 | 1 | 1 | 2 |
RJ78 | 10 | 9 | 5 | 2 | 3 | 5 | 5 |
Max | 94.6 | 87.1 | 74.0 | 66.1 | 59.0 | 52.7 | 47.7 |
Min | 80.7 | 76.6 | 68.8 | 60.3 | 51.3 | 43.7 | 37.2 |
Mean | 86.8 | 81.3 | 71.3 | 62.6 | 54.9 | 48.3 | 42.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tortosa, I.; Escalona, J.M.; Toro, G.; Douthe, C.; Medrano, H. Clonal Behavior in Response to Soil Water Availability in Tempranillo Grapevine cv: From Plant Growth to Water Use Efficiency. Agronomy 2020, 10, 862. https://doi.org/10.3390/agronomy10060862
Tortosa I, Escalona JM, Toro G, Douthe C, Medrano H. Clonal Behavior in Response to Soil Water Availability in Tempranillo Grapevine cv: From Plant Growth to Water Use Efficiency. Agronomy. 2020; 10(6):862. https://doi.org/10.3390/agronomy10060862
Chicago/Turabian StyleTortosa, Ignacio, Jose M. Escalona, Guillermo Toro, Cyril Douthe, and Hipolito Medrano. 2020. "Clonal Behavior in Response to Soil Water Availability in Tempranillo Grapevine cv: From Plant Growth to Water Use Efficiency" Agronomy 10, no. 6: 862. https://doi.org/10.3390/agronomy10060862
APA StyleTortosa, I., Escalona, J. M., Toro, G., Douthe, C., & Medrano, H. (2020). Clonal Behavior in Response to Soil Water Availability in Tempranillo Grapevine cv: From Plant Growth to Water Use Efficiency. Agronomy, 10(6), 862. https://doi.org/10.3390/agronomy10060862