Modeling Planting-Date Effects on Intermediate-Maturing Maize in Contrasting Environments in the Nigerian Savanna: An Application of DSSAT Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Locations
2.2. Field Experiments for Model Calibration and Evaluation
2.3. Plant Measurements
2.4. Weather and Soil Data
2.5. CSM-CERES Maize Model Calibration
2.6. CSM-CERES-Maize Model Evaluation
2.7. Model Application
3. Results
3.1. Soil and Weather Condition
3.2. CSM CERES-Maize Model Calibration
3.3. CSM CERES-Maize Model Evaluation
3.4. Model Application
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Graef, F.; Haigis, J. Spatial and temporal rainfall variability in the Sahel and its effects on farmers’ management strategies. J. Arid. Environ. 2001, 48, 221–231. [Google Scholar] [CrossRef]
- Marteau, R.; Sultan, B.; Moron, V.; Alhassane, A.; Baron, C.; Traoré, S.B. The onset of the rainy season and farmer’s sowing strategy for pearl millet cultivation in South-west Niger. Agric. For. Meteo. 2011, 151, 1356–1369. [Google Scholar] [CrossRef] [Green Version]
- Adnan, A.A.; Jibrin, M.J.; Kamara, A.Y.; Abdulrahman, B.L.; Shuaibu, A.S.; Garba, I.I. CERES-Maize model for determining the optimum planting dates of early maturing maize varieties in northern Nigeria. Front. Plant Sci. 2017, 8, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staggenborg, S.A.; Fjell, D.L.; Devlin, D.L.; Gordon, W.B.; Maddux, L.D.; Marsh, B.H. Selecting optimum planting dates and plant populations for dryland corn in Kansas. J. Prod. Agric. 1999, 12, 85–90. [Google Scholar] [CrossRef]
- Kamara, A.Y.; Menkir, A.; Badu-Apraku, B.; Ibikunle, O. Reproductive and stay-green trait responses of maize hybrids, improved open-pollinated varieties and farmers’ local varieties to terminal drought stress. Maydica 2003, 4, 29–37. [Google Scholar]
- Kamara, A.Y.; Friday, E.; David, C.; Lucky, O.O. Planting date and cultivar effects on grain yield in dryland corn production. Agron. J. 2009, 101, 91–98. [Google Scholar] [CrossRef]
- Namakka, A.; Abubakar, I.U.; Sadik, I.A.; Sharifai, A.I.; Hassan, A.H. Effect of sowing date and nitrogen level on yield and yield components of two extra early maize varieties (Zea mays L.) in Sudan savanna of Nigeria. ARPN J. Agric. Biol. Sci. 2008, 3, 1–5. [Google Scholar]
- Maryam, J.I.; Fereshteh, D.; Rahim, N.; Hoshang, N.; Saman, B. Effect of planting date and nitrogen fertilizer application on grain yield and yield components in maize (SC 704). Am. Eurasian J. Agric. Environ. Sci. 2013, 13, 914–919. [Google Scholar]
- Fischer, K.S.; Edemeades, G.O.; Johnson, E.C. Selection for the improvement of maize yield under moisture deficit. Field Crop. Res. 1989, 22, 227–243. [Google Scholar] [CrossRef]
- Bello, O.B.; Azeez, M.A.; Mahmud, J.; Afolabi, M.S.; Ige, S.A.; Abdulmaliq, S.Y. Evaluation of grain yield and agronomic characteristics in drought-tolerant maize varieties belonging to two maturing groups. J. Agric. Sci. 2012, 2, 70–74. [Google Scholar]
- FAO. Optimizing variety x sowing date. In On-Farm Trials for Adapting and Adopting Good Agricultural Practices; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Liwenga, E.T. Food Insecurity and Coping Strategies in Semi-Arid Areas: The Case of Mvumi in Central Tanzania. Ph.D. Thesis, Stockholm University, Stockholm, Sweden, 2003. [Google Scholar]
- Ngigi, S.N. Climate Change Adaptation Strategies: Water Resources Management Options for Smallholder Farming Systems in Sub-Saharan Africa; The MDG Centre for East and Southern Africa, the Earth Institute at Columbia University: New York, NY, USA, 2009; p. 189. [Google Scholar]
- Urama, K.; Ozor, N. Agricultural innovations for climate change adaptation and food security in western and central Africa. Agro-Sci. 2011, 10. [Google Scholar] [CrossRef]
- Akinnagbe, O.M.; Irohibe, I.J. Agricultural adaptation strategies to climate change impacts in Africa: A review. Bang. J. Agric. Res. 2014, 39, 407–418. [Google Scholar] [CrossRef]
- Tsuji, G.Y.; Hoogenboom, G.; Thornton, P.K. Understanding options for agricultural production. In Systems Approaches for Sustainable Agricultural Development; Kluwer Academic: Dordrecht, The Netherlands, 1998; Volume 7. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Jones, J.W.; Wilkens, P.W.; Porter, C.H.; Boote, K.J.; Hunt, L.A. Decision Support System for Agrotechnology Transfer (DSSAT). Version 4.6; DSSAT Foundation, Prosser: Washington, DC, USA, 2015. [Google Scholar]
- Mathews, R.; Stephens, W.; Hess, T.; Middleton, T.; Graves, A. Application of crop/soil simulation model in tropical agricultural systems. Advan. Agron. 2002, 76, 31–124. [Google Scholar]
- Gungula, D.T.; Kling, J.G.; Togun, A.O. CERES-Maize predictions of maize phenology under nitrogen-stressed conditions in Nigeria. Agron. J. 2003, 95, 892–899. [Google Scholar] [CrossRef]
- Dzotsi, K.A.; Agboh-Noameshie, A.; StruifBontkes, T.E.; Singh, U.; Dejean, P. Using DSSAT to derive optimum combinations of cultivar and sowing date of maize in southern Togo. In Decision Support System Tools for Smallholders Agriculture in Sub-Saharan Africa; A Practical Guide; Bontkes, T., Wopereis, M., Eds.; IFDC & CTA: Muscle Shoals, AL, USA, 2003; pp. 100–113. [Google Scholar]
- Amaral, T.A.; Andrade, C.; Alves, M.E.B.; Silva, D.F. Applying CSM-CERES-Maize to define a sowing window for irrigated maize crop—The riacho’s farm case study. Interdisp. J. Appl. Sci. 2011, 6, 38–53. [Google Scholar]
- Wafula, B.M. Application of crop simulation in agricultural extension and research in Kenya. Agric. Syst. 1995, 49, 399–412. [Google Scholar] [CrossRef]
- Jibrin, M.J.; Kamara, A.Y.; Ekeleme, F. Simulating planting date and cultivar effects on dryland maize production using CERES-maize model. Afric. J. Agric. Res. 2012, 7, 5530–5536. [Google Scholar]
- MacCarthy, D.S.; Adiku, S.G.K.; Freduah, B.S.; Gbefo, F.; Kamara, A.Y. Using CERES-maize and ENSO as decision support tools to evaluate climate-sensitive farm management practices for maize production in the northern regions of Ghana. Front. Plant Sci. 2017, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kamara, A.Y.; Ewansiha, S.U.; Menkir, A.; Tofa, A.I. Agronomic response of drought-tolerant and Striga-resistant maize varieties to nitrogen fertilization in the Nigerian Guinea savannahs. Maydica 2012, 57, 114–120. [Google Scholar]
- NIMET. Nigerian Meteorological Agency; NIMET: Abuja, Nigeria, 2016. [Google Scholar]
- FAO. World Reference Base for Soil Resources. A Framework for International Classification, Correlation and Communication; World Soil Resources Reports; Food and Agriculture Organization (FAO): Rome, Italy, 2006; pp. 1–128. [Google Scholar]
- Heanes, D.L. Determination of total organic-C in soils by an improved chromic acid digestion and spectrophotometric procedure. Commun. Soil Sci. Plant Anal. 1984, 15, 1191–1213. [Google Scholar] [CrossRef]
- Bremmer, J.M. Nitrogen-total. In Method of Soil Analysis Part 3—Chemical Methods; Sparks, D.L., Ed.; SSSA Book Series 5; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1122. [Google Scholar]
- Gee, G.W.; Or, D. Particle-size analysis. In Methods of Soil Analysis Part 4. Physical Methods; SSSA Book Series; Soil Science Society of America: Madison, WI, USA, 2002; pp. 255–293. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total organic and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Hunt, L.A.; Pararajasingham, S.; Jones, J.W.; Hoogenboom, G.; Imamura, D.T.; Ogoshi, R.M. GENCALC-software to facilitate the use of crop models for analysing field experiments. Agron. J. 1993, 85, 1090–1094. [Google Scholar] [CrossRef]
- Jones, C.A.; Kiniry, J.R. CERES-Maize: A Simulation Model of Maize Growth and Development; Texas A & M University Press: College Station, TX, USA, 1986. [Google Scholar]
- Ritchie, J.T.; Singh, U.; Godwin, D.C.; Bowen, W.T. Cereal growth, development, and yield. In Understanding Options for Agricultural Production; Tsuji, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 79–98. [Google Scholar]
- He, J.; Jones, J.W.; Graham, W.D.; Dukes, M.D. Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method. Agric. Syst. 2010, 103, 256–264. [Google Scholar] [CrossRef]
- Singh, P.; Boote, K.; Kumar, U.; Srinivas, K.; Nigam, S.; Jones, J. Evaluation of genetic traits for improving productivity and adaptation of groundnut to climate change in India. J. Agron. Crop Sci. 2012, 198, 399–413. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.Y.; Huffman, E.C. EasyGrapher. Software for graphical and statistical validation of DSSAT outputs. Comput. Electron. Agric. 2004, 45, 125–132. [Google Scholar] [CrossRef]
- Tovihoudji, P.G.; Akponikpè, P.B.I.; Agbossou, E.K.; Bielders, C.L. Using the DSSAT model to support decision making regarding fertilizer microdosing for maize production in the Sub-humid region of Benin. Front. Environ. Sci. 2019, 7, 1–13. [Google Scholar] [CrossRef]
- Adnan, A.A.; Diels, J.; Jibrin, J.M.; Kamara, A.Y.; Craufurd, P.; Shuaibu, A.S.; Mohammed, I.B.; Tonnang, Z.E.H. Options for calibrating CERES-maize genotype specific parameters under data-scarce environments. PLoS ONE 2019, 14, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M.J.; Carberry, P.S.; Huth, N.I.; Turpin, J.E.; Probert, M.E.; Poulton, P.L.; Bell, M.; Wright, G.; Yeates, S.J.; Brinsmead, R.B. Simulation of growth and development of diverse legume species in APSIM. Aust. J. Agric. Res. 2002, 53, 429–446. [Google Scholar] [CrossRef]
- Sallah, P.Y.K.; Twumasi-Afriyie, S.; Kasei, C.N. Optimum planting dates for four maturity groups of maize varieties grown in the Guinea savanna zone. Ghana J. Agric. Sci. 1997, 30, 63–70. [Google Scholar] [CrossRef]
- NAERLS. Wet season in Nigeria. Services. In Agricultural Performance Survey of 2012; National Agricultural Extension and Research Liaison Federal Ministry of Agriculture and Rural Development Ahmadu Bello University: Zaria, Nigeria, 2013. [Google Scholar]
- Alberta, G. Soil Moisture and Temperature Consideration. Factors that Contribute to Crop Growth. Available online: https://www.alberta.ca/soil-moisture-and-temperature-consideration.aspx#toc-5 (accessed on 11 July 2019).
- TNAU. Agrometeorology. Relative Humidity and Plant Growth; Tamil Nadu Agricultural University: Coimbatore, India, 2016; p. 641003. [Google Scholar]
- Carter, E.K.; Melkonian, J.; Susan, J.R.; Stephen, B.S. Separating heat stress from moisture stress: Analyzing yield response to high temperature in irrigated maize. Environ. Res. Lett. 2016, 11, 1–11. [Google Scholar] [CrossRef]
- Oke, O.F. Effects of agro-climatic variables on yield of Zea mays L. in a humid tropical rainforest agroecosystem. J. Environ. Earth Sci. 2016, 6, 148–151. [Google Scholar]
- Lin, Y.; Feng, Z.; Wu, W.; Yang, Y.; Zhou, Y.; Xu, C. Potential impacts of climate change and adaptation on maize in northeast China. Agron. J. 2017, 109, 1476–1490. [Google Scholar] [CrossRef] [Green Version]
Location | Soil Layer Depth (cm) | Silt (g kg−1) | Clay (g kg−1) | Lower Limit (cm3/cm3) | Drained Upper Limit (cm3/cm3) | Saturated Water Content (cm3/cm3) | Bulk Density (g cm−3) | pH in H2O (1:2.5) | Organic Carbon (g kg−1) | Total N (g kg−1) | Available P (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
BUK | 28 | 120 | 200 | 0.100 | 0.201 | 0.401 | 1.56 | 6.6 | 4.4 | 0.04 | 2.0 |
58 | 160 | 190 | 0.127 | 0.207 | 0.382 | 1.58 | 6.7 | 0.02 | 1.7 | ||
120 | 180 | 160 | 0.112 | 0.194 | 0.385 | 1.57 | 5.9 | 2.1 | 0.02 | 2.8 | |
156 | 180 | 170 | 0.112 | 0.191 | 0.376 | 1.60 | 7.0 | 0.4 | 0.01 | 1.3 | |
210 | 180 | 150 | 0.102 | 0.180 | 0.376 | 1.60 | 6.1 | 0.4 | 0.01 | 2.4 | |
Dambatta | 14 | 160 | 60 | 0.059 | 0.129 | 0.401 | 1.53 | 6.1 | 1.1 | 0.21 | 1.2 |
23 | 140 | 80 | 0.068 | 0.135 | 0.386 | 1.57 | 6.1 | 0.8 | 0.18 | 1.1 | |
26 | 110 | 90 | 0.078 | 0.143 | 0.385 | 1.57 | 6.1 | 2.5 | 0.15 | 0.3 | |
63 | 130 | 120 | 0.092 | 0.162 | 0.382 | 1.58 | 5.9 | 2.1 | 0.18 | 0.2 | |
Zaria | 20 | 420 | 200 | 0.139 | 0.277 | 0.452 | 1.38 | 4.7 | 4.6 | 0.8 | 2.5 |
45 | 300 | 490 | 0.281 | 0.410 | 0.467 | 1.34 | 5.6 | 4.1 | 0.7 | 1.7 | |
84 | 240 | 500 | 0.281 | 0.394 | 0.450 | 1.39 | 5.7 | 1.7 | 0.2 | 0.1 | |
120 | 260 | 460 | 0.260 | 0.375 | 0.443 | 1.41 | 5.2 | 3.2 | 0.2 | 0.2 | |
190 | 240 | 480 | 0.267 | 0.377 | 0.441 | 1.42 | 5.0 | 2.7 | 0.1 | 0.4 |
Coefficient | Description | Unit | SAMMAZ-15 | SAMMAZ-16 |
---|---|---|---|---|
P1 | Thermal time from seedling emergence to the end of juvenile phase | °C day−1 | 274.3 | 253.3 |
P2 | Delay in development for each hour that day-length is above 12.5 h | day | 0.489 | 0.424 |
P5 | Thermal time from silking to time of physiological maturity | °C day−1 | 840.5 | 794.9 |
G2 | Maximum kernel number per plant | grains ear−1 | 816.3 | 743.3 |
G3 | Kernel growth rate during linear grain-filling stage under optimum conditions | mg day−1 | 6.30 | 6.25 |
PHINT | Thermal time between successive leaf tip appearances | °C day−1 | 40.00 | 38.90 |
Parameter | NE ƪ | Simulated | Observed | ME ª | RMSE | d-Index |
---|---|---|---|---|---|---|
SAMMAZ-15 | ||||||
Anthesis (DAS) | 10 | 59.0 | 60.0 | −0.020 | 1.9 | 0.93 |
Maturity (DAS) | 10 | 105.0 | 107.0 | −0.017 | 2.3 | 0.95 |
Grain yield at harvest (kg ha−1) | 10 | 6503 | 6311 | 0.031 | 470 | 0.92 |
Shoot dry matter (kg ha−1) | 10 | 17299 | 15914 | 0.087 | 1728 | 0.75 |
SAMMAZ-16 | ||||||
Anthesis (DAS) | 14 | 55.4 | 56.4 | −0.020 | 1.9 | 0.93 |
Maturity (DAS) | 14 | 100.2 | 100.4 | −0.002 | 2.0 | 0.97 |
Grain yield at harvest (kg ha−1) | 14 | 5253 | 5272 | −0.004 | 245 | 0.91 |
Shoot dry matter (kg ha−1) | 14 | 15606 | 14990 | 0.041 | 1152 | 0.80 |
SAMMAZ-15 | SAMMAZ-16 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sowing Window | Mean | St. Dev. | Max. | Min. | Mean | St. Dev. | Max. | Min. | ||
SS | ||||||||||
Early June | 5601 | 711 | 7117 | 4652 | 5002 | 587 | 6057 | 3934 | ||
Mid-June | 5591 | 478 | 6352 | 4768 | 4913 | 561 | 5954 | 3947 | ||
Late June | 5228 | 677 | 6044 | 2875 | 4598 | 502 | 5426 | 3048 | ||
Early July | 4673 | 775 | 5947 | 2547 | 4344 | 651 | 5241 | 2453 | ||
Mid-July | 4001 | 859 | 5518 | 2150 | 3654 | 722 | 5164 | 2176 | ||
Late July | 3024 | 1010 | 5098 | 548 | 2800 | 901 | 4567 | 772 | ||
Early August | 1952 | 1007 | 4281 | 592 | 1862 | 957 | 4182 | 617 | ||
Mid-August | 1256 | 590 | 2960 | 411 | 1217 | 625 | 2931 | 383 | ||
Late August | 1102 | 293 | 1707 | 457 | 982 | 241 | 1536 | 442 | ||
NGS | ||||||||||
Early June | 5711 | 536 | 6793 | 4492 | 4977 | 406 | 6102 | 4188 | ||
Mid-June | 5678 | 635 | 6957 | 3896 | 4864 | 661 | 6289 | 3372 | ||
Late June | 5835 | 683 | 6924 | 4453 | 5000 | 573 | 5816 | 3708 | ||
Early July | 5874 | 719 | 7686 | 4600 | 5008 | 591 | 6110 | 3904 | ||
Mid-July | 5983 | 633 | 7343 | 4867 | 5160 | 565 | 6602 | 4218 | ||
Late July | 5765 | 710 | 7036 | 4151 | 5138 | 603 | 6372 | 3818 | ||
Early August | 5303 | 976 | 6777 | 2197 | 4810 | 768 | 5756 | 1877 | ||
Mid-August | 4543 | 1314 | 6821 | 1266 | 4172 | 1106 | 5694 | 1161 | ||
Late August | 3123 | 1314 | 6060 | 1163 | 3031 | 1144 | 5532 | 1270 | ||
SGS | ||||||||||
Early June | 4672 | 478 | 5814 | 3783 | 3882 | 404 | 4610 | 3120 | ||
Mid-June | 4822 | 533 | 5924 | 3866 | 4060 | 382 | 5009 | 3323 | ||
Late June | 5048 | 597 | 6338 | 4145 | 4245 | 462 | 5025 | 3415 | ||
Early July | 5059 | 531 | 6139 | 4139 | 4314 | 537 | 5389 | 3340 | ||
Mid-July | 4882 | 511 | 5865 | 3877 | 4255 | 425 | 4964 | 3361 | ||
Late July | 4650 | 581 | 5561 | 3511 | 4056 | 481 | 5074 | 3105 | ||
Early August | 4434 | 843 | 5747 | 2428 | 3973 | 627 | 4905 | 2434 | ||
Mid-August | 3820 | 1109 | 5883 | 926 | 3545 | 906 | 5115 | 1052 | ||
Late August | 2964 | 1313 | 5242 | 543 | 2826 | 1127 | 4822 | 546 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tofa, A.I.; Chiezey, U.F.; Babaji, B.A.; Kamara, A.Y.; Adnan, A.A.; Beah, A.; Adam, A.M. Modeling Planting-Date Effects on Intermediate-Maturing Maize in Contrasting Environments in the Nigerian Savanna: An Application of DSSAT Model. Agronomy 2020, 10, 871. https://doi.org/10.3390/agronomy10060871
Tofa AI, Chiezey UF, Babaji BA, Kamara AY, Adnan AA, Beah A, Adam AM. Modeling Planting-Date Effects on Intermediate-Maturing Maize in Contrasting Environments in the Nigerian Savanna: An Application of DSSAT Model. Agronomy. 2020; 10(6):871. https://doi.org/10.3390/agronomy10060871
Chicago/Turabian StyleTofa, Abdullahi I., Uche F. Chiezey, Bashir A. Babaji, Alpha Y. Kamara, Adnan A. Adnan, Aloysius Beah, and Adam M. Adam. 2020. "Modeling Planting-Date Effects on Intermediate-Maturing Maize in Contrasting Environments in the Nigerian Savanna: An Application of DSSAT Model" Agronomy 10, no. 6: 871. https://doi.org/10.3390/agronomy10060871
APA StyleTofa, A. I., Chiezey, U. F., Babaji, B. A., Kamara, A. Y., Adnan, A. A., Beah, A., & Adam, A. M. (2020). Modeling Planting-Date Effects on Intermediate-Maturing Maize in Contrasting Environments in the Nigerian Savanna: An Application of DSSAT Model. Agronomy, 10(6), 871. https://doi.org/10.3390/agronomy10060871