Physiological Responses to Fe Deficiency in Split-Root Tomato Plants: Possible Roles of Auxin and Ethylene?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth Conditions and the Split-Root System
2.2. Phytohormonal Inhibitor Treatments and Plant Sampling
2.3. Determination of Chlorophyll Content
2.4. Natural and 57Fe Accumulation in Shoots and Roots
2.5. Determination of Fe3+-Chelate Reductase Activity by Intact Roots
2.6. Total RNA Extraction and cDNA Synthesis
2.7. Real-Time Reverse Transcription-PCR Analysis
2.8. Statistical Analysis
3. Results
3.1. Effect of Localized Fe Supply on Plant Growth and Chlorophyll Content
3.2. Effect of Localized Fe Resupply on Fe-Starved Plants: 56Fe and 57Fe Accumulation in Shoots and Roots
3.3. Effect of Localized Fe Resupply on Fe-Starved Plants: Fe3+-Chelate Reductase Activity
3.4. Effect of Localized Fe Resupply on Fe-Starved Plants: SlFRO1 Gene Expression
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hendriks, M.; Visser, E.J.W.; Visschers, I.G.S.; Aarts, B.H.J.; de Caluwe, H.; Smit-Tiekstra, A.E.; van der Putten, W.H.; de Kroon, H.; Mommer, L. Root responses of grassland species to spatial heterogeneity of plant-soil feedback. Funct. Ecol. 2015, 29, 177–186. [Google Scholar] [CrossRef]
- Reis, F.V.P.; Gutiérrez-Ginés, M.J.; Smith, C.M.S.; Lehto, N.J.; Robinson, B.H. Mānuka (Leptospermum scoparium) roots forage biosolids in low fertility soil. Environ. Exp. Bot. 2017, 133, 151–158. [Google Scholar] [CrossRef]
- Weiser, M.; Koubek, T.; Herben, T. Root Foraging Performance and Life-History Traits. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cain, M.L.; Subler, S.; Evans, J.P.; Fortin, M.J. Sampling spatial and temporal variation in soil nitrogen availability. Oecologia 1999, 118, 397–404. [Google Scholar] [CrossRef]
- Farley, R.A.; Fitter, A.H. The responses of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. J. Ecol. 1999, 87, 849–859. [Google Scholar] [CrossRef]
- Hodge, A. Plastic plants and patchy soils. J. Exp. Bot. 2006, 57, 401–411. [Google Scholar] [CrossRef]
- Gross, K.L.; Peters, A.; Pregitzer, K.S. Fine root growth and demographic responses to nutrient patches in four old-field plant species. Oecologia 1993, 95, 61–64. [Google Scholar] [CrossRef]
- Wijesinghe, D.K.; John, E.A.; Beurskens, S. Root System Size and Precision in Nutrient Foraging: Responses to Spatial Pattern of Nutrient Supply in Six Herbaceous Species. J. Ecol. 2001, 89, 972–983. [Google Scholar] [CrossRef]
- York, L.M.; Carminati, A.; Mooney, S.J.; Ritz, K.; Bennett, M.J. The holistic rhizosphere: Integrating zones, processes, and semantics in the soil influenced by roots. J. Exp. Bot. 2016, 67, 3629–3643. [Google Scholar] [CrossRef] [Green Version]
- Gersani, M.; Sachs, T. Development correlations between roots in heterogeneous environments. Plant Cell Environ. 1992, 15, 463–469. [Google Scholar] [CrossRef]
- Drew, M.C. Comparison of the effects of a localised supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol. 1975, 75, 479–490. [Google Scholar] [CrossRef]
- Cahill, J.F.; McNickle, G.G. The Behavioral Ecology of Nutrient Foraging by Plants. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 289–311. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.; Stone, L. Physical, chemical, and biological changes in the rhizosphere and nutrient availability. J. Plant Nutr. 2006, 29, 1327–1356. [Google Scholar] [CrossRef]
- Delgado, A.; Gómez, J.A. The Soil. Physical, Chemical and Biological Properties. In Principles of Agronomy for Sustainable Agriculture; Springer International Publishing AG: Cham, Switzerland, 2016; pp. 15–26. [Google Scholar]
- Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Römheld, V.; Marschner, H. Evidence for a Specific Uptake System for Iron Phytosiderophores in Roots of Grasses. Plant Physiol. 1986, 80, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Rout, G.R.; Sahoo, S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 2015, 3, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Imsande, J. Iron, sulfur, and chlorophyll deficiencies: A need for an integrative approach in plant physiology. Physiol. Plant. 1998, 103, 139–144. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nishizawa, N.K. Iron Uptake, Translocation, and Regulation in Higher Plants. Annu. Rev. Plant Biol. 2012, 63, 131–152. [Google Scholar] [CrossRef] [Green Version]
- Connorton, J.M.; Balk, J.; Rodríguez-Celma, J. Iron homeostasis in plants-a brief overview. Metallomics 2017, 9, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Bindraban, P.S.; Dimkpa, C.; Nagarajan, L.; Roy, A.; Rabbinge, R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fertil. Soils 2015, 51, 897–911. [Google Scholar] [CrossRef] [Green Version]
- Romheld, V.; Marschner, H. Iron deficiency stress induced morphological and physiological changes in root tips of sunflower. Physiol. Plant. 1981, 53, 354–360. [Google Scholar] [CrossRef]
- Eide, D.; Broderius, M.; Fett, J.; Guerinot, M.L. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl. Acad. Sci. USA 1996, 93, 5624–5628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vert, G.; Grotz, N.; Dédaldéchamp, F.; Gaymard, F.; Guerinot, M.L.; Briat, J.F.; Curie, C. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 2002, 14, 1223–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colangelo, E.P.; Guerinot, M. Lou The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 2004, 16, 3400–3412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brumbarova, T.; Bauer, P. Iron-mediated control of the basic helix-loop-helix protein FER, a regulator of iron uptake in tomato. Plant Physiol. 2005, 137, 1018–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.-W.; Chen, W.-W.; Meng, Z.-B.; Zheng, S.-J. Iron Deficiency-induced Increase of Root Branching Contributes to the Enhanced Root Ferric Chelate Reductase Activity. J. Integr. Plant Biol. 2008, 50, 1557–1562. [Google Scholar] [CrossRef] [PubMed]
- Santi, S.; Schmidt, W. Laser microdissection-assisted analysis of the functional fate of iron deficiency-induced root hairs in cucumber. J. Exp. Bot. 2008, 59, 697–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucena, C.; Romera, F.J.; García, M.J.; Alcántara, E.; Pérez-Vicente, R. Ethylene participates in the regulation of Fe deficiency responses in strategy I plants and in rice. Front. Plant Sci. 2015, 6, 1056. [Google Scholar] [CrossRef] [Green Version]
- Romera, F.J.; Lucena, C.; Alcàntara, E. Plant Hormones Influencing Iron Uptake in Plants. In Iron Nutrition in Plants and Rhizospheric Microorganisms; Springer: Dordrecht, The Netherlands, 2006; pp. 251–278. [Google Scholar]
- Hindt, M.N.; Guerinot, M. Lou Getting a sense for signals: Regulation of the plant iron deficiency response. Biochim. Biophys. Acta Mol. Cell Res. 2012, 1823, 1521–1530. [Google Scholar] [CrossRef] [Green Version]
- Romera, F.J.; García, M.J.; Alcántara, E.; Pérez-Vicente, R. Latest findings about the interplay of auxin, ethylene and nitric oxide in the regulation of Fe deficiency responses by strategy I plants. Plant Signal. Behav. 2011, 6. [Google Scholar] [CrossRef]
- Romera, F.J.; Lucena, C.; García, M.J.; Alcántara, E.; Pérez-Vicente, R. The role of ethylene and other signals in the regulation of fe deficiency responses by Dicot plants. In Stress Signaling in Plants: Genomics and Proteomics Perspective; Springer International Publishing: Cham, Switzerland, 2017; Volume 2, pp. 277–300. ISBN 978-3-319-42183-4. [Google Scholar] [CrossRef]
- Li, W.; Lan, P. The understanding of the plant iron deficiency responses in strategy I plants and the role of ethylene in this process by omic approaches. Front. Plant Sci. 2017, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Bacaicoa, E.; Mora, V.; Zamarreño, Á.M.; Fuentes, M.; Casanova, E.; García-Mina, J.M. Auxin: A major player in the shoot-to-root regulation of root Fe-stress physiological responses to Fe deficiency in cucumber plants. Plant Physiol. Biochem. 2011, 49, 545–556. [Google Scholar] [CrossRef] [PubMed]
- Muday, G.K.; Rahman, A.; Binder, B.M. Auxin and ethylene: Collaborators or competitors? Trends Plant Sci. 2012, 17, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Grusak, M.A.; Pezeshgi, S. Shoot-to-root signal transmission regulates root Fe(III) reductase activity in the dgl mutant of pea. Plant Physiol. 1996, 110, 329–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vert, G.A.; Briat, J.F.; Curie, C. Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol. 2003, 132, 796–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enomoto, Y.; Goto, F. Long-distance signaling of iron deficiency in plants. Plant Signal. Behav. 2008, 3, 396–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, E.L.; Connolly, E.L. Time to pump iron: Iron-deficiency-signaling mechanisms of higher plants. Curr. Opin. Plant Biol. 2008, 11, 530–535. [Google Scholar] [CrossRef]
- Tivendale, N.D.; Ross, J.J.; Cohen, J.D. The shifting paradigms of auxin biosynthesis. Trends Plant Sci. 2014, 19, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Ljung, K.; Hull, A.K.; Celenza, J.; Yamada, M.; Estelle, M.; Normanly, J.; Sandberg, G. Sites and regulation of auxin biosynthesis in arabidopsis roots. Plant Cell 2005, 17, 1090–1104. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y. Auxin Biosynthesis. Arabidopsis Book 2014, 12, e0173. [Google Scholar] [CrossRef] [Green Version]
- Vanneste, S.; Friml, J. Auxin: A Trigger for Change in Plant Development. Cell 2009, 136, 1005–1016. [Google Scholar] [CrossRef]
- Spalding, E.P. Diverting the downhill flow of auxin to steer growth during tropisms. Am. J. Bot. 2013, 100, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Kazan, K. Auxin and the integration of environmental signals into plant root development. Ann. Bot. 2013, 112, 1655–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bienfait, H.F. Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. J. Bioenerg. Biomembr. 1985, 17, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.F.; Hoffman, N.E. Ethylene Biosynthesis and its Regulation in Higher Plants. Annu. Rev. Plant Physiol. 1984, 35, 155–189. [Google Scholar] [CrossRef]
- Kende, H. Ethylene Biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 283–307. [Google Scholar] [CrossRef]
- Romera, F.J.; Alcántara, E. Iron-deficiency stress responses in cucumber (Cucumis sativus L) roots: A possible role for ethylene? Plant Physiol. 1994, 105, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Romera, F.J.; Alcantara, E.; De La Guardia, M.D. Ethylene production by Fe-deficient roots and its involvement in the regulation of Fe-deficiency stress responses by Strategy I plants. Ann. Bot. 1999, 83, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, W.; Tittel, J.; Schikora, A. Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol. 2000, 122, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, W.; Schikora, A. Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development. Plant Physiol. 2001, 125, 2078–2084. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Zhang, H.-T.; Wang, Y.; Jia, W.-S.; Xu, X.-F.; Zhang, X.-Z.; Han, Z.H. Induction of root Fe(lll) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis. J. Exp. Bot. 2012, 63, 859–870. [Google Scholar] [CrossRef] [Green Version]
- Maas, F.M.; van de Wetering, D.A.M.; van Beusichem, M.L.; Bienfait, H.F. Characterization of Phloem Iron and Its Possible Role in the Regulation of Fe-Efficiency Reactions. Plant Physiol. 1988, 87, 167–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucena, C.; Waters, B.M.; Romera, F.J.; García, M.J.; Morales, M.; Alcántara, E.; Pérez-Vicente, R. Ethylene could influence ferric reductase, iron transporter, and H +-ATPase gene expression by affecting FER (or FER-like) gene activity. J. Exp. Bot. 2006, 57, 4145–4154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, W.; Michalke, W.; Schikora, A. Proton pumping by tomato roots. Effect of Fe deficiency and hormones on the activity and distribution of plasma membrane H+-ATPase in rhizodermal cells. Plant Cell Environ. 2003, 26, 361–370. [Google Scholar] [CrossRef] [Green Version]
- De Nisi, P.; Vigani, G.; Dell’Orto, M.; Zocchi, G. Application of the split root technique to study iron uptake in cucumber plants. Plant Physiol. Biochem. 2012, 57, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, W.; Boomgaarden, B.; Ahrens, V. Reduction of root iron in Plantago lanceolata during recovery from Fe deficiency. Physiol. Plant. 1996, 98, 587–593. [Google Scholar] [CrossRef]
- Pii, Y.; Borruso, L.; Brusetti, L.; Crecchio, C.; Cesco, S.; Mimmo, T. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiol. Biochem. 2016, 99, 39–48. [Google Scholar] [CrossRef]
- Zhang, F.S.; Römheld, V.; Marschner, H. Role of the root apoplasm for iron acquisition by wheat plants. Plant Physiol. 1991, 97, 1302–1305. [Google Scholar] [CrossRef] [Green Version]
- Coppa, E.; Celletti, S.; Pii, Y.; Mimmo, T.; Cesco, S.; Astolfi, S. Revisiting Fe/S interplay in tomato: A split-root approach to study the systemic and local responses. Plant Sci. 2018, 276, 134–142. [Google Scholar] [CrossRef]
- Chen, W.W.; Yang, J.L.; Qin, C.; Jin, C.W.; Mo, J.H.; Ye, T.; Zheng, S.J. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in arabidopsis. Plant Physiol. 2010, 154, 810–819. [Google Scholar] [CrossRef] [Green Version]
- Pii, Y.; Astegno, A.; Peroni, E.; Zaccardelli, M.; Pandolfini, T.; Crimi, M. The Medicago truncatula N5 gene encoding a root-specific lipid transfer protein is required for the symbiotic interaction with Sinorhizobium meliloti. Mol. Plant-Microbe Interact. 2009, 22, 1577–1587. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Cuenca, M.R.; Iglesias, D.J.; Forner-Giner, M.A.; Primo-Millo, E.; Legaz, F. The effect of sodium bicarbonate on plant performance and iron acquisition system of FA-5 (Forner-Alcaide 5) citrus seedlings. Acta Physiol. Plant. 2013, 35, 2833–2845. [Google Scholar] [CrossRef]
- Park, C.J.; Suh, J.K.; Lee, R.W.; Lee, S.H. Determination of Cd, Cu, Zn and Pb in rice flour reference materials by isotope dilution inductively coupled plasma mass spectrometry. Anal. Sci. 1997, 13, 429–432. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Boyle, E.A. Determination of iron in seawater by high-resolution isotope dilution inductively coupled plasma mass spectrometry after Mg(OH)2 coprecipitation. Anal. Chim. Acta 1998, 367, 183–191. [Google Scholar] [CrossRef]
- Sariego Muñiz, C.; Marchante-Gayón, J.M.; García Alonso, J.I.; Sanz-Medel, A. Multi-elemental trace analysis of human serum by double-focusing ICP-MS. J. Anal. At. Spectrom. 1999, 14, 193–198. [Google Scholar] [CrossRef]
- Meija, J.; Caruso, J.A. Deconvolution of isobaric interferences in mass spectra. J. Am. Soc. Mass Spectrom. 2004, 15, 654–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-González, P.; Marchante-Gayón, J.M.; García Alonso, J.I.; Sanz-Medel, A. Isotope dilution analysis for elemental speciation: A tutorial review. Spectrochim. Acta Part B At. Spectrosc. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 151–207. [Google Scholar] [CrossRef]
- Giner Martínez-Sierra, J.; Moreno Sanz, F.; Herrero Espílez, P.; Marchante Gayón, J.M.; García Alonso, J.I. Biosynthesis of sulfur-34 labelled yeast and its characterisation by multicollector-ICP-MS. J. Anal. At. Spectrom. 2007, 22, 1105–1112. [Google Scholar] [CrossRef]
- Dell’Orto, M.; Santi, S.; De Nisi, P.; Cesco, S.; Varanini, Z.; Zocchi, G.; Pinton, R. Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: Involvement of plasma membrane H+-ATPase activity. J. Exp. Bot. 2000, 51, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Vizzotto, G.; Pinton, R.; Bomben, C.; Cesco, S.; Varanini, Z.; Costa, G. Iron reduction in iron-stressed plants of Actinidia deliciosa genotypes: Involvement of PM Fe(III)-chelate reductase and H+-ATPase activity. J. Plant Nutr. 1999, 22, 479–488. [Google Scholar] [CrossRef]
- Zuchi, S.; Watanabe, M.; Hubberten, H.M.; Bromke, M.; Osorio, S.; Fernie, A.R.; Celletti, S.; Paolacci, A.R.; Catarcione, G.; Ciaffi, M.; et al. The interplay between sulfur and iron nutrition in tomato. Plant Physiol. 2015, 169, 2624–2639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentinuzzi, F.; Pii, Y.; Vigani, G.; Lehmann, M.; Cesco, S.; Mimmo, T. Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria × ananassa. J. Exp. Bot. 2015, 66, 6483–6495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramakers, C.; Ruijter, J.M.; Lekanne Deprez, R.H.; Moorman, A.F.M. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 2003, 339, 62–66. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30, e36. [Google Scholar] [CrossRef] [PubMed]
- Colombo, C.; Palumbo, G.; He, J.Z.; Pinton, R.; Cesco, S. Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. J. Soils Sediments 2014, 14, 538–548. [Google Scholar] [CrossRef]
- Mimmo, T.; Del Buono, D.; Terzano, R.; Tomasi, N.; Vigani, G.; Crecchio, C.; Pinton, R.; Zocchi, G.; Cesco, S. Rhizospheric organic compounds in the soil-microorganism-plant system: Their role in iron availability. Eur. J. Soil Sci. 2014, 65, 629–642. [Google Scholar] [CrossRef]
- Valentinuzzi, F.; Pii, Y.; Carlo, P.; Roberto, T.; Fontanella, M.C.; Beone, G.M.; Astolfi, S.; Mimmo, T.; Cesco, S. Root-shoot-root Fe translocation in cucumber plants grown in a heterogeneous Fe provision. Plant Sci. 2020, 293, 110431. [Google Scholar] [CrossRef]
- Gayomba, S.R.; Zhai, Z.; Jung, H., II; Vatamaniuk, O.K. Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements. Front. Plant Sci. 2015, 6, 716. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Moore, S.; Chen, C.; Lindsey, K. Crosstalk Complexities between Auxin, Cytokinin, and Ethylene in Arabidopsis Root Development: From Experiments to Systems Modeling, and Back Again. Mol. Plant 2017, 10, 1480–1496. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-B.; Xie, Z.-Z.; Hu, C.-G.; Zhang, J.-Z. A Review of Auxin Response Factors (ARFs) in Plants. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Molesini, B.; Pandolfini, T.; Pii, Y.; Korte, A.; Spena, A. Arabidopsis thaliana AUCSIA-1 Regulates Auxin Biology and Physically Interacts with a Kinesin-Related Protein. PLoS ONE 2012, 7, e41327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, E.L.; Campbell, N.H.; Grotz, N.; Prichard, C.L.; Guerinot, M. Lou Overexpression of the FRO2 Ferric Chelate Reductase Confers Tolerance to Growth on Low Iron and Uncovers Posttranscriptional Control. Plant Physiol. 2003, 133, 1102–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romera, F.J.; Alcántara, E.; Agronomía, D. Ethylene involvement in the regulation of Fe-deficiency stress responses by Strategy I plants. Funct. Plant Biol. 2004, 31, 315–328. [Google Scholar] [CrossRef]
- Molassiotis, A.; Therios, I.; Dimassi, K.; Diamantidis, G.; Chatzissavvidis, C. Induction of Fe(III)-chelate reductase activity by ethylene and salicylic acid in iron-deficient peach rootstock explants. J. Plant Nutr. 2005, 28, 669–682. [Google Scholar] [CrossRef]
- Lingam, S.; Mohrbacher, J.; Brumbarova, T.; Potuschak, T.; Fink-Straube, C.; Blondet, E.; Genschik, P.; Bauer, P. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell 2011, 23, 1815–1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, B.M.; Lucena, C.; Romera, F.J.; Jester, G.G.; Wynn, A.N.; Rojas, C.L.; Alcántara, E.; Pérez-Vicente, R. Ethylene involvement in the regulation of the H+-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants. Plant Physiol. Biochem. 2007, 45, 293–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pramanik, K.; Mohapatra, P.P. Role of Auxin on Growth, Yield and Quality of Tomato—A Review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1624–1636. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celletti, S.; Pii, Y.; Valentinuzzi, F.; Tiziani, R.; Fontanella, M.C.; Beone, G.M.; Mimmo, T.; Cesco, S.; Astolfi, S. Physiological Responses to Fe Deficiency in Split-Root Tomato Plants: Possible Roles of Auxin and Ethylene? Agronomy 2020, 10, 1000. https://doi.org/10.3390/agronomy10071000
Celletti S, Pii Y, Valentinuzzi F, Tiziani R, Fontanella MC, Beone GM, Mimmo T, Cesco S, Astolfi S. Physiological Responses to Fe Deficiency in Split-Root Tomato Plants: Possible Roles of Auxin and Ethylene? Agronomy. 2020; 10(7):1000. https://doi.org/10.3390/agronomy10071000
Chicago/Turabian StyleCelletti, Silvia, Youry Pii, Fabio Valentinuzzi, Raphael Tiziani, Maria Chiara Fontanella, Gian Maria Beone, Tanja Mimmo, Stefano Cesco, and Stefania Astolfi. 2020. "Physiological Responses to Fe Deficiency in Split-Root Tomato Plants: Possible Roles of Auxin and Ethylene?" Agronomy 10, no. 7: 1000. https://doi.org/10.3390/agronomy10071000
APA StyleCelletti, S., Pii, Y., Valentinuzzi, F., Tiziani, R., Fontanella, M. C., Beone, G. M., Mimmo, T., Cesco, S., & Astolfi, S. (2020). Physiological Responses to Fe Deficiency in Split-Root Tomato Plants: Possible Roles of Auxin and Ethylene? Agronomy, 10(7), 1000. https://doi.org/10.3390/agronomy10071000