Alterations of the Chemical Compositions, Surface Functionalities, and Nitrogen Structures of Cage Layer Chicken Manure by Carbonization to Improve Nitrogen Bioavailability in Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Source, Preparation, and Carbonization
2.2. Chemical Compositions of CM and CCM Samples
2.3. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.4. X-ray Photoelectron Spectroscopy (XPS) Analysis
2.5. Laboratory Incubation and Greenhouse Pot Studies for N Bioavailability Test
2.6. Statistical Data Analysis
3. Results
3.1. Alterations in Chemical Properties, Aromaticity, and Stability of CM during Carbonization at Different Temperatures
3.2. Transformation of Nitrogen Functional Groups during Carbonization of CM at Different Temperatures
3.3. Speciation of N Forms during Carbonization of CM at Different Temperatures
3.4. N Bioavailability from CM and Thermally Altered CCM Samples in Incubation Study
3.5. N Bioavailability from CM and Thermally Altered CCM350 in Pot Study for Plants
4. Discussion
4.1. Effects of Carbonization Temperatures on Alterations of Chemical Properties, Aromaticity, and Stability of CM
4.2. Effects of Carbonization Temperatures on Alteration of Surface Functionalities in CM
4.3. Effects of Carbonization Temperatures on Alteration of N Structures on the Surface of CM
4.4. Effect of Thermal Induced Chemical Alterations of CM on N Bioavailability in Soil for Plants
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Parameters | Amount of Nutrient |
---|---|
Total N (%) | 0.1 |
Total C (%) | 1.1 |
C/N ratio | 9.4 |
NH4+-N (mg/100 g) | 0.82 |
NO3-N (mg/100 g) | 1.84 |
Organic N (%) | 0.11 |
pH | 6.7 |
Appendix B
References
- Azeez, J.O.; Van Averbeke, W. Nitrogen mineralization potential of three animal manures applied on a sandy clay loam soil. Bioresour. Technol. 2010, 101, 5645–5651. [Google Scholar] [CrossRef]
- Masarirambi, M.T.; Dlamini, P.; Wahome, P.K.; Oseni, T.O. Effects of Chicken Manure on Growth, Yield and Quality of Lettuce (Lactuca sativa L.) ‘Taina’ Under a Lath House in a Semi-Arid Sub-Tropical Environment. Am. Eurasian J. Agric. Environ. Sci. 2012, 12, 399–406. [Google Scholar]
- Cayci, G.; Temiz, C.; Ok, S.S. The Effects of Fresh and Composted Chicken Manures on Some Soil Characteristics. Commun. Soil Sci. Plant Anal. 2017, 48, 1528–1538. [Google Scholar] [CrossRef]
- Wiedemann, S.G.; McGahan, E.J.; Burger, M. Layer Hen Manure Analysis Report. Australian Egg Corporation Limited. 2008. Available online: https://www.australianeggs.org.au/what-we-do/leading-research/layer-hen-manure-analysis-report (accessed on 13 May 2020).
- Amanullah, M.M.; Sekar, S.; Muthukrish, P. Prospects and Potential of Poultry Manure. Asian J. Plant Sci. 2010, 9, 172–182. [Google Scholar] [CrossRef] [Green Version]
- Erisman, J.W.; Bleeker, A.; Galloway, J.N.; Sutton, M. Reduced nitrogen in ecology and the environment. Environ. Pollut. 2007, 150, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Oenema, O.; Witzke, H.; Klimont, Z.; Lesschen, J.P.; Velthof, G. Integrated assessment of promising measures to decrease nitrogen losses from agriculture in EU-27. Agric. Ecosyst. Environ. 2009, 133, 280–288. [Google Scholar] [CrossRef]
- Brinson, S.E., Jr.; Cabrera, M.L.; Tyson, S.C. Ammonia volatilization from surface-applied, fresh and composted poultry litter. Plant Soil 1994, 167, 213–218. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Hina, M.; Khalique, A.; Khan, S.R. Mineralization of Three Organic Manures Used as Nitrogen Source in a Soil Incubated under Laboratory Conditions. Commun. Soil Sci. Plant Anal. 2007, 38, 1691–1711. [Google Scholar] [CrossRef]
- Chescheir, G.M.; Westerman, P.W.; Safley, L.M. Laboratory methods for estimating available nitrogen in manures and sludges. Agric. Wastes 1986, 18, 175–195. [Google Scholar] [CrossRef]
- Mondini, C.; Chiumenti, R.; da Borso, F.; Leita, L.; De Nobili, M. Changes during processing in the organic matter of composted and air-dried poultry manure. Bioresour. Technol. 1996, 55, 243–249. [Google Scholar] [CrossRef]
- Walworth, J. Manure in the Home Garden. Available online: https://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1590.pdf (accessed on 2 July 2020).
- Cantrell, K.B.; Ducey, T.; Ro, K.; Hunt, P.G. Livestock waste-to-bioenergy generation opportunities. Bioresour. Technol. 2008, 99, 7941–7953. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, K.; Ro, K.; Mahajan, D.; Anjom, M.; Hunt, P.G. Role of thermochemical conversion in livestock waste-to-energy treatments: Obstacles and opportunities. Ind. Eng. Chem. Res. 2007, 46, 8918–8927. [Google Scholar] [CrossRef]
- Knicker, H. “Black nitrogen”—An important fraction in determining the recalcitrance of charcoal. Org. Geochem. 2010, 41, 947–950. [Google Scholar] [CrossRef]
- De La Rosa, J.M.; Knicker, H. Bioavailability of N released from N-rich pyrogenic organic matter: An incubation study. Soil Biol. Biochem. 2011, 43, 2368–2373. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Steiner, C.; Harris, K.; Das, K.C.; Bibens, B. Effect of Low-Temperature Pyrolysis Conditions on Biochar for Agricultural Use. Trans. ASABE 2008, 51, 2061–2069. [Google Scholar] [CrossRef]
- Daramy, M.A.; Kawada, R.; Oba, S. What Is the Threshold Carbonization Temperature for Sustainable Preservation of the Good Nitrogen Supply Ability of Chicken Manure? Sustainability 2020, 12, 3306. [Google Scholar] [CrossRef] [Green Version]
- Novak, J.M.; Lima, I.; Baoshan, X.; Gaskin, J.W.; Steiner, C.; Das, K.C.; Watts, D.W.; Busscher, W.J.; Schomberg, H. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci. 2009, 3, 195–206. [Google Scholar]
- Cantrell, K.B.; Hunt, P.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Tagoe, S.O.; Horiuchi, T.; Matsui, T. Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean. Plant Soil 2008, 306, 211–220. [Google Scholar] [CrossRef]
- Brownsort, P.A. Biomass Pyrolysis Processes: Performance Parameters and Their Influence on Biochar System Benefits. Master’s Thesis, University of Edinburgh, Edinburgh, UK, 2009. [Google Scholar]
- Bremner, J.M. Inorganic forms of nitrogen. In Methods of Soil Analysis; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1179–1237. [Google Scholar]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid 1. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Logah, V.; Safo, E.Y.; Quansah, C. Evaluation of Nitrogen Mineralization Dynamics Following Amendments Application under Cropping Systems on a Ferric Acrisol in Ghana. Int. J. Environ. Sci. Dev. 2011, 2, 133–137. [Google Scholar] [CrossRef]
- Van Krevelen, D.W. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 1950, 29, 269–284. [Google Scholar]
- De La Rosa, J.M.; Paneque, M.; Miller, A.Z.; Knicker, H. Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Sci. Total Environ. 2014, 499, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernier, M.-H.; Levy, G.J.; Fine, P.; Borisover, M. Organic matter composition in soils irrigated with treated wastewater: FT-IR spectroscopic analysis of bulk soil samples. Geoderma 2013, 209, 233–240. [Google Scholar] [CrossRef]
- Smidt, E.; Parravicini, V. Effect of sewage sludge treatment and additional aerobic post-stabilization revealed by infrared spectroscopy and multivariate data analysis. Bioresour. Technol. 2009, 100, 1775–1780. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, D.; Zhu, L. Transitional Adsorption and Partition of Nonpolar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures. Environ. Sci. Technol. 2008, 42, 5137–5143. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Johnson, E.J.; Chefetz, B.; Zhu, L.; Xing, B. Sorption of Polar and Nonpolar Aromatic Organic Contaminants by Plant Cuticular Materials: Role of Polarity and Accessibility. Environ. Sci. Technol. 2005, 39, 6138–6146. [Google Scholar] [CrossRef]
- Chen, B.; Wang, Y.; Hu, D. Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi. J. Hazard. Mater. 2010, 179, 845–851. [Google Scholar] [CrossRef]
- Page, D.; Miotlinski, K.Z.; Dillon, P.; Taylor, R.; Wakelin, S.A.; Levett, K.; Barry, K.; Pavelic, P. Water quality requirements for sustaining aquifer storage and recovery operations in a low permeability fractured rock aquifer. J. Environ. Manag. 2011, 92, 2410–2418. [Google Scholar] [CrossRef]
- Zhan, H.; Zhuang, X.; Song, Y.; Huang, Y.; Liu, H.; Yin, X.; Wu, C. Evolution of nitrogen functionalities in relation to NO precursors during low-temperature pyrolysis of biowastes. Fuel 2018, 218, 325–334. [Google Scholar] [CrossRef]
- Hansson, K. Pyrolysis of poly-L-leucine under combustion-like conditions. Fuel 2003, 82, 653–660. [Google Scholar] [CrossRef]
- NIST X-ray Photoelectron Spectroscopy Database 20, Version 4.1. Available online: http://dx.doi.org/10.18434/T4T88K (accessed on 7 January 2020).
- Wang, Z.; Li, Q.; Lin, Z.; Whiddon, R.; Qiu, K.; Kuang, M.; Cen, K. Transformation of nitrogen and sulphur impurities during hydrothermal upgrading of low quality coals. Fuel 2016, 164, 254–261. [Google Scholar] [CrossRef]
- Koutcheiko, S.; Monreal, C.; Kodama, H.; McCracken, T.; Kotlyar, L. Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Bioresour. Technol. 2007, 98, 2459–2464. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Guo, Y.; Peng, N.; Lang, Q.; Xia, Y.; Gai, C.; Liu, Z. Nitrogen transformation among char, tar and gas during pyrolysis of sewage sludge and corresponding hydrochar. J. Anal. Appl. Pyrolysis 2017, 126, 298–306. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Sheng, C.; Chen, J.; Liu, Y.; Zhao, L.; Xie, F. X-ray Photoelectron Spectroscopy (XPS) Investigation of Nitrogen Functionalities during Coal Char Combustion in O2/CO2 and O2/Ar Atmospheres. Energy Fuels 2011, 25, 240–245. [Google Scholar] [CrossRef]
- Song, W.; Guo, M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2012, 94, 138–145. [Google Scholar] [CrossRef]
- Cely, P.; Gascó, G.; Paz-Ferreiro, J.; Mendez, A.-M. Agronomic properties of biochars from different manure wastes. J. Anal. Appl. Pyrolysis 2015, 111, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Cimò, G.; Kucerik, J.; Berns, A.E.E.; Schaumann, G.E.; Alonzo, G.; Conte, P. Effect of Heating Time and Temperature on the Chemical Characteristics of Biochar from Poultry Manure. J. Agric. Food Chem. 2014, 62, 1912–1918. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Insight into biochar properties and its cost analysis. Biomass Bioenergy 2016, 84, 76–86. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.-M.; Dallmeyer, I.; Garcia-Perez, M. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 2016, 84, 37–48. [Google Scholar] [CrossRef]
- Paneque, M.; De La Rosa, J.; Kern, J.; Reza, M.T.; Knicker, H. Hydrothermal carbonization and pyrolysis of sewage sludges: What happen to carbon and nitrogen? J. Anal. Appl. Pyrolysis 2017, 128, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef]
- Zornoza, R.; Moreno-Barriga, F.; Acosta, J.A.; Muñoz, M.; Faz, A. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 2016, 144, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Bavariani, M.Z.; Ronaghi, A.; Ghasemi, R. Influence of Pyrolysis Temperatures on FTIR Analysis, Nutrient Bioavailability, and Agricultural use of Poultry Manure Biochars. Commun. Soil Sci. Plant Anal. 2019, 50, 402–411. [Google Scholar] [CrossRef]
- Christel, W.; Bruun, S.; Magid, J.; Jensen, L.S. Phosphorus availability from the solid fraction of pig slurry is altered by composting or thermal treatment. Bioresour. Technol. 2014, 169, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, F.J.; Cole, M.A. Cycle of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, 2nd ed.; John Wiley and Sons, Inc.: New York, NY, USA, 1999; pp. 198–204. [Google Scholar]
- Almendros, G.; Knicker, H.; Gonzalez-Vila, F.J. Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C- and 15N-NMR spectroscopy. Org. Geochem. 2003, 34, 1559–1568. [Google Scholar] [CrossRef]
- Hadroug, S.; Jellali, S.; Leahy, J.J.; Kwapinska, M.; Jeguirim, M.; Hamdi, H.; Kwapinski, W. Pyrolysis Process as a Sustainable Management Option of Poultry Manure: Characterization of the Derived Biochars and Assessment of their Nutrient Release Capacities. Water 2019, 11, 2271. [Google Scholar] [CrossRef] [Green Version]
- Kelemen, S.R.; Gorbaty, M.L.; Kwiatek, P.J.; Fletcher, T.H.; Watt, M.; Solum, M.S.; Pugmire, R.J. Nitrogen Transformations in Coal during Pyrolysis. Energy Fuels 1998, 12, 159–173. [Google Scholar] [CrossRef]
- Jacobson, I.A.; Heady, H.H.; Dinneen, G.U. Thermal Reactions of Organic Nitrogen Compounds. I. 1-Methylpyrrole. J. Phys. Chem. A 1958, 62, 1563–1565. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Y.; Cui, Y.; Zuo, W.; Tan, T. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: A protein model compound study. Bioresour. Technol. 2013, 132, 57–63. [Google Scholar] [CrossRef]
- Graff, R.A.; Brandes, S.D. Modification of coal by subcritical steam: Pyrolysis and extraction yields. Energy Fuels 1987, 1, 84–88. [Google Scholar] [CrossRef]
- Wójtowicz, M.A.; Pels, J.R.; Moulijn, J.A. The fate of nitrogen functionalities in coal during pyrolysis and combustion. Fuel 1995, 74, 507–516. [Google Scholar] [CrossRef]
- Calderón, F.J.; Mccarty, G.; Reeves, J.B. Analysis of manure and soil nitrogen mineralization during incubation. Biol. Fertil. Soils 2005, 41, 328–336. [Google Scholar] [CrossRef]
- Yu, C.-H.; Wang, S.-L.; Tongsiri, P.; Cheng, M.-P.; Lai, H.-Y. Effects of Poultry-Litter Biochar on Soil Properties and Growth of Water Spinach (Ipomoea aquatica Forsk.). Sustainability 2018, 10, 2536. [Google Scholar] [CrossRef] [Green Version]
- Sikder, S.; Joardar, J. Biochar production from poultry litter as management approach and effects on plant growth. Int. J. Recycl. Org. Waste Agric. 2018, 8, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Hedges, J.; Eglinton, G.; Hatcher, P.; Kirchman, D.; Arnosti, C.; Derenne, S.; Evershed, R.P.; Kögel-Knabner, I.; De Leeuw, J.; Littke, R.; et al. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org. Geochem. 2000, 31, 945–958. [Google Scholar] [CrossRef]
- Steiner, C.; Harris, K.; Gaskin, J.; Das, K. The Nitrogen Contained in Carbonized Poultry Litter is not Plant Available. Open Agric. 2018, 3, 284–290. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Rochette, P.; Angers, D. Short-term C and N dynamics in a soil amended with pig slurry and barley straw: A field experiment. Can. J. Soil Sci. 2001, 81, 131–137. [Google Scholar] [CrossRef]
- Van Kessel, J.; Reeves, J.B.; Meisinger, J.J. Nitrogen and Carbon Mineralization of Potential Manure Components. J. Environ. Qual. 2000, 29, 1669–1677. [Google Scholar] [CrossRef]
- Tagoe, S.O.; Horiuchi, T.; Matsui, T. Effects of Carbonized Chicken Manure on the Growth, Nodulation, Yield, Nitrogen and Phosphorus Contents of Four Grain Legumes. J. Plant Nutr. 2010, 33, 684–700. [Google Scholar] [CrossRef]
Samples | CM | CCM350 | CCM500 | CCM650 |
---|---|---|---|---|
Elemental Concentration (%) n = 3 | ||||
N | 7.74a (±0.05) | 6.46b (±0.21) | 3.45c (±0.19) | 3.07c (±0.13) |
C | 30.92a (±0.65) | 34.59a (±0.33) | 31.23a (±0.99) | 33.35a (±1.41) |
H | 3.89a (±0.15) | 2.48b (±0.02) | 1.25c (±0.06) | 0.85c (±0.06) |
O | 32.08a (±0.75) | 19.99b (±0.56) | 16.83bc (±1.22) | 11.60c (±1.60) |
Atomic elemental ratios | ||||
H/C | 1.51a (±0.03) | 0.86b (±0.01) | 0.49c (±0.01) | 0.30d (±0.01) |
O/C | 0.78a (±0.03) | 0.43b (±0.02) | 0.41c (±0.04) | 0.26d (±0.05) |
Basic chemical properties | ||||
C/N ratio (%) | 3.99d (±0.11) | 5.36c (±0.13) | 9.07b (±0.26) | 10.85a (±0.11) |
NH4+-N (mg/100 g) | 156.62a (±0.58) | 1.68b (±0.00) | 0.70bc (±0.00) | 0.00c (±0.00) |
NO3−-N (mg/100 g) | 12.80a (±0.75) | 3.01b (±0.75) | 0.00c (±0.00) | 0.00c (±0.00) |
Total MN (mg/100 g) | 169.43a (±0.21) | 4.69b (±0.75) | 0.70c (±0.00) | 0.00c (±0.00) |
Organic N (%) | 7.51a (±0.05) | 6.45b (±0.21) | 3.45c (±0.19) | 3.07d (±0.13) |
pH | 6.8d (±0.03) | 8.6c (±0.06) | 10.0b (±0.00) | 10.7a (±0.00) |
Peak Positions cm−1 | Proposed Assignments | References |
---|---|---|
3600–2500 | Amino acid hydohalides group (N-H vibration) | [27] |
3600–3000 | OH bond in water, carboxyl, and hydroxyl group | [28] |
1665–1650 | Amide band I (C=O vibration) | [29] |
1600 | Aromatic C=C vibration (lignin carbohydrate) | [30] |
1435–1415 | CH2 units in biopolymer | [31] |
1060–1000 | Amines (C-N stretching) or polysaccharides (C-O vibration) | [32] |
800 and 600 | C-H bonds (aromatic C-H out-of-plane deformation) | [33] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daramy, M.A.; Kawada, R.; Oba, S. Alterations of the Chemical Compositions, Surface Functionalities, and Nitrogen Structures of Cage Layer Chicken Manure by Carbonization to Improve Nitrogen Bioavailability in Soil. Agronomy 2020, 10, 1031. https://doi.org/10.3390/agronomy10071031
Daramy MA, Kawada R, Oba S. Alterations of the Chemical Compositions, Surface Functionalities, and Nitrogen Structures of Cage Layer Chicken Manure by Carbonization to Improve Nitrogen Bioavailability in Soil. Agronomy. 2020; 10(7):1031. https://doi.org/10.3390/agronomy10071031
Chicago/Turabian StyleDaramy, Moses Ahmed, Ryoka Kawada, and Shinya Oba. 2020. "Alterations of the Chemical Compositions, Surface Functionalities, and Nitrogen Structures of Cage Layer Chicken Manure by Carbonization to Improve Nitrogen Bioavailability in Soil" Agronomy 10, no. 7: 1031. https://doi.org/10.3390/agronomy10071031
APA StyleDaramy, M. A., Kawada, R., & Oba, S. (2020). Alterations of the Chemical Compositions, Surface Functionalities, and Nitrogen Structures of Cage Layer Chicken Manure by Carbonization to Improve Nitrogen Bioavailability in Soil. Agronomy, 10(7), 1031. https://doi.org/10.3390/agronomy10071031